Archivo de la etiqueta: salud

Luis Pasteur, un golpe de gracia contra la “generación espontánea”.

Alejandro Alfredo Aguirre Flores.

TODOS LOS DERECHOS RESERVADOS © Copyright 2019

     Cuando se habla de Luis Pasteur, se habla en definitiva, de una de las mentes más brillantes que tuvo la humanidad en el siglo diecinueve; la literatura entorno a este magnífico científico es abundante dada la importancia de sus estudios entorno a ciencia. El presente articulo tiene por fin resaltar la obra de Pasteur como una contribución académica a favor de los estudiantes de las distintas áreas de la salud y alimentación, Bienvenidos.

En primera instancia el perfeccionamiento del microscopio compuesto hizo posible el nacimiento de la microbiología descriptiva, como parte de la Historia Natural, sin embargo el nacimiento de la microbiología como una ciencia experimental sólo fue posible cuando se logró relacionar a los microorganismos con los distintos fenómenos naturales, muchos de estos fenómenos o procesos son trascendentales en el desarrollo humano, animal e inclusive vegetal; como las fermentaciones y las enfermedades; tras evidenciarse que los microorganismos eran causa y no consecuencia de dichos fenómenos.

Luis Pasteur jugó un papel fundamental en el desarrollo de esta naciente ciencia, puesto que sus investigaciones y experimentos permitieron definir claramente los procesos naturales como las fermentaciones, putrefacción y diversas enfermedades de los seres humanos y animales como procesos típicos microbianos.

Imagen relacionada
Luis Pasteur en la realización de su experimento mediante balón de cuello de cisne para comprobación de contaminación de muestras por agentes microbianos externos.

Según menciona Norberto J. Palleroni (1970), la obra de Pasteur tuvo el mérito de dar un “golpe de gracia” con un poderoso argumento que destrozó la idea de la generación espontanea, misma que sustentada en viejas creencias no científicas o seudocientíficas defendía como cierto que la vida compleja se generaba a partir de la materia inerte (orgánica o inorgánica) casi como si se tratara de un acto de magia. Dicha creencia popular se fundamentaba en el hecho de que la vida surgía de cúmulos de materia por ejemplo: el hecho de que los rayos del sol incidan sobre los granos de trigo o maíz o la misma ropa sucia según el clérigo Johann Baptista Van Helmont, de origen belga (1667), generarían de manera espontanea vida en forma de ratas o insectos y aunque que suene descabellada esta idea en la actualidad, la teoría de la generación espontánea fue considerada como cierta hasta finales del siglo XVIII, esta teoría fue descrita por ARISTÓTELES y su escuela filosófica en la antigua Grecia.

Resultado de imagen para GENERACION ESPontanea

Y aunque la teoría de la generación espontánea tuvo varias formas a través de los tiempos, no fue sino hasta el siglo XIX que su debate dio lugar a una  gran polémica sobre su veracidad, hoy es sabido que los alimentos al entrar en un proceso de putrefacción y al someterlo a análisis microscópico, se encuentra que está repleto de bacterias y hongos que se encargan de su degradación, por lo tanto mantener a los alimentos envasados prácticamente por un tiempo indefinido sin que se pudran o fermenten es posible, gracias a las investigaciones de Pasteur que corroboran que dicho alimento al ser sometido a un shock térmico, calentamiento o enfriamiento y al envasarse herméticamente pueden ser conservados sin que éstos entren en procesos de descomposición por un tiempo prolongado.

Resultado de imagen para descomposición de alimentos
Cebolla en descomposición con proliferación de hongos cuyas esporas son procedentes del ambiente.

Pasteur seguramente se preguntó ¿De donde provienen estos seres minúsculos y que con frecuencia no se ven en el alimento fresco?.

Pues bien este brillante químico francés primero demostró que en el aire habían estructuras que se parecían mucho a los microorganismos que observó en la materia en descomposición. Según Madigan M., Martinko J., & Parker Jack (2004) Pasteur descubrió que el aire normal contiene de manera continua una amplia diversidad de células microbianas intangibles mismas que se encuentran en materias en descomposición. De forma análoga estas células microbianas se encuentran adheridas a superficies, utensilios y prácticamente a todo que les sea un medio de proliferación. Pasteur concluyó que los organismos encontrados en materias en descomposición se originaban a partir de las células presentes en el medio ambiente (aire) para finalmente postular que éstas células se depositan constantemente sobre todos los objetos. Si sus conclusiones eran correctas, un alimento “tratado” no debía estropearse de tal modo que debía existir alguna manera de destruir los microorganismos que contaminasen el alimento en su superficie.

Resultado de imagen para BACTERIAS gif
Spirillum de agua dulce

Pasteur y su experimento del matraz cuello de cisne

     Para dicho golpe de gracia Pasteur descubrió que el calor era capaz de eliminar los contaminantes pues destruía con efectividad los organismos vivos, sin embargo, esto no es un dato que se le atribuya únicamente a Pasteur, de hecho ya varios investigadores habían descubierto que, si una solución de nutrientes se introducía en un matraz de vidrio y este se sellaba llevándose posteriormente a ebullición, este nunca se descomponía mientras se mantuviera cerrado. A sus ideas no le faltaron detractores que defendían la generación espontanea y sostenían que la generación espontanea requería aire fresco para que se originara de modo que el aire encerrado dentro del matraz sufría cambios durante su calentamiento, lo que para sus detractores, explicaría el por que no se origina vida en esas condiciones; superadas las objeciones y sin prestar mucha atención a sus detractores, Pasteur se aventuro a la construcción de un matraz muy singular al que llamaría matraz “cuello de cisne”, mismo que se designa también como el matraz de Pasteur.

Resultado de imagen para matraz cuello de cisne
Los matraces en forma de “cuello de cisne” de #Pasteur

Según lo mencionan Madigan M., Martinko J., & Parker Jack (2004), Pasteur coloco las soluciones nutritivas en su interior, allí las llevo a ebullición, luego cuando el matraz se equilibraba con la temperatura ambiente, el aire podía ingresar de nuevo, pero la curvatura del matraz evitaba que los microorganismos alcanzasen el interior del matraz donde se encontraba el caldo nutritivo, siendo así el material ahora esterilizado en el recipiente no se descomponía y no aparecían microorganismos mientras el cuello del matraz no hiciera contacto entres los microorganismos y el caldo nutritivo estéril. Sin embargo, bastaba con que el matraz se inclinara lo suficiente como para que el liquido estéril contactara con el cuello para que ocurriera la putrefacción llenándose así el contenido de microorganismos.

Imagen relacionada

 

Este sencillo experimento fue suficiente para aclarar definitivamente la controversia que se venia dando por la teoría equivoca de la generación espontanea; haciendo que sus publicaciones alcanzaran el interés de médicos en toda Francia que no entendían por que después de que un paciente salia con éxito de una intervención quirúrgica, en muchos casos moría  por gangrena, Pasteur con su experimento estaba conceptualizando la idea de que los microorganismos eran omnipresentes y que al dejar una herida expuesta al ambiente, era muy probable que se convirtiera en medio de cultivo como lo que demostró con su matraz, lo que era el origen de la gangrena  que ocasionaba la muerte en los pacientes.

LA OBRA DE PASTEUR

Eliminar todos los microorganismos de un determinado objeto, es un concepto que en la actualidad denominamos esterilización, en el presente y gracias a Pasteur la calidad de vida ha mejorado considerablemente en comunidades que consumen productos inocuos, procedimientos como el “pasteurizar” en lácteos y jugos han permitido el control de  enfermedades como brucelosis entre otras infecciones.

Imagen relacionada

Resultado de imagen para pasteurizacion proceso

Finalmente Louis Pasteur no solo se dedico a investigar a los microorganismos, si bien es cierto que la mayor parte de su tiempo lo invirtió en investigaciones sobre bacterias, hongos y virus; describió también el proceso adecuado de la pasteurización en 1862. Con este método, los líquidos como la leche son calentados a una temperatura entre los 60 y los 100 grados Celsius y con esto se eliminan los microorganismos que causan que se echen a perder. La pasteurización se utilizó por primera vez en las industrias de vino francesas para salvarlas del problema de la contaminación y luego de esto se trasladó a otras bebidas como la leche y la cerveza.

Demostró que la denominada fermentación era un proceso provocado por microorganismos, puesto que descubrió que ciertas levaduras presentes principalmente en cerveza y vino eran agentes fermentadores de las bebidas alcohólicas, al producir ácido láctico como producto de su metabolismo, dando de esta manera un factor importante en la producción de bebidas espirituosas en la Europa de aquel entonces.

Resultado de imagen para fermentacion

“Una botella de vino contiene más filosofía que todos los libros del mundo”

Louis Pasteur (1865)

Entre  uno de los datos poco conocidos de Pasteur es que básicamente salvo la industria de la seda en toda Europa, esto lo realizo mientras se encontraba en la realización de  su “Teoría de los Gérmenes”. Descubrió que la pebrina era una enfermedad ocasionada por un gusano microscópico denominado Nosema bombycis, afectando gravemente la salud del gusano de seda que era empleado en la producción textil de sedas, esto ocasiono la quiebra de muchas industrias de seda en Europa y que se comenzaba a expandir con gran velocidad de región en región, tras elaborarse un método, desarrollado por Pasteur, se pudo ir erradicando la enfermedad y recuperando la producción normal de sedas finas.

Resultado de imagen para Nosema bombycis
Silkworm pebrine disease and Nosema bombycis

En 1879, Pasteur se convierte en ser el creador de la primera vacuna, dicha vacuna fue empleada en pollos, con la finalidad de curar el cólera del pollo. Los pollos inoculados contrajeron la enfermedad, pero se volvieron resistentes al virus. Termino desarrollando vacunas para otras enfermedades como el cólera, tuberculosos, ántrax (carbunco) y sarampión.

Resultado de imagen para primera vacuna colera de pollo

“Al enseñarme a leer, te aseguraste de que aprendiera sobre la grandeza de Francia”

Louis Pasteur, recordando la relación con su padre.

Entorno a la microbiología, determino que la temperatura era un factor importante para el control microbiano. Sus investigaciones con gallinas infectadas de fiebre esplénica por ántrax, que se mantenían inmunes a la enfermedad, pudo exponer que la bacteria que producía ántrax no era capaz de sobrevivir en el torrente sanguíneo de las gallinas. El motivo era que su sangre está a 4 grados Celsius sobre la temperatura de la sangre de los mamíferos como vacas y cerdos. El ántrax la mayor causa de muerte de animales de pastoreo y también causa ocasional de la muerte de humanos, el desarrollo de una vacuna en contra de esta bacteria produjo un caída dramática en el rango de infecciones, sobre el ántrax, el doctor alemán Robert Koch ya había encontrado la bacteria causaba el mal; Pasteur anunció que había descubierto la vacuna e inmunizó con éxito 31 animales.

Resultado de imagen para antrax vacuna pasteur
Louis Pasteur (1822-1895) químico y bacteriólogo francés. La vacunación de ovinos contra el ántrax. Agerville (Francia).

A diferencia de lo que muchos pueden creer sobre Pasteur, también fue profesor de física,  es así que en 1849, cuando era profesor de Física en la escuela de Tournon, decidió estudiar a fondo la geometría de los cristales de diversas sales y la manera en que la luz incide sobre ellos, para ello estudio cristales de sales formadas por ácido tartárico mismos que polarizaban la luz de manera distinta, descubriendo así que los cristales eran asimétricos en el caso del tartárico lo que permitió comprender de mejor manera la geometría molecular en la química y física.

En 1857, mientras estudiaba los procesos fermentativos, principalmente el del ácido butírico, descubrió que el proceso de fermentación puede detenerse a través del paso de aire en el fluido fermentado. Esto lo llevó a concluir la presencia de una forma de vida que podía existir aún en ausencia del oxígeno. Esto llevó al establecimiento de los conceptos de vida aeróbica (con oxígeno) y anaeróbica (sin oxígeno). El proceso de inhibir la fermentación a través del oxígeno es conocido como el Efecto Pasteur, este descubrimiento definía la anaerobiosis.

Uno de los datos mas importantes de Pasteur fue el descubrimiento y creación de la vacuna contra la rabia. En 1880 concentró su atención en la rabia, una enfermedad mortal con síntomas horribles que causa una muerte lenta y dolorosa. Pasteur había ensayado una vacuna en perros, pero le preocupaba hacerlo en humanos.

Se enfrentó a ese dilema con Joseph Meister, un niño al que lo había mordido un animal rabioso. No estaba seguro de que Joseph desarrollaría la versión humana de la rabia, pero ensayó el tratamiento de todas maneras y finalmente Joseph sobrevivió.

Resultado de imagen para pasteur y la rabia
Joseph Meister, primer individuo en recibir la vacuna contra la rabia.

Sustentado en los resultados de su experimento con el matraz valido su “Teoría de los Gérmenes”, con lo que aclaro un gran dilema filosófico sobre el origen de la vida. Los resultados que obtuvo el joven Meister hacen que la demanda crezca desmesuradamente en toda Europa y encamina a Pasteur hacia la erradicación de otras enfermedades como la difteria inoculando a dos de sus ayudantes (Emile Roux y Alexandre Yersin)  y luego volviéndolos inmunes, en la actualidad la lucha contra la difteria es una de las mas exitosas desde el punto de vista medico puesto que alrededor del 85% de los niños de todo el mundo son inmunizados.

Esta demanda por vacunas hizo necesaria la creación de un centro de investigaciones que lo fundo Pasteur en 1887 y que lleva su mismo nombre hasta la actualidad. Hoy es uno de los principales centros de investigación, con más de 100 unidades de investigación, 500 científicos permanentes y aproximadamente 2700 personas que trabajan en este campo. Los logros del Instituto Pasteur son un mayor entendimiento de afecciones de origen infeccioso, y ha importantes contribuciones en el ámbito de tratamientos, prevención y curas de enfermedades infecciosas que existen hasta hoy como la difteria, fiebre tifoidea, tuberculosis entre otras.

Resultado de imagen para instituto luis pasteur

Finalmente Pasteur continuó dirigiendo el Instituto en París, pero su salud se fue deteriorando. Tras otro derrame, su parálisis empeoró. Murió a los 72 años de edad y  Francia lo trató como un héroe nacional. Fue enterrado en la catedral de Notre-Dame. siendo uno de los científicos de mayor relevancia en la historia humana.

REFERENCIAS:

  • Norberto J. Palleroni.(1970). Principios Generales de Microbiología. Departamento de Bacteriología e Inmunología de la Universidad de California (Estados Unidos). Programa Regional de Desarrollo Científico y Tecnológico. Departamento de Asuntos Científicos. Secretaría General de la Organización de Estados Americanos. Washington, D.C. pp. 2-3.
  • Madigan M., Martinko J., & Parker Jack (2004). Brock Biología de los Microorganismos. Pasteur y el fin de la generación espontánea. 10º Edición. Pearsons Prentice Hall. Madrid-España. pp. 10-12.

 

Resultado de imagen para luis pasteur billete

Francia : 5 Francs 1966 ( Louis Pasteur ) SC-

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

ANATOMÍA DEL APARATO DIGESTIVO (Resumen)

Alejandro Aguirre F. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

Definición de Anatomía:

Anatomía del griego «anatomé» que  significa cortar a través de, disección (del latin dis: separación y sectio: parte), significa cortar o separar los tejidos para su estudio. Anatomía es la ciencia que estudia la estructura o morfología de los organismos. (Gray Anatomía para Estudinates Drake. R, Vogl W, Mitchell A. Anatomía Humana Latarjet.)

Términos de relación y comparación

  • Anterior- Ventral, adelante
  • Posterior- dorsal, detrás,
  • Superior- ubicado por arriba
  • Inferior- ubicado por abajo
  • Craneal, más próximo al extremo superior del tronco, hacia el cráneo
  • Caudal.- más próximo al extremo inferior del tronco
  • Medial- hacia el plano sagital mediano
  • Lateral.- alejado del plano sagital mediano
  • Proximal- ubicado más cerca del tronco o del punto de origen.
  • Distal- ubicado más lejos del tronco o del punto de origen
  • Superficial- más cerca de la superficie
  • Profundo- más lejos de la superficie
  • Externo- más alejado del centro de un órgano
  • Axial- ubicado en un eje
  • Ipsolateral- homolateral, del mismo lado del cuerpo
  • Ulnar- del lado del cúbito
  • Peróneo.- del lado del peroné
  • Sural.- perteneciente o relativo a la pantorrilla

Términos combinados

Surgen de la combinación que se hace para indicar una situación o una dirección

  • Superolateral- indica hacia la parte cefálica y alejado del plano mediano
  • Inferomedial- indica hacia caudal y hacia el plano mediano.

Anatomía Humana Latarjet.

 Posición Anatómica

Resultado de imagen para posición anatomica

Cuerpo humano de pie, con la vista al frente, los miembros superiores a lo largo del tronco, las palmas de las manos hacia adelante y los miembros inferiores juntos, con los pies hacia adelante . Anatomía Humana Latarjet – Anatomía de Gray.

ANATOMÍA

SISTEMA DIGESTIVO

Imagen relacionada

  • Desarrollo.- Embriológicamente procede del Endodermo, el aparato digestivo suele dividirse en tres partes:

Intestino proximal.- que da lugar al esófago, el estómago, la mitad proximal del duodeno, el hígado y el páncreas.

Intestino medio da lugar a la mitad distal del duodeno, el yeyuno, el íleon, el ciego, el apéndice y parte del colon.

Intestino distal da lugar al resto del colon y al recto hasta la línea ano-rectal

http://hnncbiol.blogspot.com/2008/01/sistema-digestivo-i.html

Cavidad Bucal

Es una cavidad de dimensiones variables según el estado de sus paredes y los movimientos de la mandíbula. Comunica con el exterior por el orificio de la boca y hacia atrás con la cavidad faríngea por el istmo de las fauces. Anatomía Humana Latarjet.

Resultado de imagen para cavidad bucal

BOCA

*Vestíbulo.- Delimitada: anteriormente por los labios, lateralmente por las mejillas y posteriormente por los dientes y las encías.

Imagen relacionada

*Labios.- son dos formaciones musculo-mucosas situadas en la parte anterior de la boca, unidos por la comisura de los labios, conformados por el músculo orbicular del labio. Son extremadamente sensibles al contacto físico y permiten abrir y cerrar a voluntad el orificio bucal. La mucosa está formada por glándulas salivares labiales. Fuente: Anatomía Hmana Latarjet – Centro de Estudios Superiores UCA – Fueca

Imagen relacionada

Vascularización e inervación de labios

  • Arterias:
  • labiales, originadas de las arterias
  • Arterias accesorias proceden de las arterias infraorbitaria, facial transversa y submentoniana.
  • Venas: Facial y las submentonianas.
  • Linfáticos: del labio superior son drenados por los ganglios linfáticos mandibulares, y del labio inferior por los ganglios linfáticos submandibulares o por los submentonianos.
  • Nervios: motores provenientes del nervio facial sensitivos procedentes del nervio maxilar (nervio infraorbitario) o del nervio mandibular (nervio mentoniano).

Anatomía Humana Latarjet.

MEJILLAS

Resultado de imagen para mejillas anatomia

 Mejillas.- (carrillo) son los límites laterales de la cara está constituida por tres planos:

  • Cutáneo.- piel fina, muy vascularizada, en el hombre, con numerosos folículos pilosos. Esta tapizada por un plano subcutáneo rico en tejido adiposo
  • Muscular.- constituida por el músculo buccinador, que es cuadrilátero, insertado por atrás en el rafe pterigomandibular
  • Mucoso.- constituye la pared lateral del vestíbulo bucal, al reflejarse sobre las encías forma los recesos mucosos superior e inferior de este vestíbulo.

Vascularización e inervación

  • Arterias: Temporal superficial (arteria facial transversa), arteria maxilar (arteria bucal) y arteria facial.
  • Venas: Facial, temporal superficial y por los plexos pterigoideos.
  • Linfáticos: ganglios linfáticos submandibulares y los ganglios linfáticos parotídeos superficiales, mientras que ciertos vasos submucosos llegan a los ganglios cervicales.
  • Nervios:- Motores originados en el nervio facial, y sensitivos provenientes del nervio bucal, ramo del nervio mandibular y ramos del nervio infraorbitario, que procede del nervio maxilar.

PALADAR DURO

Formado por una parte ósea, constituida por las apófisis palatinas de los dos huesos maxilares y por las láminas horizontales de los huesos palatinos, la pared ósea esta tapizada por una mucosa gruesa, muy adherente al plano perióstico. En sus dos tercios anteriores y su tercio posterior lo constituye el paladar blando.

Resultado de imagen para paladar duro

Vascularización e inervación

—  La mucosa está irrigada por Arterias, originadas de la arteria esfenopalatina y sobre todo de la arteria palatina descendente.

—  Las venas terminan en el plexo pterigoideo o en las venas de la mucosa nasal.

—  Los linfáticos: terminan en los ganglios linfáticos profundos superiores (ganglios yugulodigástricos)

—  Nervios.- sensitivos y motores, procedentes del nervio palatino mayor y del nervio nasopalatino, que dependen del ganglio pterogopalatino.

PALADAR BLANDO

Es una formación fibromuscular tapizada por mucosa prolonga hacia atrás al paladar duro.

Está formado por:

  • Un armazón aponeurótico: la aponeurosis palatina.
  • Un aparato muscular que asegura su movilidad, en número de diez músculos, cinco a cada lado (elevador del velo del paladar, tensor del velo del paladar, palatogloso, palatofaríngeo y el músculo de la úvula.
  • Un revestimiento mucoso.

Músculos que dan movilidad al paladar

  •  Palatogloso (Glosopalatino).- divide el alimento.
  •  Palatofaríngeo (Faringopalatino).- decide el momento de la deglución.
  • Tensor.- Levanta el paladar blando y lo pone en horizontal para que pase el alimento al interior.
  •  Elevador.- Evita que el alimento  desemboque en las fosas nasales.
  • Ácigos (Úvula) .- contrae  la campanilla.

Resultado de imagen para paladar blando

Vascularización e inervación

  • ARTERIAS:

    Palatina descendente (rama de la arteria maxilar),

    Palatina ascendente (rama de la arteria facial) y

    Faríngea ascendente (rama de la arteria carótida externa).

  • VENAS.- Plexo pterigoideo y por las venas de la raíz de la lengua, tributarias de la vena yugular interna.
  • Linfáticos: Ganglios linfáticos yugulodigástricos.
  • Nervios.- Sensitivos provienen de los tres nervios palatinos, emanados del ganglio pterigopalatino (nervio maxilar). Los motores: Músculo tensor del velo del paladar recibe inervación del nervio mandibular, en cuanto a los otros músculos el plexo faríngeo les da ramos, las fibras que provienen del nervio vago, específicamente del grupo de fibras de la raíz craneal del nervio accesorio.

PIEZAS DENTARIAS

Son formaciones ectodérmicas duras, resistentes, implantadas por sus raíces en los alvéolos del maxilar y de la mandíbula Todos los dientes se componen de:*Corona *Raíz *Cuello. (Anatomía Humana Latarjet – http://hnncbiol.blogspot.com/2008/01/sistema-digestivo-i.html)

Resultado de imagen para partes del diente

*Corona.- forma cuboidea.

*Esmalte.- Sustancia inorgánica muy mineralizada que recubre la corona

*Raíz.- Es única  o múltiple, de forma cónica, color amarillento, de superficie rugosa, se hunde en los alveolos dentarios, perforada en su vértice para permitir acceso de los vasos y nervios. Está cubierta por cemento.

*Cemento.- parecido al hueso, cumple la función de fijar a las fibras del periodonto.

*Cuello.- Es la parte intermedia entre la corona y la raíz donde se fija la encía.

*Los dientes: están constituidos por  una sustancia especial, la dentina o marfil, esta se encuentra excavada por una cavidad central (cavidad pulpar), por fuera de la dentina está el esmalte y en la porción radicular el cemento.

  • Incisivos.- 2 por maxilar y mandíbula y por lado = 8, cortan los alimentos
  • Caninos.- 1 por maxilar y mandíbula y por lado = 4, desgarran y son especialmente útiles para comer carne
  • Premolares.- 2 por maxilar y mandíbula y por lado = 8, molienda fina y trituración de la comida
  • molares.- 3 por maxilar y mandíbula y por lado = 12 muelen y aplastan los alimentos durante el proceso de masticación.

 

Imagen relacionada

Vasos y nervios de los dientes

  • Arterias: arteria alveolar inferior, para la mandíbula y de la arteria infraorbitaria para el maxilar
  • Venas se originan de la pulpa dentaria y son satélites de las arterias
  • Linfáticos llegan a los ganglios linfáticos submandibulares y cervicales profundos
  • Nervios.- se originan del nervio maxilar para los dientes del maxilar y del nervio alveolar inferior para los dientes de la mandíbula.

ENCIAS

Se denomina Encía a la parte de la mucosa oral que tapiza el borde alveolar, por lo tanto hay una encía superior y una encía inferior.

Resultado de imagen para encias anatomia

Músculos Masticadores

Aquellos que movilizan la mandíbula,

  • Elevación: Temporal, Masetero y Pterigoideo medial
  • Descenso: Digástrico y milohioideo
  • Protrusión (proyección hacia adelante), masetero y Pterigoideo lateral.-
  • Retrusión (proyección hacia atrás): Fibras posteriores del músculo temporal, fibras profundas del músculo masetero.

Imagen relacionada

Movimientos de lateralidad: Pterigoideo lateral.

LENGUA

LENGUA.- órgano impar, móvil y simétrico es una formación muscular muy móvil revestida de mucosa.Tiene 2 partes: una anterior móvil y una posterior más fija (raíz de la lengua).

Imagen relacionada

Constitución anatómica:

  • Un armazón osteofibroso que es el soporte fibroso de la lengua insertado en el hueso hioides.
  • Numerosos músculos
  • Un revestimiento mucoso

Los músculos de la lengua son: Impar y mediano llamado músculo (lingual) longitudinal superior.

  • Músculos pares y laterales: geniogloso, hiogloso, condrogloso, estilogloso, longitudinal inferior, transverso de la lengua, vertical de la lengua y el palatogloso.
  • Inervación.- Los músculos de la lengua están inervados por el nerviohipogloso excepto el palatogloso (músculo del velo del paladar), que esta inervado por el vago a través del plexo faríngeo
  • Músculo longitudinal superior: Eleva el vértice de la lengua y lo lleva hacia atrás.
  • Músculo Geniogloso: Aplica la lengua contra piso de la lengua y la cara medial de la mandíbula.
  • Músculo Hiogloso: dirigen la lengua hacia atrás y abajo
  • Músculos estilogloso: Lleva la lengua hacia arriba y atrás contra el velo del paladar
  • Músculo longitudinal inferior: Desciende la punta de la lengua y lleva hacia atrás.
  • Músculo Transverso de la lengua.- Redondea la lengua acercando sus bordes y la proyecta hacia adelante
  • Músculo vertical de la lengua: Aplana la lengua.
  • Músculo Palatogloso: Forma el armazón del arco palatogloso
  • Músculos Faringogloso: Se trata de la porción glosofaringea del músculo constrictor superior de la faringe.

La mucosa lingual envuelve la  masa carnosa de la lengua, salvo a nivel de la raíz, está erizada de papilas gustativas, y excavada de glándulas.

  • En la lengua se distinguen una base, cuerpo y punta.
  • En la cara superior de la lengua se encuentran las papilas que le dan la característica aterciopelada
  • En la cara inferior la lengua está unida a la boca por el frenillo de la lengua.

PAPILAS GUSTATIVAS

Resultado de imagen para papilas gustativas anatomia

  • Circunvaladas (caliciformes).- en número de siete a doce, son voluminosas, con una saliente central redondeada (papila), rodeada por un surco circular que separa la papila de un rodete circunferencial (cáliz). En el surco se hallan los receptores gustativos.
  • Fungiformes.- su base es estrecha y el vértice, ensanchado como el sombrero de un hongo. Se cuentan de 150 a 200 diseminadas en el dorso de la lengua por delante del surco terminal.
  • Filiformes.- son pequeñas, cilindro cónicas y  presentan un vértice que lleva un ramo de finas prolongaciones, dibujan por delante del surco terminal, líneas radiadas en dirección hacia los bordes.
  • fFoliadas.- ubicadas en los bordes posterolaterales de la lengua, cerca de la raíz, una de cada lado, presentan pliegues verticales, paralelos.
  • Hemisféricas.- muy pequeñas, semejantes a las papilas dérmicas de la piel, se encuentran diseminadas en toda la extensión de la mucosa lingual

Anatomía Humana de Latarjet – Centro de Estudios Superiores UCA – Fueca

Imagen relacionada

Las papilas gustativas poseen sensaciones primarias:

  • Ácido      Lados de lengua
  • Salado    Papilas en
  • Dulce      punta de lengua
  • Amargo  Parte posterior

Funciones de la lengua:

  • Sentido del gusto
  • Acomodar el alimento para favorecer la masticación
  • Junto con la saliva ayuda en la formación del bolo alimenticio.
  • Deglución.- empujando el bolo alimenticio. Mecanismo reflejo o automático impidiendo que el bolo alimenticio pase a la vía respiratoria.
  • Fonación cuando hablamos.

Vascularización de la lengua

Arterias linguales: que penetran en la lengua a cada lado, y emiten:

  • Ramos mediales para el músculo hiogloso.
  • Ramas linguales dorsales para la parte posterior.
  • Arteria sublingual para la parte anterior.
  • Arteria lingual profunda que se dirige hacia el vértice de la lengua.

Venas.- se originan de una red submucosa y se reúnen en una vena sublingual (ranina), vena profunda de la lengua que recibe las venas dorsales de la lengua y drena en la vena lingual.

Linfáticos:

  • Apicales desde el vértice de la lengua van a los ganglios linfáticos submentonianos y ganglio yuguloomohioideo.
  • Marginales- tienen su origen en los bordes laterales del dorso de la lengua y se dirigen a los ganglios submandibulares.
  • Centrales- desde la región central del dorso de la lengua y llegan a los ganglios cervicales profundos, son tributarios de los ganglios yugulodigástricos y yuguloomohioideos.

Basales.- provienen de la raiz de la lengua y se dirigen a los ganglios profundos superiores, drenan sobre todo en los ganglios yugulodigástricos.

SENSIBILIDAD LINGUAL. SENTIDO DEL GUSTO

La sensibilidad general de la mucosa lingual y la sensibilidad propioceptiva de los músculos de la lengua están asegurados por tres nervios:

  • Nervio lingual, ramo del trigémino para los dos tercios anteriores.
  • Nervio glosofaringeo a través de ramos linguales para la raíz de la lengua.
  • Nervio laríngeo superior.- ramo del nervio vago, para los pliegues glosoepiglóticos.

 Los nervios trasmiten las sensaciones de contacto, temperatura, de dolor, de presión y de posición (sensibilidad general), así como las impresiones gustativas.

Resultado de imagen para papilas gustativas anatomia

GLÁNDULAS SALIVARES

La mucosa de la boca contiene numerosas glándulas salivares a veces reunidas en acúmulos; son las glándulas salivares menores, se ubican en diferentes regiones cubiertas de mucosa de la cavidad bucal, hay glándulas salivares labiales en la cara interna de los labios, glándulas bucales en la cara interna de las mejillas, glándulas molares bucales, cerca del tercer molar, glándulas palatinas en la mucosa del paladar y glándulas linguales en la lengua.

Resultado de imagen para glandulas salivales

GLÁNDULA PARÓTIDA

Resultado de imagen para glandula parotida

Más voluminosa de las glándulas salivares, situada en la región parotidomaseterina, por detrás y lateral a la rama de la mandíbula

  • Peso promedio de 25 a 30 gramos
  • La saliva que segrega es drenada a la cavidad bucal por el conducto parotídeo (canal de Sténon o Stensen).
  • Arterias: auriculares anterior y posterior de la arteria transversa y directamente de la carótida externa.
  • Venas: vena retromandibular
  • Linfáticos no se han descrito
  • Nervios: secretor parasimpático: nervio auriculotemporal, Los nervios simpáticos constituyen el plexo periarterial, los nervios sensitivos parotídeos provienen del plexo cervical a través de los ramos anteriores de su nervio auricular mayor.

GLÁNDULA SUBMANDIBULAR

Resultado de imagen para GLÁNDULA SUBMANDIBULAR

Situada medial y por debajo del cuerpo de la mandíbula, por detrás del músculo milohioideo.

  • Es una glándula firme, de color gris rosado
  • Pesa de 7 a 8 gramos.
  • La saliva es conducida a la cavidad bucal por medio del conducto de Warthon que perfora la mucosa a ambos lados del frenillo lingual en el vértice de un pequeño tubérculo denominado carúncula salivar, mediante un pequeño orificio denominado orificio umbilical.
  • Arteria: Facial, rama de la carótida externa
  • Venas: Facial va a terminar en la vena yugular interna
  • Linfáticos: grupos preglandular, prevascular, retrovascular, retroglandular y intracapsular.
  • Nervios: Lingual.

GLÁNDULA SUBLINGUAL

Resultado de imagen para GLANDULA SUBLINGUAL

  • Es la más anterior, situada en el piso de la boca debajo de la mucosa bucal, entre la lengua y la cara medial del cuerpo de la mandíbula, que constituyen las paredes de la celda sublingual.
  • Peso 3 gramos, forma de oliva aplastada
  • Posee 15 a 30 conductos excretores, uno por cada glándula, entre estos conductos el más desarrollado por fusión de algunas glándulas es el conducto sublingual mayor, de Rivinus o de Bartolino, los otros conductos sublinguales menores de Walther.
  • Arterias: Arteria Lingual y arteria submentoniana
  • Venas: vena profunda de la lengua, tributaria de la vena lingual.
  • Linfáticos son drenados hacia los ganglios linfáticos de la celda submandibular
  • Nervios: provienen del ganglio submandibular.

 

Glándulas de la mucosa: labiales, linguales, bucales y palatinas se encuentran en la mucosa bucal produciendo una saliva más densa, viscosa y rica en moco.

  • La glándula parótida y submaxilar solamente segregan líquido cuando se estimulan, mientras que la glándula sublingual y de la mucosa segregan continuamente un líquido acuoso a una velocidad aproximada de 0,5 ml/min.

FARINGE

Canal muscular al que le falta la pared anterior, está dispuesto verticalmente por delante de la columna vertebral y por detrás de las cavidades nasales, de la cavidad bucal y de la laringe, se continúa hacia abajo con el esófago. Conducto compartido por vía respiratoria y digestiva. Interviene en: deglución, respiración, fonación y audición.

Dimensiones.- 14 cm de longitud x 4,5 cm de diámetro transversal en la parte superior, 5 cm en la parte media y 2 cm a nivel de la parte inferior. Su diámetro anteroposterior de 2 a 4 cm en la porción oral y 2 cm en la porción laríngea.

La faringe se puede dividir en tres regiones:

Resultado de imagen para faringe

  • Nasofaringe.- se encuentra por detrás de la cavidad nasal y se extiende hasta el paladar blando, su pared tiene cinco aberturas: dos fosas nasales internas, dos orificios que se comunican con las trompas auditivas y la abertura hacia la orofaringe, la pared posterior contiene a la amígdala faríngea.
  • Orofaringe.- Por detrás de la cavidad bucal y se extiende desde el paladar blando hasta el nivel del hueso hioides.
  • Hipofaringe.- Comienza a nivel del hueso hioides y se abre hacia el esófago por medio del conducto alimenticio.

Amígdala Palatina.- se encuentra ubicada en la pared de las fauces, protruyendo hacia el istmo de las fauces, por delante de la oro faringe. Las amígdalas son dos masas de tejido linfoide, situadas en cada fosa tonsilar, forman parte del anillo linfático faríngeo de Waldeyer, junto con las amígdalas linguales, faríngea y las tubáricas. Está rodeada por una cápsula delgada. Es un órgano de defensa contra las infecciones locales y por consiguiente se infecta con frecuencia (faringitis, amigdalitis).

Imagen relacionada

La faringe está constituida por:

Músculos.- (túnica externa), son bilaterales, tres constrictores ubicados en la superficie externa de la fascia faringobasilar: Constrictor superior, medio y inferior de la faringe, y elevadores que se denominan: palatofaringeo, estilofaringeo y salpingofaringeo.

Armazón fibroso.- fascia Faringobasilar (túnica media).

Revestimiento mucoso.- (Túnica interna), constituida por un epitelio y por un corion rico en glándulas mucíparas y en folículos linfoideos o adenoideos.

Vasos y Nervios de la faringe:

Arterias.-

Faríngea ascendente, rama de la carótida externa.

Tiroidea superior, irriga la parte inferior de la faringe.

Venas.- forman el plexo faríngeo y desembocan en la venas yugulares internas.

Linfáticos.- nacen de dos redes y drenan en los nódulos linfáticos cervicales laterales profundos.

Nervios.- Los ramos sensitivos proceden del plexo faríngeo formado por ramos del nervio glosofaríngeo nervio vago y del tronco simpático. Los ramos motores provienen del nervio vago y del plexo faríngeo.

LARINGE

Es un pasaje corto que conecta la laringofaringe con la tráquea, se encuentra en la línea media del cuello  por delante del esófago y las vértebras cervicales cuarta a sexta. La pared está compuesta por nueve piezas de cartílago:

3 impares: Cartílago tiroides, epiglotis y cricoides.

3 pares: Cartílagos aritenoides, cuneiformes y corniculados.

Imagen relacionada

Cartílago Tiroides.- o nuez de Adán consta de dos láminas de cartílago hialino fusionadas que forman la pared anterior de la laringe dando una forma triangular.

Epiglotis.- Cartílago elástico grande con forma de hoja, cubierto de epitelio. La parte superior de la hoja de la epiglotis es libre y puede moverse hacia arriba y hacia. Abajo como una puerta cerrando la Glotis.

Glotis.- consiste en un par de pliegues de membrana mucosa. El espacio entre los pliegues vocales (cuerdas vocales) se llama rima o hendidura glótica.

Resultado de imagen para cartílagos de la laringe

ESÓFAGO

Resultado de imagen para ESÓFAGO

El esófago es un conducto o tubo músculo membranoso, mide unos 25 cm, capacidad de 1 a 1,5 litros, localizado detrás de la tráquea

Discurre entre la faringe en el cuello y el estómago en el abdomen. Comienza en el borde inferior del cartílago cricoides, a nivel de la vértebra C6, y termina en el cardias del estómago a nivel de la vértebra T11.

El esófago desciende sobre la cara anterior de los cuerpos vertebrales.

Habitualmente es una cavidad virtual. (Es decir que sus paredes se encuentran unidas y solo se abren cuando pasa el bolo alimenticio). Las capas de músculos, permiten la contracción y relajación en sentido descendente del esófago.

Presenta el aspecto de una cinta muscular,  irregularmente aplanada de anterior a posterior, desde su origen hasta la bifurcación de la tráquea; tiende a volverse cilíndrico en el resto de su extensión excepto en su extremo inferior, donde adopta una forma cónica de base inferior

La superficie interna es de color rosa pálido y lisa en el sujeto vivo, es blanquecina en el cadáver.

Presenta pliegues mucosos longitudinales que desaparecen mediante la distención del conducto.

El cardias está provisto de un pliegue semilunar más o menos marcado según los sujetos: es la válvula cardioesofágica.

Puede ser comprimido  por las estructuras circundantes en:

  • Unión del esófago con la faringe en el cuello (Cricoideo).
  • En el mediastino superior donde el esófago es cruzado por el cayado de la aorta (Aórtico).
  • En el mediastino posterior donde el esófago está comprimido por el bronquio principal izquierdo. (Bronquial).
  • En el mediastino posterior, en el hiato esofágico del diafragma (diafragmático).

Resultado de imagen para ESÓFAGO

Estas constricciones tienen importantes consecuencias clínicas. Por ejemplo, un objeto ingerido es más probable que se localice en una de ellas, Una sustancia corrosiva ingerida se mueve más lentamente en las zonas estrechas produciendo más daños en esta zona, también las contriciones presentan problemas al paso de instrumentos.

2 Esfínteres.-

  • Esfínter esofágico superior: separa la faringe del esófago.
  • Esfínter esofágico inferior: también llamado “cardias”, separa el esófago del estómago

El cardias evita el reflujo gástrico hacia el esófago.

Arterias.-

  • Esofágicas Superiores.- proceden de las tiroideas inferiores
  • Arterias bronquiales.- procedente de la aorta torácica
  • Esofágicas medias.- nacen de la aorta
  • Esofágicas inferiores.- suministradas por la arterias frénicas inferiores y la gástrica izquierda
  • Los últimos 2 – 3 cm del esófago torácico y la porción diafragmática son poco vascularizados

Venas.-

  • Anastomosis porto cava que drenan a la vena cava superior por las venas tiroideas inferiores, ácigos y pericardio frénicas e inferiormente en la vena porta por medio de la vena gástrica izquierda
  • Linfáticos.-
  • Porción cervical.- desemboca en los nódulos linfáticos cervicales laterales profundos.
  • Porción Torácica.- van a los ganglios para traqueales, traqueo bronquiales inferiores y mediastínicos posteriores
  • Porción abdominal.- desembocan en los nódulos linfáticos gástricos izquierdos
  • En general es compleja. Las fibras musculares estriadas en la porción superior del esófago, están inervadas por ramas eferentes branquiales de los nervios vagos.
  • Plexo esofágico.- formado por los nervios vagos por medio de 2 troncos:
  • Tronco vagal anterior sobre la cara Anterior del esófago, formado por Fibras del nervio vago izquierdo
  • Tronco vagal posterior en la cara posterior del esófago, formado por Fibras del nervio vago derecho.

ESTÓMAGO

Es la porción más dilatada del tubo digestivo y tiene la forma de J mayúscula, se halla entre el esófago y el duodeno, ocupa la celda subfrénica que corresponde al epigastrio e hipocondrio izquierdo.

Se divide en 4 regiones:

Cardias, Fundus, gástrico, cuerpo gástrico y porción pilórica.

Cardias.- Rodea el orificio del esófago al estómago

Fundus gástrico.- Es la zona por encima del nivel del cardias.

Cuerpo gástrico.- que es la parte más ancha del estómago.

Porción Pilórica.- que se divide en antro pilórico y canal pilórico y es el extremo distal del estómago.

Imagen relacionada

CONFIGURACIÓN EXTERNA

Dimensiones.- medianamente distendido mide 25 cm de largo x 10 a 12 cm de ancho y de 8 a 9 cm en sentido anteroposterior.

Caras: Anterior  y Posterior más o menos convexas separadas por los bordes o curvaturas.

Bordes: Derecho cóncavo o curvatura menor y un borde izquierdo convexo o curvatura mayor.

 Orificios

Cardias.- ovalado, situado entre el extremo superior  de la curvatura menor  y el fúndus gástrico, orientado hacia la derecha, presenta un repliegue denominado válvula cardioesofágica

Píloro.- circular situado en el extremo derecho de la porción pilórica del estómago, corresponde externamente con el surco duodeno pilórico. Está provisto de una válvula anular o válvula pilórica que es un repliegue de la mucosa elevado por un engrosamiento de la musculatura del estómago denominado músculo esfínter pilórico.

ANTRO PILÓRICO

Se caracteriza por su constitución muscular y por su mucosa. Las fibras musculares circulares del estómago presentan a esta altura dos fascículos que adosados a nivel de la curvatura menor, se separan 4 a 6 cm a la altura de la curvatura mayor.

La mucosa de caracteriza por su estructura glandular, con células mucosas y células endocrinas secretoras de gastrina, responsables de la secreción ácida del estómago y de los movimientos.

CONFIGURACIÓN INTERNA

En toda la superficie recorren:

  • los pliegues anastomosados que limitan depresiones de forma variable, estos pliegues desaparecen a medida que el estómago se distiende
  • Finos surcos que circunscriben pequeñas superficies poligonales ligeramente elevadas de 3 a 4 mm de diámetro, denominadas áreas gástricas y no desaparecen con la distención.

CONSTITUCIÓN

La pared del estómago se compone de 4 capas superpuestas

  • Serosa o peritoneal comprende 2 hojas que se adhieren a las caras anterior y posterior
  • Muscular constituida por 3 planos (Superficial de fibras longitudinales, Medio de fibras circulares y profundo de fibras oblicuas)
  • Submucosa de tejido laxo
  • Mucosa

Imagen relacionada

Vasos y Nervios

  • Arterias- Proceden de 3 ramas del tronco; tronco celíaco: la gástrica izquierda y se anastomosa a la gástrica derecha rama de la hepática común. Gastroduodenal, gastroometal derecha e izquierda provenientes de la hepática común. Arterias gástricas cortas ramas de la arteria esplénica.
  • Venas son satélites de las arterias y drenan en la vena porta hepática.
  • Nervios.- Proceden de los nervios vagos.

INTESTINO DELGADO

Resultado de imagen para intestino delgado

  • Porción más larga del tubo digestivo se extiende desde el orificio pilórico del estómago a la válvula ileocecal.
  • Mide promedio 6 a 7 metros de longitud, con un diámetro que se va estrechando del principio al final

Se distinguen dos partes:

  • Duodeno parte fija que está enrollado en forma de anillo alrededor de la cabeza y del cuello del páncreas.
  • Yeyuno y el Íleon Móvil.

Resultado de imagen para intestino delgado

DUODENO

  • Estructura en forma de C
  • Mide 20 – 25 cm de longitud, de calibre irregular, y diámetro que va de 3 a 4 cm

Configuración externa.- Se distingue 4 porciones:

  • Superior (primera porción), oblicua en sentido posterior, superior y un poco a la derecha.
  • Descendente (segunda porción), vertical, contiene la papila mayor y la papila menor del duodeno.
  • Horizontal o porción inferior (tercera porción)
  • Ascendente (cuarta porción) casi vertical, inclinada a la izquierda que termina en el ángulo duodenoyeyunal.
  • Resultado de imagen para duodeno

Configuración Interna.-

Presenta las características  generales de la mucosa de todo el intestino delgado:

Vellosidades intestinales.- salientes filiformes muy cortos, visibles con lupa de aspecto aterciopelado

Pliegues circulares (válvulas conniventes), o pliegues permanentes de la mucosa en las 3 últimas porciones del duodeno, siendo más desarrolladas en las dos últimas porciones

Nodulillos linfáticos.- pequeñas masas linfoides, redondeadas y blanquecinas, que sobresalen en la superficie de la mucosa.

Papilas duodenales; mayor y menor.-

La mayor es una saliente cónica que mide de 5 a 10 mm de longitud y 5 a 6 mm de anchura, esta excavada por una cavidad denominada ampolla hepatopancreática, donde desembocan los conductos  colédoco y pancreático.

La papila menor es una saliente cónica, de 1 a 3 mm de altura, situado a 3 cm de la papila duodenal mayor, y es el lugar  que esta ocupado por el orificio de desembocadura del conducto pancreático accesorio.

CONSTITUCIÓN

Se compone de 4 capas:

  • Serosa o peritoneal.
  • Muscular constituida por 2 planos.

Superficial de fibras longitudinales, y profunda de fibras circulares está atravesada por los conductos colédoco y pancreático.

  • Submucosa de tejido laxo.
  • Mucosa.

VASOS Y NERVIOS

  • Arterias.- Pancreatoduodenales superiores anterior y posterior ramas de la arteria gastroduodenal y la arteria pancreático inferior rama de la mesentérica superior. La ampolla duodenal recibe además una arteria supraduodenal rama de la hepática propia o de la arteria gastroduodenal y una arteria subpilórica que nace de la gastroomental derecha.
  • Venas.- vierten en la vena porta y mesentérica superior.
  • Linfáticos.- drenan en los nódulos linfáticos pancreatoduodenales superiores e inferiores, nódulos linfáticos subpilóricos y nódulo linfático pancreático inferior.
  • Nervios.- nervio vago izquierdo para la porción superior del duodeno, del ganglio celiaco derecho y del plexo mesentérico superior para las porciones descendente y horizontal y finalmente del nervio vago derecho y del ganglio celíaco izquierdo para la porción ascendente.

 

YEYUNO E ÍLEON

El yeyuno y el íleon constituyen la porción del intestino delgado que se extiende desde el duodeno hasta el intestino grueso. El yeyuno comienza en el ángulo duodenoyeyunal y el íleon termina en la unión ileocecal.

Longitud 6,5 m, calibre 3 cm al inicio y disminuye a 2 cm en las proximidades de su terminación.

El íleon tiene paredes más delgadas, vasos rectos más cortos, más grasa mesentérica y más arcadas arteriales.

Resultado de imagen para yeyuno e ileon

CONFIGURACIÓN EXTERNA

  • Describe alrededor de 15 a 16 grandes sinuosidades denominadas asas intestinales, cada una de ellas tiene forma de U, las superiores izquierdas son asas horizontales y las inferiores derechas son asas verticales.

Vasos y Nervios

  • Arterias- Yeyunales e ileales ramas intestinales de la arteria mesentérica superior.
  • Vasos- Yeyunales e ileales desembocan en la vena mesentérica superior.
  • Vasos Linfáticos.- son vasos quilíferos que van a los nódulos linfáticos yuxtaintestinales.
  • Nervios:- proceden del plexo celíaco por medio del plexo mesentérico superior.

MESENTERIO

  • La inserción proximal del mesenterio del intestino delgado empieza en el músculo suspensorio del duodeno (ligamento de Treitz).
  • Es un largo meso peritoneal que fija el yeyuno y el íleon a la pared. Es Membrana arrugada.
  • Mide 15 a 18 cm a lo largo de su inserción parietal, alcanza en su inserción intestinal 6,5 m.
  • Contiene: Arteria y Vena mesentérica superior,  Nódulos linfáticos mesentéricos, el plexo nervioso mesentérico superior y grasa.

Resultado de imagen para mesenterio

DIVERTÍCULO DE MECKEL

  • Es el vestigio de la porción proximal del conducto vitelino, que en el embrión entra en el cordón umbilical y se sitúa en el borde antimesentérico del íleon. Aunque es un hallazgo infrecuente (2%), presenta manifestaciones frecuentes como hemorragia, invaginación, diverticulitis, ulceración y obstrucción.

Resultado de imagen para DIVERTÍCULO DE MECKEL

INTESTINO GRUESO

  • Se extiende desde el final del íleon hasta el ano.
  • Dimensiones: 1,5 m de longitud x 7 a 8 cm de diámetro en el colon ascendente, 5 cm en el colon transverso y de 3 a 5 cm en el colon sigmoideo.
  • Presenta a la altura del recto, una dilatación denominada ampolla rectal.
  • Absorbe líquidos y sales del contenido intestinal, formando las heces.
  • Comprende el ciego, apéndice, colon, recto y conducto.

Resultado de imagen para intestino grueso

Configuración Externa

1.- Más voluminosa que el Intestino Delgado.

2.- Esta recorrido en toda su longitud por cintas musculares longitudinales, denominadas tenias del colon, que son en número de 3 en ciego, colon ascendente, transverso y descendente, 2 en el colon sigmoideo, mientras que en el recto y conducto anal no hay. En el ciego Colon ascendente y descendente estas tenias se dividen en anterior (tenia libre), posteromedial (tenia meso cólica) y posterolateral (tenia omental).

3.- En el intervalo entre las tenias el colon presenta saculaciones denominadas haustras del colon  que están separados por pliegues semilunares del colon.

4.- A lo largo de las tenias del colon se implantan pequeños cuerpos adiposos denominados apéndices omentales, apéndices epliploicos o apéndice adiposos del colon. Los  apéndices omentales son prolongaciones de la masa adiposa contenida en los mesos.

 Constitución y Configuración Interna

Está constituido por 4 capas superpuestas:

  • Serosa.
  • Muscular con dos capas: superficial longitudinal e incompleta, que es gruesa solamente en las tenias y profunda formada por fibras circulares.
  • Submucosa.
  • Mucosa no presenta vellosidades ni pliegues circulares esta elevada por los pliegues semilunares del colon (crestas o válvula cólicas) que corresponden a los surcos de la superficie externa y limitan las haustras.

CIEGO

Es la primera porción del intestino grueso situada a nivel de la fosa ilíaca derecha, se continúa con el colon ascendente a la entrada del íleon. El ciego debe considerarse un apéndice o divertículo del intestino grueso, que se halla ausente en ciertos mamíferos.

Resultado de imagen para ciego anatomía

Forma y dimensiones.-

El ciego tiene la forma de un saco abierto superiormente, mide 6 cm de altura y 6 a 8 cm de anchura.

Configuración Externa.- El ciego

Presenta cuatro caras : anterior, posterior, lateral y medial

Un extrema superior o base, por el cual tiene continuidad con el colon ascendente y un extremo inferior o fondo que es libre y redondeado

A 2 – 3 cm se implanta la apéndice vermiforme desde donde parten las 3 tenias y entre ellas están las haustras que aumentan de volumen por la presión del contenido intestinal.

APÉNDICE VERMIFORME

– Es una prolongación del ciego que nace de su pared medial 2   o  3 cm inferiormente al orificio ileal.

  • Mide 7 a 8 cm de longitud y 4 a 8 mm de diámetro

Situación variable:

  • Posición retrocecal o retrocólica.
  • Pélvica o descendente.
  • Posición subcecal.
  • Posición preilíaca.
  • Por detrás del íleon terminal en posición retroiliaca.

Vasos y Nervios

Arterias: el ciego esta irrigado por las arterias cecales anterior y posterior, ramas de la arteria ileocólica. El apéndice está irrigado por la arteria apendicular, que suele originarse de la arteria cecal posterior y a veces de la arteria ileocólica

Las venas del ciego son satélites de las arterias y tributarias de la vena mesentérica superior.

Linfáticos: Ciego y del apéndice vermiforme drenan en los nódulos linfáticos ileocólicos.

Nervios del ciego proceden del plexo celíaco por medio del plexo mesentérico superior.

COLON

  • Se extiende desde el ciego.
  • Consta de colon ascendente, transverso descendente y sigmoide, los segmentos ascendente y descendente son retroperitoneales y los segmentos: transverso y sigmoide son intraperitoneales. En la unión entre el colon ascendente y el transverso se encuentra el ángulo cólico derecho justo por debajo del lóbulo hepático derecho, un ángulo similar, pero más agudo denominado ángulo cólico izquierdo está en la unión del colon transverso y el colon descendente. A los lados del colon ascendente y descendente están los canales paracólicos derecho e izquierdo.
  • Por los canales puede pasar contenido de una región peritoneal a otra.

Resultado de imagen para colon

Colon Ascendente

Comprendido entre el ciego y la flexura cólica derecha.

Mide de 8 a 15 cm de largo, su dirección es casi vertical, poco oblicua superior y posteriormente. Se comunica con el íleon por medio de un orificio provisto de una válvula ileal o ileocecal constituida por el adosamiento de la pared cólica a la pared ileal que se invagina en el colon.

Colon Transverso.- Se extiende desde el Colon ascendente hasta el colon descendente, tiene una longitud de 40 a 80 cm (promedio 50 cm).

Se puede distinguir dos partes una derecha fija y una izquierda móvil.

Colon Descendente.- Mide 12 cm  y termina en el lado izquierdo de la abertura superior de la pelvis, donde tiene continuidad con el colon sigmoideo.

Colon Sigmoideo.- Se extiende desde el lado izquierdo de la abertura superior de la pelvis donde es continuidad del colon descendente y termina  siendo continuidad del recto.

Se distinguen 2 partes: una iliaca fija y una porción pélvica móvil.

RECTO Y CONDUCTO ANAL

Representan el segmento terminal del tubo digestivo. El recto se sitúa en la cavidad pélvica, el conducto anal esta comprendido en el espesor de la pared inferior de la pelvis o el periné.

Longitud del recto  10 a 12 cm y conducto anal 2 a 3 cm.

El recto termina en una dilatación denominada ampolla rectal, su superficie esta recorrida por estrías longitudinales formadas por haces de fibras de la capa muscular superficial.

Su configuración interna presenta pliegues mucosos longitudinales que desaparecen con la distención.

En el conducto anal se encuentran las columnas anales y las válvulas anales. Las columnas anales en número de 6 a 8, miden 1 cm de longitud, cada una de ellas tiene la forma de una pirámide triangular, las válvulas anales presentan:

  • un borde adherente convexo y un borde libre cóncavo.
  • una cara axial convexa y una cara parietal cóncava.
  • dos extremos que se confunden con la base de las columnas anales vecinas.

El en conducto anal se pueden distinguir 2 porciones  una mucosa y otra cutánea.

El conducto anal está rodeado por un manguito musculofascial constituido por la fascia pélvica, el músculo elevador del ano y el músculo esfínter externo del ano.

Vasos y Nervios del Intestino Grueso

Arterias: proceden de las mesentérica superior por medio de las arterias cólicas derecha y media además de la arteria ileocólica. La mesentérica inferior por medio de la arteria cólica izquierda y cólica izquierda inferior quien se divide en 3 arterias sigmoideas.

Cada una de las arterias cólicas y sigmoideas se bifurcan en las proximidades del colon  y estas dos ramas se anastomosan  con las de las arterias vecinas  y forman un arco arterial paracólico que recibe el nombre de arteria marginal del colon, arteria yuxtacólica o arco marginal del colon a lo largo del colon transverso.

Del arco para cólico parten los vasos rectos que se ramifican en las dos caras del colon. Los vasos rectos se dividen en vasos largos y cortos, los largos alcanzan el intestino frente a los surcos y se extiende hasta su borde libre donde se anastomosan. Las arterias rectales superiores nacen de la bifurcación de la arteria mesentérica inferior.

Las arterias rectales medias son ramas de la iliaca interna.

Las arterias rectales inferiores nacen de la arteria pudenda interna

La arteria sacra media suele suministrar al recto algunas ramificaciones.

Venas.- las del colon desembocan en la vena porta hepática por medio de las venas mesentéricas superior e inferior.

La venas rectales.- las superiores desembocan en la vena porta hepática por medio de la vena mesentérica inferior, las medias e inferiores van a la vena cava inferior por medio de las venas ilíacas internas .

Linfáticos.- del colon se dirigen a través de los nódulos intermedios a los nódulos linfáticos epicólicos.

En el recto los linfáticos rectales inferiores nacen de la zona cutánea del ano y se dirige a los nódulos linfáticos inguinales superficiales superomediales, los medios terminan en un nódulo linfático ilíaco interno y los superiores se dirigen a los nódulos linfáticos mesentéricos inferiores.

Nervios proceden de los plexos mesentéricos superior e inferior.

GLÁNDULAS ACCESORIAS

HÍGADO

Resultado de imagen para higado

Es la víscera más grande del organismo.

Situación.- ocupa el hipocondrio derecho y se prolonga hacia el epigastrio y el hipocondrio izquierdo.

  • Color: rojo oscuro.
  • consistencia- firme, sin embargo es friable y frágil.
  • peso- 1500 g en el cadáver , en el ser vivo contiene además 800 a 900 g de sangre
  • dimensiones- 28 cm transversalmente, 16 cm en sentido anteroposterior y 8 cm de espesor a nivel del lóbulo derecho que es la zona más voluminosa.

Configuración Externa.-

La superficie es lisa, Presenta 2 Caras y 3 bordes.

  • Caras: diafragmática y visceral.
  • Bordes: Uno bien definido entre las dos caras (borde inferior), borde posterosuperior y borde posteroinferior.

Cara Diafragmática.- Es convexa, lisa y regular, se adapta a la cara inferior del diafragma.

  • Está dividida en 2 lóbulos (derecho e izquierdo) por un repliegue peritoneal denominado ligamento falciforme, (estructura derivada del mesenterio ventral del embrión), que se extiende  de la cara diafragmática del hígado al diafragma, es casi vertical.

El lóbulo derecho es muy convexo, el izquierdo es más plano y presenta hacia su parte media, inferiormente al centro tendinoso del diafragma y a través de este, frente al pericardio, una ligera concavidad denominada impresión cardíaca que está determinada por el corazón.

Cara Visceral.- Es irregularmente plana y esta recubierta por peritoneo visceral excepto en la fosa de la vesícula biliar y en el hilio hepático. El hilio hepático es el punto de entrada de las arterias hepáticas y la vena porta, y el punto de salida de los conductos hepáticos.

Resultado de imagen para higado

Ligamentos.- El hígado está unido a la pared anterior del abdomen por el ligamento Falciforme, y excepto una pequeña zona del hígado pegada al diafragma (área desnuda), está casi totalmente rodeado de peritoneo visceral.

Otros pliegues del peritoneo unen el hígado al estómago (ligamento hepatogástrico, al duodeno ligamento hepatoduodenal, al diafragma ligamentos triangulares derecho e izquierdo y ligamentos coronarios anterior y posterior

Lóbulos

El hígado está dividido por la vesícula biliar y la vena cava inferior en los lóbulos derecho e izquierdo.

Lóbulo derecho.- es un lóbulo único grande, su superficie esta excavada por depresiones anchas y superficiales, causadas por los órganos sobre los cuales el lóbulo derecho se apoya y se modela:

Impresión cólica (anterior).

Impresión renal (posterior).

Impresión duodenal.

Lóbulo izquierdo.- Su superficie es cóncava y se apoya y modela sobre la cara anterior convexa del estómago, que determina la impresión gástrica.

Lóbulo cuadrado.- Es visible en la parte superior de la cara visceral del hígado y está limitado por el lado izquierdo en la fisura del ligamento redondo y en el derecho por la fosa de la vesícula biliar.

Lóbulo caudado.- visible en la parte inferior de la cara visceral del hígado y está limitado por la fisura del ligamento venoso por la izquierda y por el surco de la vena cava inferior por la derecha.

MEDIOS DE FIJACIÓN

  • Tejido conjuntivo .- que une al diafragma.
  • Vena Cava inferior.
  • Pliegues o ligamentos peritoneales.
  • Ligamento coronario.- se extiende desde la porción posterior de la cara diafragmática del hígado hasta el diafragma.
  • Ligamentos triangulares cuyos bordes están fijos al hígado, diafragma y un borde libre.
  • Ligamento falciforme.- une la cara diafragmática del hígado al diafragma y a la pared abdominal anterior
  • Omento menor o epiplón menor.- une el hígado al esófago abdominal, estómago y porción superior del duodeno.
  • Pliegue duodenal inferior o pliegue duodenomesocólico.- prolongación el omento menor hacia la derecha del pedículo hepático y une la vesícula biliar con el duodeno y el colon transverso.

CONSTITUCIÓN

  • El hígado está compuesto por un gran número de segmentos denominados lobulillos hepáticos, los mismos que están separados entre si por fisuras interlobulillares ocupadas de tejido conjuntivo y por vasos interlobulillares.

Capsula fibrosa peri vascular.-  recubierta por una membrana de naturaleza conjuntiva independiente del revestimiento peritoneal. Envuelve los vasos y los conductos biliares hasta los espacios porta.

VASOS Y NERVIOS

  • Vaso funcional (vena porta hepática) y arteria hepática propia, la sangre aportada al hígado por estos dos vasos es conducida después a la vena cava inferior por las venas hepáticas.
  • Arterias hepáticas accesorias: izquierda rama de la arteria gástrica izquierda, derecha rama de la mesentérica superior.
  • La venas central (vena interlobulillar), drenan en las venas sublobulillares que forman los troncos colectores denominados venas hepáticas que van a drenar en la vena cava inferior
  • Linfáticos.- drenan en los nódulos linfáticos hepáticos, nódulos linfáticos aórticos laterales, nódulos linfáticos pericárdicos, nódulos linfáticos hepáticos.
  • ramas del Plexo celiaco, nervio vago izquierdo y nervio frénico derecho por medio del plexo frénico.

VÍAS BILIARES

  • Presentan 2 partes: Intrahepática y extra hepática.
  • Tiene su origen en los canalículos biliares comprendidos entre las células de los lobulillos.
  • Vías biliares extra hepáticas:
  • Conducto Hepático Común.
  • Conducto cístico.
  • Conducto Colédoco.

Hepático Común y colédoco  constituyen la vía biliar principal.

El cístico y la vesícula biliar forman la vía biliar accesoria.

Hepático Común.- con una longitud de 3 a 4 cm y un diámetro transversal de 5 mm.

Colédoco.- con una longitud de 5 cm y un diámetro de 5 a 6 mm. En el conducto se pueden distinguir 4 segmentos: supraduodenal, retroduodenal, retropancreático y intraparietal.

Vesícula Biliar.-reservorio membranoso aplicado a la cara visceral del hígado donde se excava la fosa de la vesícula biliar. Mide 8 a 10 cm de longitud y 3 a 4 cm de ancho, se describen:

  • un fondo abultado y redondeado.
  • Cuerpo aplanado con dos caras superior e inferior.
  • Cuello mide 2 cm de longitud y es ampular, dilatado en su parte media

Conducto Cístico.- mide 3 cm Con un diámetro de 2,5 mm.

CONFIGURACIÓN INTERNA DE LA VÍA BILIAR EXTRA HEPÁTICA

  • En el cadáver presenta un color grisáceo, la bilis con un tinte verdoso.
  • Está marcada por pliegues mucosos que se borran cuando la vesícula biliar se distiende, además pequeños pliegues mucosos permanentes que se unen unos a otros y dividen la superficie vesicular en pequeñas depresiones poligonales.
  • La superficie interna del cístico es irregular y presenta depresiones y pliegues mucosos.

Estructura de las vías biliares

Dos capas

  • Interna de tipo mucoso.

Externa que es fibromuscular: en el conducto hepático común es casi conjuntiva, a nivel de la ampolla hepatopancreatica tenemos una gruesa capa de fibras musculares circulares que constituye el músculo esfínter de la ampolla hepatopancreática, en la pared de la vesícula biliar esta capa fobromuscular comprende tejido conjuntivo y fibras musculares lisas entrecruzadas.

Vasos y nervios de la vía biliar

  • Arterias.- de la vesícula biliar y del conducto cístico están proporcionadas por la arteria cística, El conducto hepático común y colédoco reciben finas ramas de la arteria hepática propia y de la pancreatoduodenal superior.
  • Venas- las inferiores o superficiales desembocan en la rama derecha de la vena porta hepática, las superiores o profundas van al hígado, las venas del conducto cístico vierten en las venas císticas y vena porta hepática, Las venas del colédoco terminan en la vena porta hepática y en las pancreatoduodenales.
  • Linfáticos.- se dirigen a los nódulos linfáticos escalonados a lo largo de las vías biliares extra hepáticas, en particular al nódulo linfático cístico y al nódulo del orificio omental, a los nódulos linfáticos pancreatoduodenales inferiores.
  • Nervios.- Proceden del nervio vago izquierdo y del plexo celíaco por medio del plexo hepático.

PÁNCREAS

Imagen relacionada

  • Situación:
  • Es retroperitoneal, excepto una pequeña porción de la cola, situado transversalmente, en sentido anterior a los grandes vasos prevertebrales y al riñón izquierdo, desde la porción descendente del duodeno hasta el bazo.
  • Medios de Fijación.-

Duodeno, al que se une por medio de los vasos que recibe o que suministra y por el peritoneo.

  • Dimensiones- Mide 15 cm de longitud, 6 a 7 cm de altura a nivel de la cabeza, con un espesor de 2 a 3 cm.
  • Forma- muy irregular, se puede comparar a la de un gancho o un martillo, se distinguen un extremo derecho, voluminoso y ensanchado, denominado cabeza, seguido por una parte más estrecha y alargada, el cuerpo, que se halla unido a la cabeza por un segmento angosto denominado cuello, termina a la izquierda por medio de un extremo delgado, la cola.
  • Color- Blanco rosado en estado fresco.
  • consistencia- Firme
  • peso- 70 a 80 g
  • cuerpo- tiene una longitud de 8 a 10 cm, por 4 cm de altura y 2 cm de espesor, se describen 3 caras (anterior, posterior e inferior) y 3 bordes (superior, anterior e inferior)
  • Cola del páncreas.- Esta separado del cuerpo por la escotadura que los vasos esplénicos escavan en el borde superior de la glándula.
  • Conductos excretores del Páncreas.-
  • Pancreático.- empieza en la cola del páncreas se dirige hacia la derecha a través del cuerpo, y después de entrar en la cabeza del páncreas, cambia de dirección inferiormente.

En la porción inferior de la cabeza del páncreas, el conducto pancreático se une al conducto colédoco. La unión de estas estructuras forman la ampolla hepatopancreática (ampolla de Váter) que se introduce en la porción descendente del duodeno en la papila mayor del duodeno. Alrededor de la papila está el esfínter de la papila (esfínter de Oddi), que es un cúmulo de músculo liso.

Resultado de imagen para pancreas

Pancreático accesorio.- atraviesa la parte superior de la cabeza del páncreas, drena en el duodeno, inmediatamente por encima de la papila mayor en la papila duodenal menor. Si se sigue el conducto pancreático accesorio desde la papila menor a la cabeza del páncreas, se observa que se ramifica.

Conductos excretores del Páncreas.-

Conductos secundarios.- Se observan dos sistemas, uno anterior y otro posterior

Estructura de los conductos excretores.- en las paredes existen fibras musculares lisas diseminadas en el tejido fibroelástico. Los conductos pancreáticos principal y accesorio habitualmente están comunicados.

Vasos y Nervios del Páncreas

  • Arterias- a.-Pancreatoduodenales superiores anteriores y posterior, ramas de la arteria gastroduodenal, y la pancreaticoduodenal inferior que se divide en dos ramas que se anastomosan en las caras anterior y posterior de la cabeza del páncreas  con las arterias pancréaticoduodenales superiores formando con ellas dos arcos arteriales. b.- Ramas pancreáticas de la arteria esplénica.
  • Venas- Desembocan en vena porta Hepática a través de las venas esplénica, mesentérica superior y pancreaticoduodenal superior posterior, mientras que la pancreaticoduodenal inferior anterior drena en la vena gastroduodenal derecha y por ésta en la vena mesentérica superior.
  • Linfáticos.- Desembocan en los nódulos linfáticos esplénicos, nódulos linfáticos retro pilóricos, subpilóricos, pancreatoduodenales superiores e inferiores, nódulos linfáticos mesentéricos superiores y en los nódulos linfáticos yuxtaaórticos.
  • Nervios- Proceden del plexo celíaco por medio de los plexos secundarios que acompañan a las arterias del páncreas.

BAZO

Resultado de imagen para bazo

Es un órgano linfoide. Su estudio debería realizarse inmediatamente después del aparato vascular, Si en esta obra su estudio se efectúa de forma conjunta con el sistema digestivo, es sólo por las relaciones que posee con el estómago, el páncreas, el colon los vasos de estos órganos y los pliegues peritoneales que los unen entre sí.

  • Situación medios de fijación:
  • Está situado en la celda subfrénica izquierda, es decir en el hipocondrio izquierdo, posterior al estómago, inferior y medial al diafragma y superior al riñón izquierdo, a la flexura cólica y al ligamento freno cólico izquierdo.

Medios de Fijación:

  • Los órganos con los que se relaciona en especial el riñón, el colon y el ligamento frenocólico, sobre los cuales reposa.
  • Vasos esplénicos y los pliegues peritoneales que unen el bazo con los órganos vecinos y con la pared.
  • Número.- existe uno, pero se puede encontrar en las proximidades del bazo normal, pequeños bazos supernumerarios en número variable.
  • Forma: la de un grano de café o de un poliedro de cuatro caras, con superficie lisa.
  • Rojo oscuro en el sujeto vivo y de rojo más oscuro en el cadáver.
  • Dimensiones: 12 cm de longitud, x 8 cm de Anchura y 4 cm de espesor. Peso: 200 gramos.

Configuración externa:

  • Cara diafragmática.- Es posterolateral, regularmente convexa y esta tapizada por el peritoneo.
  • Cara Renal.- cubierta por el peritoneo visceral, presenta una concavidad que se adapta a la convexidad del extremo superior de la glándula suprarrenal y de la parte superolateral del riñón derecho.
  • Cara gástrica.- unida al estómago por el ligamento gastroesplénico y a la cola del páncreas por el ligamento pancreatoesplénico. El resto tapizada por el peritoneo visceral.
  • Cara Cólica.- se apoya a la flexura cólica izquierda.

Extremidad Posterior: (vértice), es redondeada Situada en las proximidades del extremo Posterior del décimo espacio intercostal Izquierdo, en el espacio comprendido entre el Estómago, la glándula suprarrenal y el diafragma.

Bordes:

  • Borde superior.- dentado, está en relación a través del diafragma, con la pleura y posteriormente con el pulmón izquierdo.
  • Borde inferior.- grueso, redondeado y romo, situado entre la cara renal y la cara diafragmática.
  • Borde medial.- es redondeado y ancho, separa la cara renal de la cara gástrica.

Vasos y Nervios

  • Arterias- Arteria esplénica que se ramifica cuya rama terminal inferior se denomina arteria gastroomental izquierda.
  • venas- emergen del hilio en número igual al de las arterias.
  • Vasos linfáticos. Se dividen en superficiales y profundos, Unos y otros drenan en los nódulos linfáticos esplénicos.
  • Nervios.- Proceden del plexo celíaco por medio del plexo esplénico, que acompaña a la arteria esplénica. Rouviere Anatomía Humana 11 Edición – Anatomía de Gray.

 

Las referencias por pertinencia de estudio han sido ubicadas en cada tramo del articulo.

Resultado de imagen para anatomia gif

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Presencia de las aminas en los alimentos

Lucía Jaramillo Cando. [1]

Lesly Espinoza Buitrón. [1]

Alejandro Aguirre F. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

Las Aminas

Definición: Se pueden considerar compuestos derivados del amoníaco (NH3) al sustituir uno, dos o tres de sus hidrógenos por radicales alquílicos o aromáticos. Según el número de hidrógenos que se sustituyan se denominan aminas primarias, secundarias o terciarias así lo afirma (Fernández, 2015) además menciona que suelen presentar las siguientes estructuras tomando como base el amoniaco; mismas que pueden ser primarias, secundarias o terciarias según el número de sus sustituyentes:

Ilustración 1 aminas primarias, secundarias y terciarias.

Resultado de imagen para aminas primarias, secundarias y terciarias.

Ilustración 2 Ejemplos de aminas

Resultado de imagen para aminas

Como podemos apreciar el número de sustituyentes determinan el tipo de amina, adicionalmente las aminas adoptan su nombre según sus sustituyentes; normalmente se nombran añadiendo al nombre del radical hidrocarbonado el sufijo “-amina“. (Alonso, 2017); En las aminas secundarias y terciarias, si un radical se repite se utilizan los prefijos “di-” o “tri-“, aunque, frecuentemente, y para evitar confusiones, se escoge el radical mayor y los demás se nombran anteponiendo una N para indicar que están unidos al átomo de nitrógeno. Cuando las aminas primarias no forman parte de la cadena principal se nombran como sustituyentes de la cadena carbonada con su correspondiente número localizador y el prefijo “amino-“. Adicionalmente Cuando varios N formen parte de la cadena principal se nombran con el vocablo aza; a continuación algunos ejemplos:

Si deseas conocer un poco mas a profundidad sobre su estructuración comparto aquí un tutorial muy bueno en especial si estas iniciando en este tema:

AMINAS | Formulación Orgánica

Presencia de las aminas en los alimentos

Resultado de imagen para Algunas aminas presentes en los alimentos

Ilustración 3 Algunas aminas presentes en los alimentos.

Normalmente en la industria alimenticia como en los alimentos orgánicos, la presencia de aminas puede ser un indicador positivo o negativo dependiendo de la aplicación que se dé a estos tipos de compuestos; sin embargo de forma general la presencia de ellas pueden determinar la calidad del alimento y si es viable su consumo. Por ejemplo: diversos estudios han demostrado la incidencia de cáncer en personas que consumieron alimentos que contenían aminas heterocíclicas en especial en alimentos cocinados, dichas aminas son compuestos mutágenos cuyos orígenes pueden ser naturales como artificiales así lo afirma (Galceran, 2002), además menciona que la mayor parte de las aminas presentes en los alimentos son de tipo biogénicas, es decir, producidas o sintetizadas desde otro ser vivo; finalmente señala a las nitrosaminas y nitrosamidas, como genotóxicos altamente cancerígenos a continuación presentamos las estructuras a las que el estudio citado hace referencia como las más importantes presentes en alimentos:

Por otro lado, las aminas heterocíclicas no son las únicas presentes en los alimentos; existen también aminas de estructuras menos complejas pero que cumplen un papel fundamental en la naturaleza del alimento, como por ejemplo un indicador de que una carne o un pescado ya no son aptos para el consumo humano es cuando éstos comienzan a emanar olores desagradables, mismos que indican un estado de descomposición del alimento como es la presencia de la putrecina y la cadaverina en los alimentos cárnicos principalmente.

Aminas biogénicas en alimentos

Imagen relacionada

Ilustración 4 Los quesos son alimentos con importante presencia de aminas indicadoras de su estado dado el olor que son capaces de generar.

Definición: Las aminas biogénicas, también conocidas como aminas biológicamente activas, son compuestos orgánicos de bajo peso molecular, que contienen nitrógeno, y que están presentes de manera natural en los productos alimentarios tales como queso, vino, cerveza, alimentos vegetales, pescado y carnes rojas. Estas substancias son descritas como biogénicas porque son formadas por la acción de organismos vivos. En los alimentos, son percibidas como indeseables factores antinutricionales de preocupación en salud pública dado que han sido asociadas con envenenamiento por alimentos, particularmente cuando son ingeridas en grandes cantidades o en donde hay una inhibición de su degradación en los humanos. Ejemplos de aminas biogénicas son las catecolaminas y la indolaminas. Las prominentes incluyen acetilcolina (Ach), histamina, tiramina, dopamina, serotonina, norepinefrina (NE, también conocida como noradrenalina o NA) y epinefrina (también conocida como adrenalina) así lo manifiesta (NUTRICIÓN ESPECIALIZADA, 2012).

Sin embargo y desde una visión más crítica al respecto se meciona que las aminas biógenas son un tipo de contaminación química, sustancias que forman parte de la composición de determinados alimentos, aunque también se desarrollan como consecuencia de algún posible fallo en el procesado o por una mala praxis higiénica durante la elaboración o la conservación. Constituyen un peligro para la calidad y la seguridad de los alimentos y su presencia en estos, a menudo, es indicador de deterioro (GIMFERRER MORATÓ, 2012).

Funcionalidad y alcance

La principal función de las aminas es formar parte de importantes reacciones fisiológicas celulares. También están implicadas en una gran cantidad de procesos metabólicos de animales y vegetales. Por esta razón, se encuentran en una gran variedad de alimentos, tanto de origen animal como de origen vegetal, y en cantidades más o menos importantes. El consumo en pequeñas porciones de estas sustancias no supone un efecto nocivo para la salud. Según los expertos, su consumo moderado puede incluso ser beneficioso, gracias a un efecto antioxidante. Pero la ingesta de alimentos que contienen un elevado nivel de aminas biógenas puede causar reacciones tóxicas como cefalea, hipertensión, náuseas, aceleración del pulso o vómitos (GIMFERRER MORATÓ, 2012).

Acetilcolina (2-acetoxi-N,N,N-trimetiletanaminio)

Resultado de imagen para acetilcolina

Resultado de imagen para acetilcolina

Ilustración 5 Acetilcolina

Es un neuromodulador encontrado tanto en el sistema nervioso central (CNS, por sus siglas en inglés) como en el periférico (PNS, por sus siglas en inglés). El compuesto tiene una fórmula química CH3COOCH2CH2N+(CH3)3 y está formado por la esterificación de colina con ácido acético en una reacción catalizada por la enzima colina-acetil-transferasa. En el PNS, Ach actúa para activar los músculos, mientras que en el CNS realiza acciones excitadoras. (NUTRICIÓN ESPECIALIZADA, 2012)

Ilustración 7 Mecanismo de acción de la acetilcolina.

Histamina (2-(1H-imidazol-4-il)etanamina

Resultado de imagen para histamina molecula

Ilustración 8 HISTAMINA

Es un neurotransmisor producido por basófilos y mastocitos, funcionando en la respuesta inmune y la regulación de funciones fisiológicas en el intestino. La histamina aumenta la permeabilidad de los capilares a los leucocitos y anticuerpos proteicos, los cuales son necesarios para destruir substancias y nulificar sus efectos dañinos. También actúa en la respuesta proinflamatoria al daño celular o reacciones alérgicas además de mejorar la secreción de ácido clorhídrico gástrico a través de los receptores de histamina. (NUTRICIÓN ESPECIALIZADA, 2012)

Tiramina (4-(2-aminoetil)fenol)

Es formada a partir del aminoácido tirosina por descarboxilación y aparece en muchos alimentos comunes que los humanos ingieren. Fuentes alimentarias bien conocidas de tiramina incluyen alimentos fermentados, encurtidos y añejados, alimentos marinados, alimentos ahumados, chocolate, bebidas alcohólicas y alimentos en descomposición. Su producción y acumulación en el cuerpo ha sido asociada a una elevación en la presión arterial y cefaleas.

Resultado de imagen para tiramina

Ilustración 9 Reacción de formación de la tiramina a partir de tirosina.

Serotonina (5-hidroxitriptamina)

Resultado de imagen para serotonina

Ilustración 10 SEROTONINA

La serotonina es un neurotransmisor encontrado sobre todo en el tracto gastrointestinal (GIT, por sus siglas en inglés), el CNS y en las plaquetas de animales, incluyendo los humanos. En el GIT, la serotonina actúa para regular los movimientos intestinales; en el CNS, la serotonina realiza varias funciones, incluyendo la regulación del apetito, el estado de ánimo y el sueño, así como la contracción muscular y algunas funciones cognitivas. La serotonina asociada a las plaquetas está involucrada en le hemostasia y la regeneración hepática. En las plantas, se cree que la serotonina es producida por un mecanismo para evitar la acumulación de amoniaco tóxico. (NUTRICIÓN ESPECIALIZADA, 2012)

Las fuentes vegetales de serotonina incluyen champiñón, jitomate, plátano, ciruela, kiwi, nuez de nogal y nuez de pacana. Los niveles excesivos de serotonina pueden ser tóxicos para los humanos y se manifiestan por efectos cognitivos, autónomos y somáticos específicos, que pueden ir de lo indetectable a lo fatal.

Resultado de imagen para alimentos con serotonina

Resultado de imagen para alimentos con serotonina

(Epinefrina o adrenalina, (R)-4-[1-hidroxi-2 (metilamino)]etilbenceno-1,2-diol)

Resultado de imagen para adrenalina

Ilustración 11 Adrenalina

Funciona tanto como una hormona y como neurotransmisor y realiza funciones múltiples en el cuerpo. Por ejemplo, incrementa el ritmo cardíaco, modula la dilatación de los vasos sanguíneos y las vías aéreas y participa en la respuesta luchar/huir del sistema nervioso simpático. También participa en la contracción de los músculos lisos; inhibe la secreción de insulina mientras que aumenta la secreción de glucagón en la páncreas; y también estimula la glicólisis en el hígado y el músculo.(NUTRICIÓN ESPECIALIZADA, 2012)

Ocurrencia en los productos alimenticios

Fuentes de alimentos fermentados

Resultado de imagen para alimentos fermentados

Ilustración 12 alimentos fermentados con microorganismos.

La fermentación es un método biológico para procesar alimentos a fin de conservar su calidad o para transformar alimentos en formas estables y útiles. El proceso de fermentación invariablemente forma productos finales con propiedades de sabor y textura características. Varios microorganismos, incluyendo Lactococcus spp, Lactobacillus spp, Leuconostoc spp, Streptococcus spp y Pediococcus spp participan en varias fermentaciones de alimentos. (NUTRICIÓN ESPECIALIZADA, 2012)

Estos microorganismos pueden estar naturalmente presentes en el material alimenticio o ser adicionados a los alimentos como cultivo iniciador, y secretan sus enzimas (incluyendo varias descarboxilasas e hidrolasas) en los alimentos para su transformación. Como resultado, ciertos alimentos fermentados pueden acumular grandes cantidades de aminas biogénicas a través de la descarboxilación de aminoácidos por las descarboxilasas microbianas o vía proteólisis por proteasas para generar intermediarios (aminoácidos libres) que pueden condensarse con creatinina para formar aminas biogénicas heterocíclicas. (Galceran, 2002)

Por ejemplo, se ha demostrado que productos como el cangrejo de Shanghai (Eriocheir sinensis), la cerveza, el queso y otros alimentos fermentados acumulan altos niveles de histamina durante el almacenamiento. Aunque la presencia de aminas biogénicas pueden no siempre indicar deterioro, su presencia en los productos alimenticios no es deseable debido a sus efectos potenciales a la salud.

Resultado de imagen para Eriocheir sinensis

Resultado de imagen para queso fermentado

Ilustración 13 Shanghai (Eriocheir sinensis). Queso viejo fermentado.

QUESOS

Algunos de los aminoácidos libres producidos se convierten en sustratos para las descarboxilasas de los microorganismos asociados con los quesos para formar aminas biogénicas (principalmente putrescina, cadaverina, histamina y tiramina) en los productos. De igual forma, los aminoácidos libres de la proteólisis pueden formar aminas biogénicas heterocíclicas con creatinina.

Resultado de imagen para quesos fermentados

Ilustración 14 Los quesos fermentados presentan putrescina en la composición de sus malos olores.

Se sabe que Lactobacillus buchneri produce vastas cantidades de histamina en los quesos, lo que puede potencialmente causar envenenamiento por histamina en los consumidores, mientras que L. brevis y Enterococcus faecalis también han sido implicados en la formación de tiramina en ciertos productos de queso. (NUTRICIÓN ESPECIALIZADA, 2012)

BEBIDAS ALCOHÓLICAS

Imagen relacionada

Ilustración 15 Mosto de Vino tinto para fermentación.

Las bebidas alcohólicas, incluyendo cervezas y vinos, son producidas a partir de materiales vegetales por un proceso de fermentación microbiana (por ejemplo, el vino tinto es producido por fermentación del mosto de uva) y son fuentes comunes de aminas biogénicas. La cerveza y los vinos tintos han sido implicados en brotes de envenenamiento por histamina y tiramina. Las aminas biogénicas en el alcohol actúan sinérgicamente para provocar varios síntomas adversos a la salud tales como náusea, problemas respiratorios, palpitaciones, cefaleas, erupciones y problemas de presión arterial.

En el proceso, los microorganismos de fermentación tales como Saccharomyces cerevisiae y S. ellipsoideus hidrolizan carbohidratos en azúcares más simples que son luego degradados en etanol y una variedad de compuestos que aportan sabores y aromas.

Resultado de imagen para Saccharomyces cerevisiae

Ilustración 16 Saccharomyces cerevisiae

PRODUCTOS CÁRNICOS Y DE PESCADO

Las aminas biogénicas histamina, tiramina, triptamina, cadaverina, putrescina, 2-feniletilamina, espermidina y espermina han sido encontradas en las salchichas secas. Sin embargo, sus niveles y distribución varían dependiendo de factores tales como calidad de la materia prima y la disponibilidad de moléculas precursoras que sirvan como sustratos. carnes fermentadas incluyen jamón y las salchichas y salchichones como salami, pepperoni, chorizo, carne de Thuringer y carne de Cervelat, entre otros. (NUTRICIÓN ESPECIALIZADA, 2012)

Resultado de imagen para aminas presentes en carnes

Ilustración 17 Aminas presentes en cárnicos en mal estado.

PRODUCTOS VEGETALES

Resultado de imagen para macerados de verduras

Ilustración 18 Macerados de verduras.

Las verduras y las frutas pueden ser también fermentadas para conservarlas o formar productos moldeados con sabores y texturas característicos. Los productos fermentados de verduras incluyen encurtidos, aceitunas maduras, sauerkraut, doen-jang, shoyu, tofu oloroso, miso, tempeh, injera, kimchi, koji, natto, salsa de soya, brandy, cidra, sake y vinagre; estos son producidos de fuentes tales como frijoles, granos, pepinos, lechuga, aceitunas, col, nabo, frutas y arroz. (NUTRICIÓN ESPECIALIZADA, 2012) Los productos vegetales fermentados también acumulan aminas biogénicas durante el almacenamiento. Por ejemplo, los niveles de tiramina y putrescina en el sauerkraut se incrementan durante el almacenamiento y mientras más largo sea éste, mayor será la acumulación de aminas biogénicas.

Importancia para la industria alimentaria

Las aminas biogénicas son de interés particular para la industria alimentaria debido a su toxicidad y a su uso como indicadores de la calidad del alimento o su descomposición. Por ejemplo, el envenenamiento por histamina ocurre luego de la ingestión de alimentos con alto contenido de histamina. Los peces escombroides que no son manejados apropiadamente pueden acumular altas cantidades de histamina y dichos productos pueden significar un riesgo a la salud cuando son consumidos. Otros alimentos fermentados, como queso, vino, salchichas

Resultado de imagen para β-feniletilamina

Ilustración 19 β-feniletilamina

secas, sauerkraut, miso y salsa de soya también han sido asociados con envenenamiento por aminas biogénicas. La toxicidad por histamina y tiramina han sido ampliamente investigadas y las aminas biogénicas como β-feniletilamina y tiramina han sido asociadas a crisis de hipertensión y migrañas. Otras aminas biogénicas como las HCA también han sido implicadas en la formación de nitrosaminas mutagénicas o carcinogénicas y los potenciales riesgos a la salud de estos compuestos son área de investigación activa para comprender mejor el grado de riesgos a la salud que implican estos compuestos en los productos alimenticios. (Fernández, 2015)

Indicadores de calidad

Las aminas biogénicas son de interés y uso para los científicos y tecnólogos en alimentos debido a sus usos como indicadores de la calidad alimentaria. Las soluciones acuosas de putrescina y cadaverina impartes olores discernibles y rechazables a niveles de 22 ppm y 190 ppm, respectivamente. La contribución relativa del sabor de las aminas biogénicas a la calidad general del alimento no está bien establecida; el principal enfoque ha sido en su posible uso como indicadores químicos de la calidad del alimento. La relación entre las cantidades de aminas biogénicas particulares en un producto alimenticio y el grado de descomposición del mismo ha sido empleado para estimar un parámetro conocido como índice de calidad química (CQI, por sus siglas en inglés) o índice de aminas biogénicas (BAI, por sus siglas en inglés) para el pescado y este toma en cuenta las concentraciones de putrescina, cadaverina, histamina, espermina y espermidina en la muestra de pescado. En base a esto, el CQI es calculado como el producto de la suma de histamina, putrescina y cadaverina, dividida entre la suma de 1 más espermina y espermidina. Un valor de CQI por debajo de 1 denota un producto de buena calidad, un valor entre 1 y 10 es considerado mediocre, mientras que un valor mayor a 10 denota descomposición.

El concepto de CQI o BAI se ha extendido hacia un BAI de la cerveza, tomando en consideración las concentraciones de otras aminas biogénicas, tiramina, β-feniletilamina y agmatina, que aparecen en productos como la cerveza. El BAI de la cerveza se calcula como el producto de la suma de cadaverina, histamina, tiramina, putrescina, β-feniletilamina y tiramina, dividida entre 1 más agmatina. Un valor de BAI por debajo de 1 indica un producto de buena calidad, un valor entre 1 y 10 se considera mediocre y un valor mayor a 10 denota descomposición.

Resultado de imagen para Agmatina

Ilustración 20 Agmatina usada como proteína tonificante de deportistas.

Para las carnes, el contenido total de putrescina, cadaverina, histamina y tiramina puede ser utilizado para determinar la frescura, con niveles ≤ 5.0 μg/g indicando productos cárnicos de alta calidad.

Efectos del procesamiento y almacenamiento de los alimentos

El procesamiento alimentario es un mecanismo esencial para controlar los niveles de aminas biogénicas en los alimentos. Debido a su alta estabilidad térmica, una vez que las aminas son formadas sus concentraciones no disminuirán significativamente durante los procesos térmicos. Las técnicas de procesamiento tales como evisceración, manejo postcosecha o postcaptura, congelado o refrigerado, salteado y ahumado pueden afectar el contenido de aminas biogénicas y la calidad del producto final.

Control de temperatura

Los niveles de aminas biogénicas en los productos alimenticios son influenciados en gran medida por la temperatura de almacenamiento. Técnicas de manejo postcaptura o postcosecha como la colocación inmediata en hielo son importantes para controla el contenido de aminas biogénicas en el pescado debido a que a temperaturas menores las actividades enzimáticas y microbianas son reducidas considerablemente, de manera que las tasas de formación de aminas biogénicas y su acumulación en los productos se reducen en consecuencia.

Salado

El salado puede inhibir de manera efectiva la formación de aminas biogénicas, particularmente a niveles elevados. En general, un contenido más alto de sal resulta en una formación reducida de aminas biogénicas. Esto se debe a que el alto contenido de sal disminuye la actividad acuosa del medio y esto puede inhibir tanto las actividades microbianas como las enzimáticas que son requeridas para la formación de aminas biogénicas.

Ahumado

El ahumado es un método tradicional utilizado para conservar pescado. Este alimento es ahumado, luego congelado y transportado. El contenido de histamina se incrementa durante el proceso de ahumado y continúa acumulándose durante el congelamiento. Aún cuando el ahumado puede inducir la producción de histamina y la formación de nitrosaminas, la alta temperatura aplicada en el ahumado puede también disminuir el crecimiento y proliferación de microorganismos dañinos y/o productores de descomposición del alimento.

Regulaciones

Dado que el nivel alto de aminas biogénicas, por ejemplo, histamina y tiramina, está asociado con el envenenamiento alimentario, su consumo debe ser limitado. Aún cuando no todas las aminas son igualmente tóxicas, y los niveles toxicológicos son difíciles de valorar debido a efectos sinérgicos entre las aminas, se han propuesto límites permisibles.

Así, los productos fermentados que son preparados utilizando buenas prácticas de manufactura (GMP, por sus siglas en inglés) pueden contener histamina, tiramina y β-feniletilamina en concentraciones de 50-100 mg/Kg, 100-800 mg/Kg y 30 mg/Kg, respectivamente, y aún ser considerados seguros y aceptables para el consumo humano. Los niveles de histamina, cadaverina, putrescina, tiramina y β-feniletilamina en sauerkraut no deben exceder los 10 mg/Kg, 25 mg/Kg, 50 mg/Kg, 20 mg/Kg y 5 mg/Kg, respectivamente y la cantidad total de aminas biogénicas en pescado, queso y sauerkraut debe ser menor a 300 mg/Kg. Adicionalmente, una ingestión de aminas biogénicas mayor a 40 mg en una comida se considera como potencialmente tóxica. (NUTRICIÓN ESPECIALIZADA, 2012)

Como las aminas biogénicas no son extremadamente tóxicas o se han asociado con muchos incidentes fatales, existen pocas regulaciones generales que controlan su concentración. Histamina, sin embargo, es una preocupación común y varios países han establecido sus propios estándares para estos compuestos en los alimentos. Por ejemplo, un nivel de 10 mg de histamina por cada litro de vino es considerado como aceptable en Suiza. En Estados Unidos, 20 mg de histamina por 100 g de pescado enlatado se considera no seguro para el consumo humano y 50 mg de histamina por 100 g de pescado enlatado se considera como un riesgo para la salud por la Administración de Alimentos y Medicamentos (FDA, por sus siglas en inglés); la Comunidad Económica Europea (ECC, por sus siglas en inglés) ha fijado el nivel aceptable de contenido de histamina en pescado como 10-20 mg/100 g; la Agencia Canadiense de Inspección Alimentaria (CFIA, por sus siglas en inglés) ha fijado el nivel de acción de la histamina como 20 mg/100 g en productos fermentados y 10 mg/100 g en productos de peces escombroides. (NUTRICIÓN ESPECIALIZADA, 2012)

Las aminas biogénicas son importantes componentes alimentarios, encontrados en la producción de muchos alimentos fermentados y no fermentados. Están presentes como subproductos de la actividad microbiana en los alimentos. Los microorganismos están presentes de manera natural, adicionados con propósito de fermentación o son introducidos a través de contaminaciones. Es deseable minimizar la formación de aminas biogénicas debido a sus efectos adversos en la salud humana y a su contribución al deterioro del alimento y pérdidas de los mismos. En particular, los niveles de tiramina e histamina deben estar por debajo de ciertos niveles umbral a fin de prevenir respuestas tóxicas. (Fernández, 2015) El estudio de las aminas biogénicas es un campo de investigación activo, con varios enfoques. Constantemente se están desarrollando y/o mejorando métodos analíticos a fin de cuantificar su presencia de manera más rápida y precisa. Se requieren estudios adicionales para generar el conocimiento básico sobre los efectos de la ingestión, los límites tóxicos y las interacciones con otras moléculas biológicas, para facilitar la racionalización y formulación de recomendaciones y regulaciones más útiles en relación a sus niveles seguros en los productos alimenticios. (GIMFERRER MORATÓ, 2012)

Bibliografía

Alonso. (29 de 11 de 2017). Alonsoformula. Obtenido de Aminas: http://www.alonsoformula.com/organica/aminas.htm

Fernández, G. (2015). http://www.quimicaorganica.com. Obtenido de Aminas: https://www.quimicaorganica.org/aminas.html

Galceran, M. T. (marzo de 2002). http://revista.nutricion.org. Obtenido de AMINAS HETEROCÍCLICAS: http://revista.nutricion.org/hemeroteca/revista_marzo_02/VCongreso_publicaciones/Conferencias/Aminas.pdf

GIMFERRER MORATÓ, N. (31 de 12 de 2012). Consumer eroski. Obtenido de Aminas biógenas y alimentos:La detección de aminas biógenas indica, a menudo, un deterioro de alimentos como carne, pescado, alimentos fermentados o vegetales: http://www.consumer.es/seguridad-alimentaria/ciencia-y-tecnologia/2012/12/31/215142.php

NUTRICIÓN ESPECIALIZADA. (13 de 07 de 2012). NUTRICIÓN ESPECIALIZADA: conocimiento avanzado transformando vidas. Obtenido de Aminas biogénicas en alimentos: https://nutricionpersonalizada.wordpress.com/2012/07/13/aminas_biogenicas_alimentos/

Resultado de imagen para alimentos quimica gif

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

El kaikar, los Incas y las enfermedades por emanación

Alejandro Alfredo Aguirre Flores. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

La civilización Inca, fue sin duda una muy avanzada sociedad prehispánica en América del Sur, llegándose a extender por todo el callejón Interandino, logró importantes avances en distintas áreas del conocimiento; sin embargo poco o nada se ha rescatado de su legado en torno al conocimiento y en la actualidad tampoco se ha realizado un rescate efectivo de las memorias de los pueblos ancestrales que se originaron como rezagos culturales de tan imponente civilización. El presente artículo pone a disposición del lector breves ideas sobre el concepto primitivo de las enfermedades por emanación, las cuales identificaron muy bien los protomédicos Incas y que puede ser un punto de partida para futuras promesas en la investigación histórico-médica.

Los Incas habían clasificado a su macrocosmos en tres submundos, primero el de “ARRIBA” conocido como HANAN PACHA del cual provienen todos los Dioses, el KAI PACHA o el de “MEDIO” en el cual suscita el presente o el mundo de los hombres y finalmente el de “ABAJO” donde reinan los muertos conocido por ellos como UKU PACHA. La salud por su parte tenia un concepto muy armónico entre lo físico perteneciente a este mundo, lo espiritual y lo energético pertenecientes a los otros mundos.

Imagen relacionada

En las denominaciones de las enfermedades emplearon vocablos que hacían referencia a una determinada enfermedad y su pare mística atribuida a cualquiera de los otros mundos y aunque las ideas de este modo pareciéran no ser del todo científicas, esta civilización conocía profundamente muchas enfermedades que aún existen en nuestra era. La medicina aborigen comprendía sin fin de rituales que buscaban el equilibrio entre todos los factores antes mencionados todas estas prácticas eran realizadas por un personaje muy importante e influyente en la comunidad, se trataba del “Kallawaya” personaje que hacia de curandero, chaman, herbolario o básicamente médico; quienes utilizaban múltiples elementos de la naturaleza para sanar a los enfermos, y fueron ellos quienes establecieron sus propios conceptos sobre la enfermedad o kaikar, establecieron conceptos también para diferentes dolencias e incluso determinaron sus orígenes. Tal fue la influencia de sus ideas en torno a la medicina que fueron el punto de partida de investigaciones y expediciones botánicas para beneficio de la corona española que buscaba desesperádamente curas para múltiples enfermedades comunes en occidente; así fue como durante la colonia los virreinatos buscaban en los territorios americanos las posibles respuestas a dichas necesidades un ejemplo de ello fue la expedición de Mutis en el Virreinato de la Nueva Granada (Colombia) o el caso de Pedro Leiva en Malacatos-Ecuador.

PARA MAYOR INFORMACIÓN AL RESPECTO Y SOBRE ESTOS PERSONAJES PUEDES DARLE CLICK A LA SIGUIENTE CATEGORÍA YA QUE SON TEMAS QUE SE HAN TRATADO A PROFUNDIDAD EN ANTERIORES OCASIONES: PRECURSORES DE LA MEDICINA LATINOAMERICANA.

¿QUIENES ERAN LOS QUE EJERCIAN EL OFICIO MÉDICO EN EL IMPERIO?

  • El Watuk: se encargaba de diagnosticar la enfermedad y examinar el estilo de vida del paciente.
  • El Hanpeq: Una especie de Chamán que curaba a los pacientes utilizando hierbas y minerales en ceremonias religiosas y místicas.
  • El Paqo: curaba el alma; los incas creían que el corazón albergaba el alma.
  • El Sancoyoc: Sacerdote cirujano, se ocupaba de extremidades rotas, abscesos y de los dientes.
  • El Hampi Camayoc: Era el químico del estado inca y el encargado del cuidado de los recursos médicos.
  • El Collahuaya: Suministraba plantas medicinales, amuletos y talismanes.

Muchos de los chamanes han prevalecido hasta nuestra época y se han vuelto personajes muy tradicionales en pueblos y comunidades de Ecuador, Perú y Bolivia; tanto que en la actualidad, personas de todo el mundo llegan a pueblos como Pisac u Ollantaytambo en el Valle Sagrado de los Incas, para conocer y disfrutar de la medicina de los Incas. Ellos mencionan que el aire es el medio conductor de las “emanaciones mágicas”, de hecho este factor es determinante en la proliferación de enfermedades, hecho que no suena tan trillado cuando se trata de contagios de enfermedades como la gripe o neumonía. Menciona el autor en el que se basa este artículo el Dr. Ramón Pardal en un pequeño fragmento de la revista “Laboratorio” Nº22 de Colombia, que el aire era determinante en el aparecimiento de enfermedades cutáneas, pulmonares, nerviosas, intestinales, entre otras a tal punto que la palabra HUAIRA que significa aire o viento forma parte de los nombres de muchas de las enfermedades que identificaron, como por ejemplo:

  1. HUSNA HUAIRA: eczema.
  2. JURRA HUAIRA: urticaria o sarpullido.
  3. SULLU HUAIRA: hace referencia a enfermedades de la piel.
  4. CEBO HUAIRA: tétano-lumbago..
  5. AYA HUAIRA: epilepsia.

Y de allí el término KAIKAR, que era un estado particular del ser humano que consistía en decaimiento, dolor de cabeza, depresión, opresión, llegando hasta el desvanecimiento del paciente.  En un sentido más tradicionalista el Kaikar abarca lo que se denomina “mal de la montaña” o denominado de forma común como SOROCHE, o “MAL AIRE”, provocado por permanecer cerca de tumbas lo que los incas identificaban como enfermedades provocadas por los espíritus de los muertos a través del aire, creencia que ha prevalecido hasta la actualidad y que se sigue tratando de forma tradicional en algunos pueblos o comunidades.

Resultado de imagen para mal aire

También denominaban los Incas otras enfermedades como:

  1. ZAMAI PITI: (respiración quebrada) o neumonía.
  2. CHAQUI ONCOY: (morbo que consume) o tuberculosis.
  3. RUPA CHUCCHU: ( calosfríos) o fiebres palúdicas.
  4. UMA NAMAI: cefalalgia o congestión cerebral.
  5. SONCO NAMAI: dolores  y disturbios intestinales.

La medicina inca no solo que supo identificar los síntomas de las enfermedades que los aquejaban, sino que también indagó causas, e integró tratamientos psicológicos  y físicos en e paciente. Se conoce que  se realizaron cirugías con métodos e instrumentos  muy sencillos hasta algo primitivos; el equivalente de bisturí se denominó Tumi con el que se realizaron incluso aberturas craneales y la Vilcachina que sirvió para las extirpaciones.

Resultado de imagen para Vilcachina

Imagen relacionada

La trepanación craneana

Esta complicada operación del cerebro fue llevada a cabo desde el año 1,000 por la cultura pre-inca, Paracas; se trató de una operación de alto riesgo, que fue perfeccionada por los incas hacia el 1,400, logrando la supervivencia de hasta el 90 % de las personas operadas; hoy en día existen procedimientos similares para aliviar la presión del cerebro. Se tiene registro de personas que fueron operadas más de una vez; se sabe de un individuo que fue operado hasta siete veces. Las personas sometidas a esta operación, eran hombres que sufrieron lesiones en combate o para curar la epilepsia o hasta infecciones crónicas en el cráneo.

TOMADO DE: https://www.boletomachupicchu.com/medicina-inca/

Los estudios se han publicado en múltiples revistas médicas que tratan con mayor profundidad del tema donde se mencionan a detalle los procedimientos que éstos realizaban, un blog que puedo recomendarlos por su contenido es el siguiente: CIRUJANOS INCAS.

Lo cierto es que los médicos incas utilizaron las propiedades curativas de diversas plantas y raíces que como se dijo anteriormente  dieron pauta a las escuelas que las estudiaron en el viejo continente.

Según crónicas realizadas en la conquista se conoce que  los Incas tenian nociones de “pulso” afirmación realizada por Molina (1788), quien en su estudio menciona a Garcilaso de la Vega, mismo que narra en cartas y crónicas enviadas a Portugal sobre algunas percepciones y detalles que tuvo del asesinato del rey Inca Atahualpa, Dela Vega menciona:

-Estando Atahualpa en la prisión vinieron a verlo los indios, y que le tomaron el pulso en la “junta de las cejas”.

Dato que sin duda refleja el nivel de conocimiento que poseían en signos vitales y diagnóstico general. Finalmente la paleontología ha hecho lo suyo también, puesto que en diversas excavaciones que se han realizado en ruinas y templos incas se han descubierto grabados en paredes y cerámica donde se manifiestan representaciones pictóricas de chamanes atendiendo enfermos.

Los incas establecieron verdaderos protocolos y jerarquías, como se vio anteriormente existían varios personajes que ejercían la tarea de sanar a los enfermos, sin embargo el diagnóstico tenia que ser realizado por el chamán o watuk quien planteaba los procedimientos en concreto e incluso los correlativos, donde en primera instancias había que determinar el origen del mal que fue ejercido sobre el paciente que para la época en mayor porcentaje era de carácter místico y espiritual.

Resultado de imagen para medicina inca

Posteriormente los primeros cuidados eran realizados por el mismo watuk, estos cuidado y atenciones implicaban rituales  como ayunos, intoxicaciones, trajes especiales, ornamentos mágicos, oración, encantamientos, danzas agotadoras, drogas, estados de trance, hasta que el chamán perdiera el sentido y con ello se considere todo mal espíritu expulsado, permitiendo de esta manera proceder con los tratamientos físicos e intervenciones quirúrgicas. Para tales rituales el watuk utilizaba múltiples plantas y hongos  ilusinógenos y estupefacientes que le permitían conectarse con los otros dos mundos que en estado de éxtasis o epifanía le permitieran dictar diagnóstico irrefutable para el paciente y sus familiares. Dichas drogas  existentes en el cono sur son: la Ayahuasca, Caapi (Banisteria caapí)  o Yagé; el Peyotl (Echinocactus anhakonium Lawinii), la Coca (Erythroxylon coca), la Cahoba, Paricá o Yopo ; finalmente del Ololiuhqui (Ipomoea jalapa)

Resultado de imagen para medicina inca

REFERENCIAS:

  • Molina J. L. Compendio de la historia geográfica, natural y civil del reyno de Chile. Madrid. (1788).
  • Garcilaso de la Vega. Comentarios reales; (Lisboa 1609).
  • Dr. Ramón Pardal. Medicina Aborigen. Teoría de la emanación. Revista LABORATORIO Nº 22. Cesar Uribe Piedrahita. Licencia Nº 1342. Santa Fe de Bogotá-Colombia.

Resultado de imagen para incas gif

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Leeuwenhoek y el descubrimiento de los microorganismos

 

Alejandro Alfredo Aguirre Flores. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

     La realidad entendida como aquello que acontece de manera verdadera y demostrada termina siendo una verdad irrefutable ante lo que usted mi estimado lector, es capaz de palpar mediante sus sentidos en este mismo instante, puesto que existe (lo que es capaz de observar a simple vista)  en el macrocosmos; sin embargo para ciertos seres vivos que por su extrema pequeñez quedan fuera del alcance del ojo humano, el macrocosmos podría entenderse como un basto espacio lleno potenciales ecosistemas, por ejemplo en este mismo instante si comparamos el ombligo de una persona con el Archipiélago de Galápagos probablemente se encuentren en él más especies de microorganismos que de especies en “Las Islas Encantadas”; estos “seres” fueron denominados como MICROBIOS y partiendo desde su análisis epistemológico esta palabra es una derivación de dos vocablos griegos “mikro”, pequeño y “bio”, vida; entendiéndose por tanto como una pequeña, muy pequeña forma de vida no necesariamente simple como algunos autores mencionan y mucho menos poco importante; verlos no es posible si no mediante un instrumento óptico denominado “microscopio” y es gracias a este importante invento que el estudio de los microbios ha sido posible formando en sí mismo toda una rama de la biología moderna denominada MICROBIOLOGÍA.

Resultado de imagen para gifs microorganismos

En torno a dicho invento, el microscopio compuesto, es un instrumento conformado por dos sistemas de lentes, el uno es denominado sistema de lentes ocular y el segundo sistema como objetivo. Actualmente existen diversos tipos de microscopios más avanzados tales como el electrónico de barrido mismo que siendo capaz de captar imágenes con mayor resolución a nivel tridimensional y con facilidades que permiten obtener imágenes en formatos aptos para distinto software, aunque actualmente los microscopios poseen una  amplia diversidad como muestra la red conceptual siguiente:

Resultado de imagen para tipos de microscopio

Resultado de imagen para tipos de microscopio

De manera general el microscopio compuesto, por ser más asequible y práctico, para el estudio de la microbiología básica o general, permite un aumento suficiente para la apreciación de estructuras microcelulares, de forma análoga existe el microscopio monocular simple formado por un solo lente con radio de curvatura muy pequeño, en consecuencia, una  buena capacidad de aumento, dada su capacidad focal de corto alcance.Resultado de imagen para microscopio compuestoUna de las limitantes que presentó el monocular es que al estar acompañado de una sola lente de gran poder de convergencia según afirmó en 1970 el investigador Norberto J. Palleroni del Departamento de Bacteriología e Inmunología de la Universidad de California, Estados Unidos; los monoculares presentan condiciones de observación pobres y con capacidad de enfoque limitada, por lo que de apoco han empezado a ser considerados como obsoletos, en comparación con el microscopio compuesto capaz de superar estas limitantes mediante a combinación de distintas lentes de diferente poder de convergencia a fin de amplificar y esclarecer la nitidez de las muestras observadas, y es en este punto donde nace la pregunta ¿QUIÉN Y CÓMO HIZO NACER TAN IMPORTANTE INVENTO? Para contestar dicha interrogante es importante introducirnos en un contexto histórico en el cual un hombre brillante tuvo genialidad de observar por primera vez microrganismos, dicho hombre es Antoni van Leeuwenhoek  a continuación su historia.

La genialidad de la obra de Antonie Philips van Leeuwenhoek

Imagen relacionada

     Considerando las diversas vicisitudes antes mencionadas propias del microscopio monocular, los microbios fueron descubiertos con un dispositivo de este tipo y todo fue gracias al holandés Antonie van Leeuwenhoek, quien en pleno siglo XVII construyó sus propios microscopios rudimentarios dado su oficio de fabricante de lentes, utilizó su conocimiento para el diseño de diversas estructuras cristalinas de aumento, que resultaron ser muy eficientes para la época, el trabajo de Leeuwenhoek fue tan magnífico que sus observaciones marcaron un antes y un después en la ciencia del micromundo.

Nacido en Delft, Países Bajos, un 24 de octubre de 1632 fue sin duda el PRIMER ser humano en observar microorganismos (bacterias y protozoarios) cuyas descripciones constituyen una de las obras más notables de las ciencias biológicas, lastimosamente  su trabajo se vio imposibilitado de replicarse dada la dificultad de reproducir las lentes que inventó, algunos investigadores afirman que Leeuwenhoek fue egoísta al no difundir el modo de fabricación de sus lentes, otros como Palleroni defienden su proceder dada la tremenda dificultad de la época para la realización de múltiples dispositivos con las mismas características adicionalmente y considerando la cantidad de tiempo suponemos invirtió en su obra y en la ilustración que realizó de sus observaciones, quizás fueron condiciones que dificultaron la divulgación de sus métodos y técnicas.

Leeuwenhoek queda huérfano de padre (Philips Antonisz van Leeuwenhoek)  a los cinco años, posibilitando a su madre, Margaretha van den Berch, contraer un segundo matrimonio con un hábil pintor llamado Jacob Jansz Molijn, de quien posiblemente aprendió técnicas para la ilustración científica que desarrollará posteriormente.Actualmente es considerado como padre de la biología celular y microbiología. 

Se conoce que Antonie a los 16 años se trasladó hasta la ciudad Holandesa de Amsterdam donde aprendió el oficio de textilero desempeñándose como aprendiz de tratante de telas y finalmente desarrollando diversas tareas hasta llegar a puestos  como cajero y contable, según mencionan Víctor Moreno, María E. Ramírez, Cristian de la Oliva, Estrella Moreno. (2018). Su vida se vio rodeada de tragedias, por ejemplo en 1666 muere su esposa tras haber contraído matrimonio en 1654 con Bárbara de Mey, una de las hijas del dueño de la empresa textilera donde trabajó por seis años, cuatro de sus cinco hijos murieron siendo infantes finalmente en 1671 contrae un segundo matrimonio con Cornelia Swalmius, con quien no tuviera hijos y 23 años más tarde también falleciera.

Imagen relacionada
DELFT-HOLANDA

En 1669 se convirtió en agrimensor (antigua rama de la topografía que consistía en la medición de territorios, terrenos o superficies destinadas para la agricultura), su vida fue definitivamente multifascética ya que en 1679 desempeñó el puesto de inspector y control de calidad en vinos en su poblado, Delft de que nunca saliera, habiendo sido siempre un personaje notable de dicha ciudad.

ANÁLISIS DE LA OBRA DE ANTONIE VAN LEEUWENHOEK

Fuera de la ciudad que lo viera nacer, nada se hubiera sabido de este magnífico hombre de ciencia, si no es porque Leeuwenhoek tuvo una gran habilidad para el manejo de cristales ya que mientras fue fabricante de lentes aprendió el oficio de moler las defectuosas, factor que marcó un antes y un después en la biología; Antonie poseía una gran habilidad en el pulido de lentes pequeñísimas biconvexas; muchos autores mencionan que en realidad Antonie creo dichas lentes como respuesta a su aburrimiento, obviamente cosa que no se a desmentido ya que se conoce el momento exacto en el que Leeuwenhoek creó su microscopio, estas diminutas lentes fueron montadas sobre platinas de latón como muestra la imagen siguiente: 

Imagen relacionada

Pues bien y antes de fantasear con tan fabuloso dispositivo es importante mencionar que la relación de tamaño del mismo era tal que cabía en la palma de una mano, sin embargo éstas al sostenerse muy cerca del ojo humano, al observar a través de ellas se podía apreciar objetos que eran montados sobre la cabeza o soporte similar al de un alfiler, dichas lentes ampliaban las muestras hasta unas 300 veces el tamaño original de las muestras, consiguió de esta forma lentes de entre 70 a 250 aumentos; apreciemos por tanto el tamaño original del dispositivo.

Imagen relacionada
El único instrumento fabricado por el naturalista holandés cuya autenticidad está certificada con técnicas modernas. Este objeto único pasó 300 años en el fondo de un canal en Delft y terminó en las manos de un coleccionista gallego.

Este diminuto dispositivo definió con mayor claridad las muestras que cualquier otro microscopio de la época, muchos importantes investigadores han aclarado que este dispositivo debería ser clasificado como una lupa puesto que sigue el mismo principio de observación.

Se conoce que la técnica utilizada por Antoni era bastante compleja, principalmente porque el montaje de la muestra podía ser un verdadero dolor de cabeza, en el mejor de los casos, de ser sólida era sostenida por la punta de su dispositivo mientras que si fuera una muestra líquida la debía montar sobre una lámina de talco o vidrio. El mérito especial no radica en su habilidad con las lentes sino más bien su técnica de observación y todo lo registrado en ella. Todo ello se conoce gracias al biólogo investigador inglés Clifford Dobell (1886-1949), quien mencionó que la clave del método de observación de Leeuwenhoek reside en la iluminación del campo oscuro, fundamente utilizado hasta la actualidad en los microscopios binoculares y monoculares, dicha iluminación consistía en iluminar lateralmente los objetos dándoles contraste con un fondo oscuro. La iluminación normal consiste en poder observar los objetos oscuros contra un fondo más claro, sin embargo el método de Leeuwenhoek obedece al principio del campo oscuro efecto análogo al efecto Tyndall, de tal manera que objetos muy diminutos pueden verse mientras reflejen la luz.

Resultado de imagen para microscopio de leeuwenhoek

En 1668, realizó importantes descubrimientos en torno a la red de capilares propuesta por el Fisiólogo italiano Marcello Malpighi, ilustre personaje quien descubriese los glóbulos rojos de la sangre y demostrando que son estas células las responsables del color rojo característico de la sangre, esto no se podría haber logrado sin Leeuwenhoek quien realizó observaciones de los capilares de las orejas de los conejos y la membrana intersticial de una pata de una rana, hasta que en 1674 realizara la primera descripción de los glóbulos rojos de la sangre.

Con mérito de sobra, Antonie Van Leeuwenhoek es considerado el fundador de la MICROMETRÍA, ciencia que estudia y mide todo lo observable a través de una lente o microscopio; los investigadores César Urtubia Vicario & Joan Antó i Roca en su artículo titulado: En el 350 aniversario  del nacimiento de Antoni van Leeuwenhoek (y ll.) Su obra.; mencionan un interesante experimento realizado por Leeuwenhoek y con el explican por qué se le considera como padre de la micrometría también: 

Calculó primero la dimensión aproximada de una gota de agua, misma que intentó separar el equivalente a  su centésima parte y la introdujo en un tubo de vidrio transparente mismo que había sido calibrado en unas 25 a 30 gotas. Posteriormente colocó el tubo bajo su microscopio y contó los infusorios (protozoarios) presentes en cada de sus partes, la palabra infusorios actualmente es un término no científico y hoy en día se les da el nombre propio filogenético. Con este dato calculó el número total de microorganismos presentes en la muestra sentando de esta manera el principio moderno de “cámara de recuento” y allí demostrada su incursión en la micrometría.

Resultado de imagen para microorganismos en una gota de agua
GOTA DE AGUA DE MAR AMPLIADA 25 VECES.

Posteriormente al experimento de la gota, observó el agua de lluvia y saliva humana, y en estas muestras encontró lo que llamaría animálculos o infusorios, mismos que actualmente se conocen como protozoos, algas  y bacterias.

Resultado de imagen para animalculos de leeuwenhoek

De esta manera descubrió que existen múltiples aplicaciones de la micrometría, otro experimento que realizó fue calcular el diámetro de un grano de arena gruesa como de 1/30 de pulgada, lo comparó con un grano de arena fino de aproximadamente 1/80 de pulgada y otro de 1/100 de pulgada ¿cuál fue la implicación biológica de este comparativo? pues enorme, dicha comparación permitió a futuro comprender la relación de tamaño entre estructuras inertes con bióticas, por ejemplo haciendo equivalencias descubrió que diámetro de un grano de arena fina con respecto a 2.5 veces el diámetro de un pelo de su barba determinó que el equivalente eran 600 de éstos en su peluca o barba.

Sus observaciones se remontan a la química, desde la cristalografía, Leeuwenhoek  fue el primero en afirmar que los cristales (de sal por ejemplo) vienen dados por un ordenamiento de átomos.

Resultado de imagen para cristales de leeuwenhoek
Cristales de azúcar descritos por Leeuwenhoek.

Las observaciones continuaron y así en 1677 descubrió los ESPERMATOZOOS  de los insectos y espermatozoides de los humanos, se opuso rotundamente a la teoría de generación espontánea casi 150 años antes que Luis Pasteur, demostrando por ejemplo que animales como los gorgojos no surgían espontáneamente de los granos de trigo y arena sino que se desarrollaban a partir de huevos diminutos, examinó también plantas, tejidos musculares, polen, y describió tres tipos de bacterias; bacilos, cocos y espirilos.

Imagen relacionada

Observó también  la constitución de diversos mohos y la morfología de diversas especies de insectos como pulgas, moscas, garrapatas y escarabajos como muestra la ilustración siguiente:

Resultado de imagen para animalculos de leeuwenhoek
PULGA DE LEEUWENHOEK

Por otro lado realizó descripciones de observaciones correspondientes al aparato bucal  y ojos de abejas. Realizó comprobaciones de sus propias deducciones, después de los análisis capilares en las patas de las ranas, complementó sus observaciones con las colas de los renacuajos de las mismas. Se sabe por su obra que observó las diferentes formas que presentaban los espermatozoides de especie a especie y los comparó en morfología.

Resultado de imagen para animalculos de leeuwenhoek
ESPERMATOZOIDES

Realizó y analizó observaciones de células de fermento llegando así al límite de su ampliación de lentes observando así en 1680 levaduras, y cuatro años antes reportó observaciones de gérmenes (microbios) lo que hoy en día se conoce como bacterias, sin embargo y como se mencionó antes, jamás describió el cómo realizó la fabricación de sus lentes.

Por todas estas observaciones exactamente un año después de haber escrito una carta dirigida a la Royal Society se publican por primera vez sus observaciones en las afamadas Philosophical Transactions, revistas de gran renombre en Londres – Inglaterra. En ellas describe los “animálculos” que observó procedentes de una laguna cercana a Delft, seres que hoy en día se clasificarían como protistas. Un 9 de octubre de 1676 describe las observaciones realizadas en 1675 donde afirma haber tinturado el agua de azul lo que pone en manifiesto la necesidad de colorearlos para poder observarlos, principio utilizado hasta la actualidad en microbiología. Adicionalmente describió  comparaciones, movilidad y comportamiento de ciertos protozoarios, en unos de sus artículos menciona: 

“Descubrí más animálculos en el agua de lluvia, así como unos pocos que eran ligeramente más grandes; e imagino que diez centenares de miles de estos animálculos muy diminutos no tenían el tamaño de un grano de arena común. Si se compararan estos animalillos microscópicos con los gusanillos del queso (que podemos distinguir a simple vista cuando se mueven), yo establecería la proporción en los términos siguientes: el tamaño de una abeja respecto al de un cabello, pues la circunferencia de uno de estos pequeños animálculos no es tan grande como el espesor del pelo de un gusanillo”. Antonie Philips van Leeuwenhoek (1676).

Imagen relacionada

Un dato muy curioso es que pensó que el calor o la sensación picante del agua de pimienta era causada por alguno de estos animáculos o alguna estructura que así lo permitiera y evidentemente no encontró nada; dicha suposición no fue tan descabellada como se pensaría en la actualidad puesto que en uno de sus últimos artículos mencionó microorganismos presentes en agua de jengibre, vinagre, clavo de olor y nuez moscada a los que describió como anguilillas con movimientos tipo oscilaciones tal como las anguilas en el agua.

Finalmente la pregunta es: ¿Cuantos dispositivos creó leeuwenhoek?

En 1774, tras la muerte de María la única de los 5 hijos que tuvo, los microscopios fueron subastados, Van Setters (1933) concluye que Leeuwenhoek fabricó al menos QUINIENTOS SESENTA Y SEIS (566) dispositivos, y en otro recuento se afirma fueron 543 de las cuales 26 se fabricaron en plata. Existen autores que mencionan tan solo 419 dispositivos lo cierto es que en la actualidad tan solo se conoce de la existencia de 9 y se sabe que muchas de ellas constituían hasta 270 aumentos. De la fabricación de las mismas no se sabe mucho más que eran pulidas meticulosamente y que debieron haber sido fabricadas mediante una técnica de soplado. 

Imagen relacionada

Los microscopios simples conservados actualmente son seis constituidos en bronces entre los que destacan como propietarios el Museo de la Universidad de Utrecht y el Deutsches Museum de Munich, y otros tres más constituidos en plata uno de los mismos se puede observar en el Museo de Munich antes citado. Uno de los datos más asombrosos es que una de las lentes descubiertas no contiene ni un solo rayón propio de la pulidura del vidrio, puesto que solo en la actualidad mediante técnicas modernas se puede lograr semejante cometido, sin embargo si se han determinado la presencia burbujas en las lentes puesto que Antonie utilizó técnicas de soplado que demuestra su gran habilidad con las mismas su espesor variaba entre los 10-20mm de diámetro. Dadas las condiciones de su fabricación y considerando que el siglo XIX existía una escasa cantidad de microscopios de Leeuwenhoek, Jhon Mayal Jr. secretario de la Royal Microscopical Society, usando el microscopio en posesión de la Universidad de Utrecht realizó tres copias de él, una de ellas guardada en Oxford  y otras dos en Cambridge. 

Resultado de imagen para microscopio de leeuwenhoek  de la Universidad de Utrecht
Imagen de diatomeas obtenida con una lente de Leeuwenhoek en el Museo de la Universidad de Utrecht. Las manchas oscuras las producen burbujas de aire en la lente. Fuente: Fig. 5 en “The microscope in the Dutch Republic: The shaping of discovery”, por Ruestow EG.

Trágicamente Antonie falleció un 26 de agosto de 1723 en su ciudad natal Delft a los 90 años, marcando así un ayer y un mañana en la ciencia microbiológica. El 31 de agosto fue enterrado en la Oude Kerk (Iglesia Vieja) de la ciudad; y quien continuará su legado posteriormente fuera Christiaan Huygens para su propia investigación sobre microscopía mejorando los dispositivos creados por Leeuwenhoek.

COMENTARIO DEL AUTOR:  la información existente sobre Leeuwenhoek difícilmente le hacen justicia a su labor, lastimosamente son muchos los artículos en los que he notado pesimismo, a mi juicio incomprensible, sobre lo que diversos autores consideran como EGOÍSMO o CELO, actitud que no es muy ajena de algunos científicos en la actualidad, sin embargo considero que Leeuwenhoek fue un microbiólogo e ilustrador naturalista nato, que ante las circunstancias propias de la época no podía darse el lujo de utilizar su tiempo para difundir sus métodos a detalle cuando ante sus ojos el mundo microscópico se mostraba amplio y lo suficientemente basto como para ser ignorado, tiempo que invirtió ilustrando y describiendo cada muestra que llegó a sus manos y plasmarlo en sus obras posteriormente publicadas, cosa que no puede ni DEBE ser INVISIBILIZADA por los autores que en su nombre tratamos de interpretar su trabajo, un trabajo asombroso pese a las dificultades de la época; los científicos NO ESTAMOS para emitir JUICIOS DE VALOR a razón del trabajo de grandes pioneros de las ciencias como lo fue Leeuwenhoek, los científicos estamos para construir positivamente los pilares del conocimiento, me atrevo a decir que nuestra actitud debe parecerse a un automóvil 4×4 todo terreno capaces de aportar y brillar con luz propia antes que criticar y opacar el trabajo de grandes mentes como la de Antoni van Leeuwenhoek.

Alejandro Aguirre F. 18/11/2018

https://youtu.be/g7dS0NBsORc 

REFERENCIAS:

  • César Urtubia Vicario & Joan Antó i Roca en su artículo titulado: En el 350 aniversario  del nacimiento de Antoni van Leeuwenhoek (y ll.) Su obra. Tomado de: https://upcommons.upc.edu/bitstream/handle/2117/754/En_el_350_aniversario_del_nacimiento_de_Anton_van_Leeuwenhoek_(II).pdf  
  • Norberto J. Palleroni.(1970) Principios Generales de Microbiología. Departamento de Bacteriología e Inmunología de la Universidad de California (Estados Unidos). Programa Regional de Desarrollo Científico y Tecnológico. Departamento de Asuntos Científicos. Secretaría General de la Organización de Estados Americanos. Washington, D.C. pp. 1-3.

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Usos y Aplicaciones de los Compuestos Aromáticos en la industria de Alimentos

Lucía Jaramillo Cando. [1]

Lesly Espinoza Buitrón. [1]

Alejandro Aguirre F. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

INTRODUCCIÓN

Los hidrocarburos aromáticos son parte de la gran familia del Benceno, puesto que tienen por núcleo uno o más anillos bencénicos, al presentar una estructura cíclica insaturada por esta razón se les denomina también arenos así lo menciona (Claramount, y otros, 2013); y son precisamente dicha característica que confiere aromaticidad a este tipo de compuestos debido a un traslape efectivo entre sus electrones π (pi) puesto que la presencia del anillo bencénico hace que su molécula presente tres pares de electrones deslocalizados en un ciclo plano adicionalmente el cumplimiento de los principios de Hückel. En definitiva estas características confieren cierta reactividad a este tipo de compuestos en los que reside una gran estabilidad proveniente de la deslocalización electrónica existente que en muchos casos incita a la resonancia, dando lugar a que las nubes electrónicas se encuentre en una relativa mayor “comodidad” como resultado de sus repulsiones débiles que si estuvieran localizadas en tres enlaces π.

Entorno a la investigación se han tomado en cuenta múltiples compuestos aromáticos derivados del Benceno así como compuestos heterocíclicos aromáticos que se relacionan con la industria de alimentos y derivados; tomando como factor común la “degeneración” de orbitales (con la misma energía) que tiene lugar en el núcleo del anillo bencénico, a su vez la presente investigación relaciona los aspectos negativos que pueden tener respecto a la industria alimentaria en efecto, su relación con la salud humana.

DESARROLLO DE LA INVESTIGACIÓN

 

Aplicaciones del benceno

El benceno desde su descubrimiento por parte de Michael Faraday en 1825, tras lograr aislarlo desde una sustancia oleosa extraída de una lámpara común de queroseno y su posterior formulación (C6H6) demostrando que posee seis átomos de carbono equidistantes y equivalentes, propuesta por Eilhard Mitscherlich en 1834; el benceno es por sí mismo el principal representante de los compuestos orgánicos aromáticos (Wade, 2011).

Tiempo después fueron múltiples los estudios realizados entorno a su síntesis y presencia en la naturaleza, así Hoffman en 1845 lo aísla a partir de la hulla, levantando así un indicio de su presencia en el petróleo. Pero no fue hasta que el Nobel de Química Linus Pauling consiguiera encontrar el verdadero origen de su comportamiento, la resonancia o mesomería en la cual ambas estructuras de Kekulé se sobreponen.

Resultado de imagen para anillo bencenico
Ilustración 1 Comportamiento del anillo bencénico.

De manera general el benceno es utilizado en la fabricación de tintas, detergentes, explosivos, caucho, plásticos y fármacos. Sin embargo y a pesar de presentar riesgos para la salud ya que normalmente según la FDA posee en sus etiquetas frases tales como la R45 que menciona riesgo para la salud y causa de aparecimiento de cáncer y sus respectivas R48/23/24/25 que lo consideran como un compuesto del tipo tóxico capaz de representar riesgo de efectos graves para la salud en caso de exposición prolongada por inhalación, contacto con la piel e ingestión (Documentacion Ideam, 2003). Las industrias alimenticias en algunos países lo siguen utilizando como solvente para la extracción de esencias y concentrados a continuación algunos ejemplos.

Especias y condimentos-determinación de humedad en pimienta gorda. Método de prueba.

 

Según la publicación mexicana cuyo título original fue publicado como: Spices and condiments-determination of moisture content of all spice method of test (1988). Menciona al benceno como solvente indicado para la determinación de la humedad en pimienta gorda, lo importante del artículo radica en que no atenta contra la salud de los consumidores puesto que el método propuesto es únicamente para el análisis laboratorial de la pimienta mas no para su consumo inmediato.

Resultado de imagen para pimienta negra
Ilustración 2 Pimienta Negra (gorda)

El método desarrollado por Secretaría de Agricultura y Recursos Hidráulicos de México menciona que el benceno por su punto de ebullición e insolubilidad en agua permite una adecuada destilación continua del agua presente en una muestra de 30 a 35 g de semillas de pimienta gorda en 75 a 100 cm3 de benceno, la investigación sugiere la ecuación siguiente para el cálculo de la humedad (Secretaría de Agricultura y Recursos Hidráulicos, 1988):

Donde:                                                   Humedad %=(A* ρ)/M*100

A= Volumen de agua (cm3)

ρ = Densidad del agua (g/cm3)

M= Peso de la muestra (g)

 

Benceno como contaminante de los alimentos, fuentes hídricas y agua potable

 

Por otra parte el benceno ha sido uno de los principales contaminantes del agua potable en comparación con otros compuestos según menciona (Echeverry, 2016), alimentos como café, pan comercial, agua potable y envasada, frutas, verduras, bebidas isotónicas, chicles, derivados cárnicos, alimentos con saborizantes, helados, yogurt e incluso cosméticos en todo el mundo han presentado trazas de benceno, que como se mencionó anteriormente es altamente tóxico, el origen de dicho mal puede deberse a malas prácticas de manufactura en las industrias no alimenticias, mismas que desechan sus aguar residuales sin un adecuado control de sustancias contaminando de esta manera los recursos hídricos, la norma técnica internacional establecida por la FDA menciona que no se excederá la cantidad de 1μg/l de agua caso contrario se considera como muestra contaminada y requiere tratamiento emergente, a su vez la OMS (Organización Mundial de la Salud) y la Agencia para la Protección del Medio Ambiente (EPA), clasifica al benceno como parte de la lista de compuestos emergentes en el tratamiento de aguas por su persistencia y sus efectos negativos para la salud humana así lo afirma (Barceló & López de Alda, 2010).

Benceno como producto residual en la síntesis de benzoatos presentes en alimentos

Alimentos tales como las salsas de tomate (Kétchup), sodas y aquellos que presenten benzoato de sodio o potasio en general pueden tener mayor incidencia de trazas de benceno, y aunque el benzoato puede parecer inofensivo las industrias alimenticias y químicas en general sintetizan este compuesto a partir del benceno, a su vez y al no existir un proceso ciento por ciento efectivo, nada puede frenar el aparecimiento de rachas de reactivo en los productos finales así lo afirma (Echeverry, 2016). A continuación la síntesis comúnmente utilizada para la formulación del benzoato sódico:

Resultado de imagen para sintesis del benzoato de sodio
Ilustración 3 Síntesis del Tolueno, Benzoato sódico y ácido benzoico. Fuente: https://es.wikipedia.org/wiki/%C3%81cido_benzoico

En relación al tema la Administración de Alimentos y Drogas de los Estados Unidos (FDA) por sus siglas en inglés, menciona que las sales de benzoato al ser expuestas a la luz y al calor en presencia de vitamina C (común en ciertos alimentos tales como gaseosas y fármacos) al reaccionar pueden causar cantidades residuales de benceno, este factor entorno a la industria de bebidas ha sido muy criticado por que normalmente las bebidas gaseosas son transportadas en vehículos con exposición directa a la luz solar creando el factor adecuado para su transformación y en consecuencia convertirse en un factor nocivo para la salud de los consumidores (Echeverry, 2016).

Imagen relacionada
Ilustración 4 Las gaseosas carbonatadas, por factores de estabilidad presentan benzoatos de sodio y potasio que al reaccionar con la luz y el calor pueden formar rachas de benceno.

 

Aplicaciones de otros compuestos aromáticos

 

Uso de las Quinolinas e Isoquinolinas en la industria alimenticia

Las quinolinas e isoquinolinas con compuestos cíclicos en los que un anillo bencénico y uno de piridina se hallan fusionados y eso aplica también para su correspondiente catión quinazolinio; aunque el criterio de carácter aromático de Hückel predice aromaticidad en compuestos mono cíclicos se conoce que este tipo de compuestos conservan sus propiedades aromáticas así lo considera (Dep. Fquím. UNAM, 2015); es así como muchos de sus derivados son utilizados en múltiples sectores industriales tales como el actinoquinol utilizado en la fabricación de pantallas UV, benzoquinolina utilizada en la fabricación de desinfectantes, lotrifen que es un derivado de las quinolinas ampliamente usado como abortivo o el dimetisoquin potente anestésico y finalmente la papaverina en la fabricación de relajantes musculares.

 

Amarillo de quinoleína (E E104) o amarillo de quinolina

 

El amarillo de quinolina es un importante ingrediente sintético para la industria de alimentos como agente colorante entre sus aplicaciones más destacadas están:

 

  • Dulces de azúcar y golosinas.
  • Repostería de naranja, vainilla y chocolate.
  • Panadería.
  • Bebidas alcohólicas y no alcohólicas hidratantes, energizantes, bebidas electrolíticas.
  • Heladería.
  • Snacks y botanas.
  • Salsas y condimentos.
  • Bebidas Carbonatadas.
  • Quesos en polvo.
  • Frituras y otros.

Según afirma (Badui, 2013), el color de los alimentos es muy importante para el consumidor a razón de ser el primer contacto e impresión que tiene un potencial comprador en respuesta de lo que visualmente aprecia del producto, lo que es determinante para la aceptación o rechazo del mismo.

Resultado de imagen para Alimentos que contienen colorante E E104 (Amarillo de quinolina)

Ilustración 5 Alimentos que contienen colorante E E104 (Amarillo de quinolina) Fuente: http://hablemosclaro.org/ingrepedia/amarillo-de-quinolina/#1502293691178-e5ac3059-a00b

La síntesis del compuesto parte del sulfonato 2-(2-quinolil)-1,3-indadiona, consiste principalmente de las sales sódicas de mezclas de sulfonatos, monosulfonatos, tiosulfonatos como agentes colorantes con la presencia de cloruro de sodio y/o sulfato de sodio como sustancias no colorantes.

Resultado de imagen para Alimentos que contienen colorante E E104 (Amarillo de quinolina)
Ilustración 6 Estructura Química del Amarillo de Quinolina. Fuente: http://hablemosclaro.org/ingrepedia/amarillo-de-quinolina/

El amarillo de quinolina es empleado en la industria de alimentos como agente colorante, lastimosamente estudios han demostrado riesgos para la salud ante este aditamento alimenticio, a tal punto que según menciona (Pliskin, 2017) ha sido prohibido en muchos países tales como: Estados Unidos, Australia, Finlandia, Noruega y Austria; y en muchos se ha sugerido evitar su consumo. Esta sustancia es soluble en agua y dentro de las industrias de mayor tendencia a su utilización son las de fabricación de fideos y pastas; así como también en marcas como HARIBO que fabrican dulces y gomas del tipo masticable (gomitas) y con respecto a las bebidas lácteas en diversas cremas y postres, de las bebidas más populares en las que se puede ubicar dicho colorante está la gaseosa FANTA de Coca Cola Spring Company. Entre los daños para salud más notables están la hipersensibilidad a la sustancia o su intolerancia (Pliskin, 2017).

 

Aplicaciones de las pirazinas en los alimentos

 

La pirazina es un compuesto orgánico aromático heterocíclico. Su molécula presenta una simetría con grupo puntual D2h. Es un sólido de apariencia cerosa o cristalina. Presenta un fuerte olor similar al de la piridina. Es volátil con vapor de agua (UDEA, 2010).

Imagen relacionada
Ilustración 7 Estructura de la Pirazina.

Las pirazinas normalmente son factores de control en la industria vinícola y su síntesis ha evolucionado de la siguiente manera:

  • Síntesis de Staedel-Rugheimer (1876): Reacción de 2-cloroacetofenona con amoniaco para obtener la 2- aminocetona, la cual se condensa para formar la dihidropirazidina, y se forma la aromaticidad por oxidación posterior.
  • Síntesis de Gutknecht (1879): Ciclización de α-aminocetonas, producidas por reducción de isonitroso cetonas, para obtenerse las dihidropirazinas. Estas son posteriormente deshidrogenadas con óxido de mercurio (I) o sulfato de cobre (II), e inclusive con oxígeno atmosférico: 34
  • Síntesis de Gastaldi (1921): Se requiere de (4-N-sulfonilamino)cianometil cetonas.

Imagen relacionada
Ilustración 8 Pirazinas en Alimentos Fuente: https://lanocheenvino.com/2017/03/28/que-son-las-pirazinas/

Las pirazinas actúan como descriptores aromáticos en ciertos alimentos como el pimiento verde, las mismas se distribuyen en diferentes alimentos y verduras (espárragos y arvejas), por otro lado, las pirazinas forman parte de las uvas blancas y tintas mismas que confieren notas olfativas al vino así lo afirma (Cabeller, 2018).

Resultado de imagen para vino blanco
Ilustración 9 Uvas Blancas (verdes) para la elaboración de vino blanco. Fuente: https://lanocheenvino.com/2017/03/28/que-son-las-pirazinas/

Según la autora la concentración de pirazinas disminuye a medida que madura la uva por lo que en ocasiones los niveles altos de esta molécula en el vino es asociado con la falta de maduración de las uvas; a su vez de encontrarse en este estado (muy concentrado) es indicador negativo en la calidad del vino.

Resultado de imagen para pirazinas
Ilustración 10 Pirazinas comunes en las uvas para vinos. Fuente: http://vinospasini.blogspot.com/2012/07/aromas-verdes-del-vino.html

Por esta razón la necesidad de exhaustivos controles en el viñedo antes y después de la cosecha en este proceso entra en juego el profesionalismo y experiencia del enólogo por encima del mismo agricultor, la dificultad radica en el momento de la cosecha, puesto que la madurez de la uva es un fenómeno asincrónico puesto que maduran en diferentes tiempos los racimos de una misma cepa, cada unidad (granos) del racimo madura de forma independiente y la pulpa, piel y semilla de los granos también es asincrónica razón por la cual es dificultoso determinar el momento óptimo de la cosecha.

Por los motivos expuestos en el párrafo anterior el momento de la cosecha es crucial para condicionar las características sensoriales del vino; factores externos como el clima, la temperatura ambiental durante el periodo de la maduración, agentes químicos presentes en insecticidas son principalmente los influencian de forma directa la concentración de pirazinas en las uvas. Por ejemplo entorno a la temperatura tenemos la siguiente relación: Las temperaturas bajas durante la maduración inducen a producir uvas con nieles mayores de pirazinas (maduración rápida incompleta, no natural o acelerada), las temperaturas cálidas a su vez generan uvas con menores niveles de pirazinas acompañado de tiempos óptimos de maduración.

Resultado de imagen para grados brix

Ilustración 11 El uso de polarímetros es indispensable para la obtención de índices de refracción que permitan identificar la presencia de compuestos como la pirazina. Fuente: http://agriculturers.com/que-son-los-grados-brix/

Finalmente las técnicas de vinificación, menciona la autora, impactan también con la concentración de pirazinas en el producto final y entorno a su detección se considera bajo siempre y cuando existan de 2 a 8 ng/l para vinos blancos y de 2 a 16 ng/l en los tintos.

Presencia de la piridina en industria alimenticia

La piridina fue descubierta por Thomas Anderson en 1849 y su nombre proviene del vocablo griego Pyros que significa fuego, en efecto este líquido incoloro presenta una alta inflamabilidad y de forma natural puede identificarse como un aceite (incoloro) de olor desagradable al calentar huesos de animales, la forma natural más común de este compuesto es el NAD, vitaminas B3, B6, B12, etc; es allí donde radica su importancia en la industria alimenticia.

Resultado de imagen para piridina
Ilustración 12 Piridina, azabenceno o azina. Fuente: https://www.ecured.cu/Piridina

Su síntesis parte del alquitrán crudo y es utilizada como solvente en la producción de muchos productos, los más comunes en el sector alimenticio es la producción de condimentos y vitaminas utilizadas en suplementos alimenticios, así lo afirma (Seco, 2014), es importante mencionar que la forma pura de la piridina es mortal, cancerígena, capaz de producir infertilidad se la puede encontrar en especies vegetales como la Belladona (Atropa belladona).

Resultado de imagen para Atropa belladona
Ilustración 13 Ilustración Naturalista de la Belladona. 

De manera general la formación de piridina en los procesos industriales de los alimentos se asocia a toxicidad salvo los casos en los que se contribuya con el aroma y el sabor cuyos derivados no son tóxicos así lo afirma (Seco, 2014).

Muchos de los alimentos de consumo diario contienen aromatizantes como resultado de la adición de compuestos que contienen piridina y de forma análoga por la adición de productos naturales en el medio ambiente. Una de las formas más conocidas de esta sustancia como derivado es la PIRIDOXINA, esta sustancia es conocida comúnmente como Vitamina B6, nutriente esencial con propiedades beneficiosas para el metabolismo y sistema nervioso del cuerpo humano, estudios han demostrado que es capaz de estimular energéticamente a un individuo motivo por el cual es ingrediente principal en muchas suspensiones orales y jarabes para niños y demás suplementos alimenticios (B. Pavlov, 1970).

Resultado de imagen para PIRIDOXINA

Resultado de imagen para PIRIDOXINA

Ilustración 14 Piridoxina (Vitamina B6)

Entre los valores más importantes en (mg/100g de muestra) de esta importante vitamina en alimentos podemos mencionar la siguiente lista:

  • Pistachos: 1.7mg.
  • Hígado de pavo: 1.0mg.
  • Atún: 0.9mg.
  • Semillas de girasol: 0.8mg.
  • Sésamo: 0.8mg.
  • Salmón: 0.6mg.
  • Maíz: 0.6mg.
  • Avellanas: 0.6mg.
  • Carne roja: 0.5mg.
  • Lentejas: 0.5mg.
  • Duraznos: 0.5mg.
  • Plátanos: 0.3mg.

 

Incidencia del ácido benzoico en industria alimenticia

El ácido benzoico pertenece al extenso grupo de los compuestos aromáticos y es por sí mismo uno de los compuestos orgánicos más utilizados en la industria alimenticia. Su uso más común es como conservante alimenticio, de forma natural el ácido benzoico puede obtenerse de arándanos, ciruelas, canela, frambuesas, clavos de olor entre otros.

Resultado de imagen para acido benzoico
Ilustración 15 Estructura molecular del ácido benzoico.

Este compuestos tiene especial eficacia en alimentos del tipo ácido, la razón de su popularidad en la industria radica en su costo, puesto que no es elevado y resulta muy útil para controlar y frenar el aparecimiento y propagación de levaduras, bacterias (en casos muy específicos) y mohos (MILKSCI, 2003).

 

Sin embargo no todo es beneficio, uno de los principales problemas de este compuesto es su sabor astringente y de cierta forma desagradable, por otra parte presenta ciertos niveles de toxicidad, que aunque es relativamente baja pero mayor en comparación con otros conservantes, puede producir intolerancia a algunas personas, y por este motivo es que su control es muy importante.

Resultado de imagen para acido benzoico
Ilustración 16 El ácido benzoico en la industria de alimentos es identificado como aditivo-conservante E210.

El Conservante E210 (Ácido Benzoico) es utilizado principalmente en el continente europeo como conservante en bebidas refrescantes (gaseosas carbonatadas) como sucede en España así lo afirma (MILKSCI, 2003); entorno a la misma industria de bebidas es utilizado en la fabricación de zumos; productos lácteos utilizados en repostería y galletería así mismo en la elaboración de conservas de vegetales tales como tomates (Cherrys especialmente), pepinillos o pimiento envasados en grandes recipientes para uso de grandes cadenas de restaurantes de consumo masivo; crustáceos frescos o congelados y derivados de pescado; margarinas, salsas (especialmente en su forma de benzoato de sodio o potasio (E211 y E212 respectivamente) como es el caso de la salsa de tomate (MILKSCI, 2003).

Resultado de imagen para acido benzoico en alimentos
Ilustración 17 Ácido benzoico en los alimentos.

El mencionado conservante industrial se obtiene de al menos 3 formas diferentes en la industrial según menciona (Aditivos Alimentarios, 2016)

  • Oxidación de Naftaleno de anhídrido ftálico con óxido de Vanadio.
  • Oxidación de la mezcla de Tolueno y ácido nítrico.
  • Hidrólisis del clorobenceno.

De forma adicional este conservante está siendo empleado en la fabricación de gelatinas, humus, champiñones, miel, aceitunas, caviar, mermeladas, bebidas de malta y energizantes polos de helado, tortillas de trigo y patatas, frutas en almíbar, alimentos pre cocidos, licores y salsas picantes.

La OMS considera como aceptable una ingestión de hasta 5 mg por Kg de peso corporal y día. Con la actual legislación española esté límite se puede superar, especialmente en el caso de los niños. Otras legislaciones europeas son más restrictivas. En Francia sólo se autoriza su uso en derivados de pescado, mientras que en Italia y Portugal está prohibido su uso en refrescos. La tendencia actual es no obstante a utilizarlo cada vez menos sustituyéndolo por otros conservantes de sabor neutro y menos tóxico, como los sorbatos. El ácido benzoico no tiene efectos acumulativos, ni es mutágeno o carcinógeno (MILKSCI, 2003).

 

Incidencia del benzaldehído (C6H5CHO) en industria alimenticia

El benzaldehído (C6H5CHO), figura como un compuesto orgánico aromático perteneciente a los aldehídos y cetonas, y aunque el presente documento no tiene por finalidad centrarse en aldehídos y cetonas puesto que se abordará en la siguiente unidad de estudio, se considera al benzaldehído un compuesto aromático de alta importancia en la industria de alimentos. El benzaldehído es un compuesto químico que pertenece al extenso grupo de aldehídos aromatizantes, que consiste en un anillo de benceno con un sustituyente aldehído así lo afirma (Gavira Vallejo, 2015). A nivel organoléptico es un líquido incoloro con variaciones hasta tonalidades amarillas (dependerá de su pureza), se identifica por un olor frutal potente a cerezas y almendras amargas.

Resultado de imagen para Benzaldehído,
Ilustración 18 Benzaldehído, bencenal, fenilmetanal o aldehído benzoico.

En torno a sus propiedades químicas, el benzaldehído es ligeramente soluble en agua, miscible en alcohol y éter; se recomienda su almacenaje en envases cerrados en lugares frescos, ventilados y protegidos de la luz solar puesto que tiende a oxidarse rápidamente en presencia de aire por tanto es recomendable también su almacenaje en frascos ámbar.

Imagen relacionada
Ilustración 19  Semillas que contienen Benzaldehído de forma natural.

El método de obtención natural es desde las semillas de almendras, ciruelas, cerezas, duraznos, melocotones entre otros; estas semillas poseen cantidades significativas de amigdalinas [glucósido, molécula formada por una parte glucídica y una parte no glucídica (C20H27NO11)], cuando las amigdalinas se rompen por catálisis enzimática o por hidrólisis se obtienen dos tipos de azucares, un cianuro y un benzaldehído formando así benzaldehído de forma natural (Gavira Vallejo, 2015).

Según el autor a nivel industrial, el benzaldehído también puede obtenerse, entre otros métodos, a través de la oxidación del tolueno [hidrocarburo aromático (C6H5CH3)]

En la industria alimenticia, el benzaldehído se usa como aditivo alimentario, entendiendo un aditivo como toda sustancia o mezcla que no aporta valor nutricional y que es agregada en la mínima cantidad posible, para crear, modificar mantener o intensificar las propiedades organolépticas y sus condiciones de conservación.

Todos los productos empleados como aditivos alimentarios están altamente regulados para que su consumo no sea perjudicial para el ser humano.

Sea cual sea su origen, el benzaldehído, es un producto considerado peligroso por el CLP (clasificación, etiqueta y envasado de productos químicos), con la siguiente clasificación, ya que puede provocar reacciones alérgicas en la piel y reacciones en el hígado (no llega a categoría de mortal, mutagénico o cancerígeno), en la industria de alimentos se identifican las siguientes 4 especies numeradas:

  • H302: Nocivo en caso de ingestión
  • H319: Lesiones oculares graves o irritación ocular
  • H332: Nocivo en caso de inhalación
  • H335: Toxicidad específica en determinados órganos.

Y a pesar de ser considero peligroso, forma parte de determinado alimentos, como las piruletas.

Imagen relacionada
Ilustración 20 Piruletas de caramelo.

Uno de los organismos encargados de esta regulación es la FEMA (Flavors and Extract Manufacturing Assosiation), la cual clasifica el benzaldehído con el número FEMA 2127. Según esta asociación, el aldehído puede ser empleado para dar aroma a almendras amargas, azúcar quemado, cereza, pimientos asados y malta.

Para asegurarse que el consumo del benzaldehído no es peligroso para la salud humana, han establecido unos límites de ppm que los productos alimentarios finales no pueden sobrepasar A continuación la tabla de concentraciones límites en ppm para alimentos que contengan benzaldehído con la finalidad de asegurarse que el consumo del benzaldehído no es peligroso para la salud humana (Gavira Vallejo, 2015).

TIPOLOGÍA DE PRODUCTO PPM MÁXIMO AUTORIZADO
Bebidas no alcohólicas 36 ppm
Helados 42 ppm
Caramelos 120 ppm
Productos horneados 110 ppm
Gelatinas y pasteles 160 ppm
Chicles 840 ppm
Bebidas alcohólicas 60 ppm

 

Aplicación del estireno y poliestireno en el envasado de los alimentos

 

El poliestireno es un plástico versátil usado para fabricar una amplia variedad de productos de consumo. Se sabe que cerca del 50-60% de estireno producido a nivel industrial está destinado a la fabricación de envases de poliestireno para comestibles (Roque Marroquín, 2016).

Dado que es un plástico duro y sólido, se usa frecuentemente en productos que requieren transparencia, tales como envases de alimentos y equipos de laboratorio.

Cuando se combina con varios colorantes, aditivos y otros plásticos, el poliestireno se usa para hacer electrodomésticos, electrónicos, repuestos automotrices, juguetes, macetas y equipamiento para jardines, entre otros a su vez el poliestireno en espuma puede tener más de 95 % de aire.

(Roque Marroquín, 2016) Menciona en su artículo que dados los efectos nocivos para la salud del estireno reportados por el Programa Nacional de Toxicología y su reciente clasificación como “agente carcinógeno racionalmente anticipado” y conocido la factibilidad de la migración de monómeros de estireno a partir de los envases de alimentos hacia su contenido, se considera importante la determinación de esta sustancia como advertencia y prevención de futuros perjuicios contra la salud humana.

Imagen relacionada
Ilustración 21 Bandejillas fabricadas con poliestireno para el envasado de alimentos.

El envasado para el servicio de alimentos de poliestireno suele ser mejor aislante, mantiene los alimentos frescos por más tiempo y cuesta menos que las otras alternativas (Chemical Safety Facts, 2010).

Resultado de imagen para sintesis del poliestireno
Ilustración 22 Polimerización del estireno.

Existen 2 clases de poliestirenos utilizados en industrias varias estos son:

  • poliestireno expandido (EPS)
  • poliestireno extruido (XPS)

Con respecto al estireno se puede decir que es la molécula de partida del polímero antes mencionado, el estireno (C8H8) también conocido como VINILBENCENO etenilbenceno, cinameno o feniletileno. Se utiliza en la fabricación de una amplia gama de polímeros (como el poliestireno) y elastómeros copolímeros, como el caucho de butadieno-estireno o el acrilonitrilo butadieno-estireno (ABS), que se obtienen mediante la copolimerización del estireno con 1,3-butadieno y acrilonitrilo.

El estireno se utiliza ampliamente en la producción de plásticos transparentes y se ve relacionado con la industria alimenticia porque se considera como contaminante de diferentes alimentos, como frutas, hortalizas, nueces, bebidas y carnes. (Chemical Safety Facts, 2010)

DISCUSIONES Y CONCLUSIONES

Como se ha demostrado los compuestos aromáticos tienen una amplia incidencia en la industria alimenticia, sea por estar presentes en la fabricación de múltiples alimentos así como en los procesos de envasado; la identificación de los mismos permite tener una mayor prevención entorno al consumo de alimentos que pueden estar relacionados a compuestos aromáticos tóxicos o persistentes y en lo que respecta a la formación académica del profesional químico de alimentos permite conocer de forma efectiva las múltiples fuentes de contaminación de alimentos lo que en definitiva aporta en el mejoramiento y aseguramiento de la calidad dentro de la industria garantizando alimentos inocuos para el consumo humano, por otra parte es recomendable la socialización tanto de la presencia, utilidad, beneficios y riesgos de los diversos compuestos aromáticos y derivados del benceno con la sociedad misma que se relaciona directamente con el patrón de consumo de los alimentos mencionados en el presente informe investigativo.

Bibliografía

Aditivos Alimentarios. (01 de 2016). Aditivos Alimentarios . Obtenido de Ácido Benzoico E210: https://www.aditivos-alimentarios.com/2016/01/E210.html

Pavlov, A. T. (1970). Curso de Química Orgánica. En A. T. B. Pavlov, Traducido por Victoria Valdéz Mendoza. (pág. 589). Moscú: Editorial MIR. . Obtenido de Curso de Química Orgánica. Traducido por Victoria Valdéz Mendoza. Editorial MIR. Moscú. 1970 – Pág. 589

Badui, S. (2013). Hablemos Claro: Amarillo de Quinolina. Obtenido de Química de los Alimentos: http://hablemosclaro.org/ingrepedia/amarillo-de-quinolina/#1502293691178-e5ac3059-a00b

Barceló, L., & López de Alda, M. J. (2010). El Agua Potable.com. Obtenido de Contaminación y calidad química del agua: El problema de los contaminantes emergentes : http://elaguapotable.com/Contaminaci%C3%B3n%20y%20calidad%20qu%C3%ADm%20del%20agua-los%20contaminantes%20emergentes.pdf

Cabeller, C. (28 de Marzo de 2018). La Noche en Vino. Obtenido de ¿Qué son las Pirazinas?: https://lanocheenvino.com/2017/03/28/que-son-las-pirazinas/

Chemical Safety Facts. (2010). Chemical Safety Facts. Obtenido de Poliestireno. : https://www.chemicalsafetyfacts.org/es/poliestireno/

Claramount, R. M., Cornago, M., Esteban Santos, S., Farrán Morales, M., Pérez Torralba , M., & Sanz del Castillo, D. (2013). Principales Compuestos Químicos. Madrid: Universidad Nacional de Educación a Distancia.

Dep. Fquím. UNAM. (14 de 03 de 2015). depa.fquim.unam.mx. Obtenido de Quinolinas e isoquinolinas: http://depa.fquim.unam.mx/amyd/archivero/06QuinolinaseIsoquinolinas_24315.pdf

Documentacion Ideam. (2003). Documentacion Ideam. Obtenido de FICHA TÉCNICA DEL BENCENO: http://documentacion.ideam.gov.co/openbiblio/bvirtual/018903/Links/Guia7.pdf

Echeverry, N. (5 de Agosto de 2016). BENCENO EN LOS ALIMENTOS. Obtenido de Prezi: https://prezi.com/8lehb7sm4cgh/benceno-en-los-alimentos/

Gavira Vallejo, J. M. (23 de Diciembre de 2015). TRIPLENLACE. Obtenido de EL BENZALDEHIDO EN LA INDUSTRIA ALIMENTARIA: https://triplenlace.com/2015/12/23/usos-industriales-del-benzaldehido/

MILKSCI. (2003). MILKSCI. Obtenido de UNIZAR: http://milksci.unizar.es/adit/conser.html

Pliskin. (11 de 06 de 2017). ImparaTudos. Obtenido de E104 Quinolina amarilla : http://imparatudos.com/article/e104-quinolina-amarilla

Roque Marroquín, M. S. (2016). ALICIA. Obtenido de El estireno en envases de alimentos: http://alicia.concytec.gob.pe/vufind/Record/UNIJ_522fb2a0e25c7cf78d3b95d03f8ef4d1

Seco, M. G. (6 de Octubre de 2014). UNAM. Obtenido de Piridinas en Alimentos: http://depa.fquim.unam.mx/amyd/archivero/PIRIDINAS_28867.pdf

Secretaría de Agricultura y Recursos Hidráulicos. (1988). COLPOS. Obtenido de ESPECIAS Y CONDIMENTOS-DETERMINACIÓN DE: http://www.colpos.mx/bancodenormas/nmexicanas/NMX-FF-064-1988.PDF

UDEA. (2010). QuimicaOrganica III. Obtenido de Aromaticidad: http://docencia.udea.edu.co/cen/QuimicaOrganicaIII/paginas/aromaticidad/sesion18/heteroaromaticidad.html

Wade, L. G. (2011). Química Orgánica: Capítulo 16 Compuestos Aromáticos. México : Mc. Grow Hill.

Si te ha gustado este artículo o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

El enigma de los murciélagos en la ciencia

Alejandro Aguirre F. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

Hasta principios del siglo pasado no se conocía en lo absoluto que los murciélagos pudiesen transmitir la rabia y más allá de estigmatizar a estas bellas criaturas, considero muy importante socializar y difundir sobre el impacto que pueden tener en la salud humana, de manera particular en zonas rurales de las que se conoce, son hogar de diversas especies de murciélagos. Los primeros casos de rabia transmitida por murciélagos se observaron en zonas sureñas de Brasil a la par se fueron dando a conocer múltiples casos en América Central como México; en Ecuador e incluso Estados Unidos así lo menciona Antonio Molina en su artículo: “Los enigmáticos murciélagos” publicado en la revista AMERICA CLINICA Vol. XLII Núm. 6 (Junio de 1963).

Imagen relacionada

Resultado de imagen para murciélagos infografia

En muchos países del mundo la incidencia de  transmisión de rabia por murciélagos es un verdadero problema de salud pública en especial, en países del continente africano, el del mar Caribe, así como diversas localidades ubicadas en las cuencas del río Amazonas, en el caso específico de México existen casos registrados en las selvas de la península de Yucatán y Chiapas. En el caso concreto del Ecuador aunque la incidencia total de los casos es un tema pendiente para las autoridades de salud, se sabe bien que en la zona litoral, principalmente en localidades ubicadas cerca de manglares como lo son las provincias de Esmeraldas (hasta la frontera con Colombia) y Manabí tienen una amplia posibilidad de registrar casos puesto que en dichos manglares e incluso residencias abandonadas habitan especies de murciélagos transmisores de la rabia.

Resultado de imagen para murciélagos infografia

Sin embargo, y a juicio de Molina es imposible predecir si actualmente la transmisión de rabia llegue a representar un riesgo elevado para la sanidad pública, puesto que hasta ahora no ha sido necesario realizar campañas de exterminio de estos singulares mamíferos, pero sí debe tomarse en cuenta que la mordedura puede ser peligrosa, por lo que se recomienda que los habitantes de las comunidades en donde se han dado, avistamientos o se conozca en concreto su existencia, eviten contacto con los mismos ya que podrían poner en riesgo su salud, reiterando nuevamente que el asunto no es  malignizar o estereotipar a la imagen del murciélago, sino generar conciencia y respeto por las especies que habitan y comparten ecosistemas con nosotros, hay que recordar que los invasores de sus hábitats normalmente somos los seres humanos y que el papel de los murciélagos es fundamental en los ecosistemas, puesto que son los responsables del control de insectos así como también de otras especies de animales y plantas.

Imagen relacionada

Éstos animalitos que para muchos podrían parecer desagradables o a su vez tiernos, no dejan de ser fascinantes y enigmáticos, por siglos su imagen ha sido fuente de superstición y como es sabido, resulta imposible no relacionarlos con Drácula relato del famoso escritor irlandés Bram Stoker, novela publicada en 1897 que resultó ser un clásico de la literatura en el siglo XIX,  y que en lo que a mí respecta como escritor considero que fue un primer abordaje del papel que jugaba la mujer en la época victoriana; entorno a ese personaje (el vampiro) refiere a la tradición literaria un sin número de hechos fantásticos; en el pasado (nos referimos en especial a la Edad Media) se les atribuía poderes sobrenaturales y por esa razón, en más de una ocasión, y de forma irracional, las comunidades se han dedicado a su caza de forma ilegal reduciendo enormemente las poblaciones de murciélagos en estado libre, curiosamente las enfermedades transmitidas por mosquitos y otros insectos aumentaban en zonas en las que se practicaba la caza de estos mamíferos alados.

Imagen relacionada

El orden de los quirópteros al que los murciélagos pertenecen comprende en sí unas 2000 especies, habitan en todo el mundo y como se mencionó anteriormente pueden resultar muy útiles por consumir cantidades enormes de insectos, el único murciélago digno de ser llamado vampiro, por alimentarse de sangre es el americano V. Désmodo (Desmodus rotundus) o vampiro propiamente dicho, especie que inspirara los relatos del Conde Drácula. En los últimos años el murciélago ha sido foco de atención en otro sentido, y ese sentido es la robótica, actualmente diversos desarrolladores tratan de imitar en lo posible la sincronía de vuelo del murciélago y no solo el vuelo sino también su localización por radar, los murciélagos en su mayoría son seres nocturnos, que al tener una visión limitada ,la naturaleza los ha provisto de un sentido de ubicación por efecto magnético y ultrasonido, al ser capaces de decodificar dichas señales magnéticas producidas por la tierra y el sonido extra agudo que son capaces de captar con sus desarrollados oídos, los convierten en grandes cazadores de la noche.

La biotecnología ve en la imitación de estas virtudes una gran puerta de oportunidades para el servicio del hombre, dando una luz de esperanza en el desarrollo de equipos capaces de ayudar a personas no videntes e incluso con deficiencia de audición. Es evidente por tanto que tienen propiedades especiales con respecto a conducta, anatomía y fisiología al ser capaces de volar en plena oscuridad, evitando obstáculos en su recorrido, sin tropezar entre ellos, es una habilidad que los murciélagos no pierden aun cuando estén cegados, factor que no solo inspira a la literatura sino que da pautas para el desarrollo tecnológico que tiende a imitar a la sabia naturaleza.

A continuación un interesante clip que muestra un  robot que imita las habilidades de vuelo del murciélago,  Festo – BionicFlyingFox (English/Deutsch).

En 1920 el fisiólogo inglés Hartridge propuso por primera vez que los murciélagos capturaban a sus presas por medio del sonido, su hipótesis menciona que os murciélagos emiten frecuencias de onda de sonido muy alta, las cuales le capacitan volar con entera seguridad puesto que los ecos que retumban en las superficies le permiten trazar un verdadero mapa mental de los obstáculos presentados al frente cual si se tratase de un proyectil teledirigido.

Esquema de la ecolocalización.
Emisión de ultrasonidos (en rojo) que alcanzan el objeto (en azul) y son reflejados en forma de eco (en verde), volviendo al murciélago, que calcula la distancia (r) en base al tiempo transcurrido entre la emisión y la recepción. La dirección la deducen por la diferencia entre la llegada del eco al oído derecho y al izquierdo.

La frecuencia de los sonidos es de unas 50.000 vibraciones por cada segundo transcurrido, esto se contrasta según menciona Molina, con las 20.000 directamente perceptibles por el ser humano.

El murciélago gigante Vampyrum spectrum abunda en América Central y con alas extendidas  puede llegar a medir 75 cm de longitud; mediante experimentación se ha determinado que puede alcanzar asombrosas velocidades a través de una extensa hilera de alambres verticales y perseguir con exactitud a sus víctimas en completa oscuridad, a su vez al tener los oídos obstruidos el animal queda desorientado incluso  plena luz, así lo afirma Antonio Molina, 1963.

Resultado de imagen para Vampyrum Spectrum

Conforme los murciélagos se acercan a los obstáculos emiten sonidos ultrasónicos en rápida sucesión de unos 30 gritos por segundo. Los sonidos orientadores se producen en su laringe, que según ha determinado la anatomía animal posee más desarrollados sus músculos intrínsecos especialmente los cricotiroideos; con el mismo fin de percibir las señales de alta frecuencia, la naturaleza les ha provisto de un aparato de audición especial.

Para finalizar citaré un comentario acerca de la materia:

“Si los biólogos habrían comprendido una década antes los métodos por los cuales los murciélagos se orientan, ¿no se habría dado más pronto la invención del radar? y ¿no podríamos estar en condiciones de confeccionar los métodos acústicos de auto-orientación para ciegos?” Griffin.(Scientific American).

Comprender la naturaleza nos llevará sin duda a satisfacer y complacer todas las necesidades existentes entorno a la salud, la ciencia y la tecnología; comprenderla es sin duda una tarea muy complicada, más cuando por azar del destino una pequeña rendija entreabierta nos permite conocer tan solo un poco de la misma, estoy seguro de que ese pequeño haz  generará bienestar por generaciones; sin embargo y si continuamos atentando contra ella, es cuestión de tiempo para cuando la naturaleza nos considere innecesarios, por ello mis estimados lectores comprometámonos día a día a cuidar este nuestro único hogar y a todo cuanto habita en él.

REFERENCIAS

Antonio Molina. (Junio de 1963) “LOS ENIGMÁTICOS MURCIÉLAGOS”. América Clínica. Vol XLII. Núm. 6. pp. 302-304.

Resultado de imagen para gif murciélago

Si te ha gustado este artículo o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Precursores de la Medicina Latinoamericana. (Parte IV. Hipólito Unanue)

13/10/2018   22:20pm

(1) Alejandro Aguirre F.

(1) Universidad Central del Ecuador-Facultad de Ciencias Químicas-Química de Alimentos.

 

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

     El turno en esta cuarta entrega es para la hermana República de Perú y su más grande protomédico, el Dr. Hipólito Unanue; este personaje que participó en el fin de la etapa colonial y vio los albores de la nueva república fue médico, profesor de medicina, asesor de  virreyes y ministro de estado,  ya en 2018, se cumple 263 años de su nacimiento. A continuación les dejo un bonito reportaje sobre este magnífico profesional de la salud producido por TV Perú: Sucedió en el Perú conducido por Norma Martínez y que en parte soporta éste artículo, espero que lo disfruten.

HIPÓLITO UNANUE Y PAVÓN (1755-1833)

 

Resultado de imagen para hipolito unanueHipólito Unanue y Pavón es sin duda el mayor referente de la Ilustración Peruana, conocer sobre este personaje sin duda ha sido uno de los hechos más enriquecedores en lo que como escritor  me concierne y sin duda me ha permitido entender de mejor manera lo que significa Perú para Latinoamérica y el mundo.

Nacido un 13 de Agosto de 1755 en Arica, territorio sureño del Perú entre los años 1823-1884 y que actualmente pertenece a la soberanía territorial de Chile. En ese período de tiempo Arica como tal era un Corregimiento del Virreinato del Perú. Sus padres, Don Miguel Antonio Unanue, (vasco) y Doña Manuela Pavón y Salgado (ariqueña) ambos descendientes de españoles peninsulares, sin embargo sus padres atravesaban grandes dificultades económicas y prácticamente se encontraban quebrados.

Unanue es un personaje polifacético, fue médico, naturalista, botánico, meteorólogo, agricultor,catedrático universitario, político y escritor; por todas esas cualidades es que el Dr. Unanue es sin duda el referente de la inteligencia del Perú puesto que perteneció a la denominada “ciudad Letrada” que era un grupo de ilustrados al servicio del virrey y por tanto al servicio de la corona española. Dedicó no menos de 40 años al servicio de Perú  y sin duda es uno de los organizadores de la naciente república posterior a su independencia, aunque no haya sido tan de su agrado el independizarse de España.

Hipólito Unanue es considerado como un pionero en la medicina peruana así como precursor de la independencia del país criollo. Sus primeros estudios los realizó de forma privada debido a que su familia tenia relaciones con el clero por poseer familiares pertenecientes al mundo sacerdotal y son precisamente dichas relaciones que lo lleva a viajar hasta Arequipa  donde ingresa al Seminario de San Jerónimo donde inicialmente iba a convertirse en sacerdote, allí aprendió sobre humanidades, filosofía y principios de jurisprudencia, sin embargo no se ve conforme con dicha formación y por alguna razón la cual se desconoce decide estudiar medicina viajando en 1777 hasta Lima donde  realizó sus estudios en la Real y Pontificia Universidad de San Marcos, donde cursó una formación médica muy rígida y teórica metodologías propias de la época, graduándose con todo éxito en 1785 como bachiller en medicina, de inmediato realizó sus practicas en hospitales hasta que en dos años, en 1786-1787 logra conseguir su licenciatura y doctorado.

Resultado de imagen para Real y Pontificia Universidad de San Marcos
Pontificia Universidad de San Marcos

Gracias a su gran intelecto, carisma y don de gentes Unanue valiéndose de algunas relaciones familiares logra vincularse con altas élites aristocráticas asentadas en la ciudad de los Virreyes. Este hecho garantizará después mucho de su éxito profesional y económico. Su principal inclinación vocacional fue la docencia labor que realizó de forma pública y privada, es así que en 1789 gana en concurso de mérito y oposición, la cátedra de Anatomía misma que elevaría su estatus como docentes pesar de que dicha cátedra en aquel entonces no era muy promisoria e incluso era rehuida entre los mismos catedráticos. Unanue siempre apreció el valor del trabajo y aprovechando sus conocimientos se  puso al servicio de la noble familia Landáburu como preceptor o maestro privado de la casa de  Agustín de Landáburu, dicha familia figuraba como una de las más ricas de la capital por sus múltiples haciendas, curiosamente y a posteriori Unanue por su labor fue considerado como heredero de la familia terminando en su poder una hacienda en Cañete donde dedicara mucho de su tiempo a la escritura.

Resultado de imagen para Virrey Abascal
Virrey José Fernando de Abascal

Dicha herencia lo catapultaría aun mas hacia las élites limeñas acercándolo incluso al virrey, dicho ascendiente adquirido sobre el propio Virrey Abascal, lo puso al servicio de la Universidad peruana, la medicina como tal y el pueblo al que siempre vio como mandante. Con el apoyo del Virrey Abascal fundó en Noviembre de 1792 el Anfiteatro Anatómico en el Hospital de San Andrés y es desde allí donde iniciaría con la ardua labor de reformar la educación medica dotando al anfiteatro de cadáveres, aspecto fundamental para el estudio de la anatomía puesto que hasta aquel entonces la rama de la medicina era de carácter estático y se veía limitado al estudio teórico de la misma, hecho que en la actualidad podría parecer desatinado. En 1807 Unanue con todo merecimiento fue investido como la alta dignidad de Protomédico del Virreinato, ejerciendo funciones similares a las que hoy en día las tomaría el Ministro de Salud o un cuerpo colegiado de medicina.

En 1808 pone en funcionamiento (en condiciones precarias puesto que aun no se hallaba terminado) el Real Colegio de  Medicina y Cirugía de San Fernando, que queda totalmente inaugurado en 1811, dicho colegio pasaría en el futuro a convertirse en la Facultad  y escuela de medicina por Cayetano Heredia quien siguiera sus pasos como alumno para continuar con la transformación de la medicina hacia la segunda mitad del siglo XIX.

CLASE DE ANATOMÍA EN SAN FERNANDO, 1982 . Tomado de: http://sanfernando80peru.blogspot.com/2005/10/clase-de-anatomia-en-san-fernando-1982.html

Unanue sin duda infundió en sus alumnos su espíritu de investigación y originalidad, la búsqueda de lo peculiar al propio medio ambiente.  El antecedente radica en su obra científica más importante: “OBSERVACIONES SOBRE EL CLIMA DE LIMA Y SUS INFLUENCIAS EN LOS SERES ORGANIZADOS EN ESPECIAL EL HOMBRE” (1806) obra científica que se convierte en el primer libro de medicina peruana publicada en el exterior y donde demuestra sin duda sus conocimientos sobre la salud, matemática, estadística y su formación como cosmógrafo, biólogo y médico investigador.

Resultado de imagen para "OBSERVACIONES SOBRE EL CLIMA DE LIMA Y SUS INFLUENCIAS EN LOS SERES ORGANIZADOS EN ESPECIAL EL HOMBRE"

La obra se considera como  un anticipo a lo que en la actualidad es parte y sujeto de estudio de la ecología colocando de frente la hipótesis de ciertos europeos que ponían en manifiesto sobre la inferioridad de la naturaleza americana. Unanue  confronta estas consideraciones postulando el desajuste al medio ambiente como causa de la fisiopatología de ciertas afecciones considerando factores como la humedad o la temperatura como variantes de estado para el análisis de las patologías clínicas de la época, en su obra se habla de forma detallada sobre la propagación de las enfermedades y creando particularidades según el clima que soportan las poblaciones en general, por ejemplo, cita a Lima como una ciudad cuya particularidad infecciosa son las enfermedades respiratorias debido a la humedad del clima y para probar dichas hipótesis decide estudiar la geología y climas de la región limeña, la influencia de ésta sobre la vegetación, los animales y el ser humano, la calidad del agua y su influencia sobre la salud de los seres vivos y así mismo propone precauciones a tomar por dichas variantes climáticas. Su obra a juicio justo de los historiadores de la medicina peruana, es la obra más notable que este campo haya producido en Perú, en el siglo XIX.

Resultado de imagen para anfiteatro anatomico de lima

ACOTACIÓN DEL AUTOR:

Como se mencionó anteriormente el Dr. H. Unanue no solo destacó en la medicina, desempeño funciones como miembro y fundador del Mercurio Peruano y de la “Sociedad de Amantes del Perú”, hecho que  podría ser comparado como  un factor común con respecto a otro importante precursor de la medicina latinoamericana como lo es el ecuatoriano Eugenio de Santa Cruz y Espejo, mismo que se perfiló como médico y periodista en el periodo Colonial y  Gran Colombino en la República del Ecuador, lo curioso es que también participó en los procesos independentistas en Ecuador y a la vez editó fuertes críticas a la corona española desde un medio de comunicación (periódico) fundado por él mismo en Quito, que lo llamó como Primicias de la Cultura de Quito, Este hecho es muy importante porque se puede ver de forma notable como es que los ilustres médicos del cono sur, de una forma directa o indirecta, fueron parte la edificación de las nacientes repúblicas libres que hoy conforman la América Latina, no puede quedar fuera de esta consideración el mismo José Celestino Mutis  en cuyo campamento en Santa Fe de Bogotá se fueron fraguado por parte de sus miembros los procesos independentistas  de Colombia. Lo propio con el Dr. José María Vargas quien organizara la “Sociedad Médica” en Caracas – Venezuela participando activamente en la  “Sociedad de Amigos del País” cuya organización apoyo los procesos independentistas en el país llanero; estas son sin duda muestras fundamentales de la importancia de la educación y las sociedades letradas en los procesos independentistas latinoamericanos que en gran medida se vio apoyada en personajes ilustres de la ciencia de Esculapio.

Resultado de imagen para primicias de la cultura de quito

Resultado de imagen para EL MERCURIO PERUANO

La fundación del Colegio de Medicina le dio la rara oportunidad de poner en práctica sus renovadoras ideas como lo menciona (Naranjo P. 1978), dichas ideas consagran a Unanue como padre del “Cuadro Sinóptico” para el estudio de la cátedra de anatomía con lo que plantea uno de sus más revolucionarios conceptos que dice: “El objeto del Colegio es formar médicos útiles a la Salud Pública”…

principio que de apoco se ha ido olvidando, cegando a muchos galenos, la ambición de hacer de la ciencia de Esculapio, una fuente ilimitada de recursos económicos y “membretes” aristocráticos que no hacen más que lacerar el verdadero fin de la medicina, aunque irónicamente muchos médicos en la actualidad se hallan enfermos de una patología más compleja de superar y es el amor al dinero.

… No es pues el de formar simples profesionales “liberales” como era el concepto más común de la época, profesionales que se dediquen a “curar enfermos” y quizá a acumular fortuna. NO, definitivamente NO.

Unanue quiere en realidad que el médico sea por sobre todo, un luchador por la salud pública, temas que muchas veces criticó desde El Mercurio Peruano bajo el pseudónimo de ARISTIO.

Otra importante investigación de Unanue radicó en tratar de posicionar a la hoja de coca como una alternativa frente al consumo de café y té que comenzaba  a ganar terreno y empezaba a desplazar el consumo de chocolate, Unanue proponía en consumo de esta planta a manera de mate de Coca e incluso tuvo intenciones de exportar dicha bebida. él mencionaba la bebida era una importante fuente energizante con poderosos efectos médicos sobre los consumidores. Posteriormente incursionó también en la Geografía elaborando múltiples guías (5 ediciones) de la Guía eclesiástica y militar. Por todos esos conocimientos no era nada extraño que San Martín lo nombrara como ministro de la Cartera de Hacienda.

En 1814 fue nombrado como Diputado por Arequipa en la Corte de Cádiz. En Madrid el Rey Fernando VII lo nombra por su fama como Médico Honorario de la Real Cámara y le concede el título de Marques de Sol, título que Unanue tuvo la entereza de no aceptar. Ya de regreso Unanue no dejo de trabajar en diversos aspectos en beneficio de la salud pública por ejemplo, centró sus esfuerzos por mejorar la higiene de los pobladores con la finalidad de combatir enfermedades múltiples, propone la idea de crear ciudades y panteones para los muertos ya que existía y persistía la practica de enterrar a los muertos en templos católicos, mismos que consideró focos infecciosos, plagados de moscas y malos olores, ordena que las sepulturas se realicen a las afueras de las ciudades  con la finalidad  evitar contaminaciones y malos olores, centró sus esfuerzos en mejorar la enseñanza y propone la obligatoriedad de las vacunas disponibles de la época.

No obstante todas las vinculaciones con los Virreyes, la nobleza y la propia corona de España Unanue no dudo en entregarse a la noble causa de independencia y aunque la discusión sobre el modelo de gobierno democrático era algo en que Unanue no coincidía totalmente ya que proponía un tipo más monárquico de gobierno sin embargo, para dicho fin la independencia se volvía cada vez más necesaria. Formó parte del la Comisión diplomática que discutió con San Martín los problemas relacionados con el proceso de independencia y como lo mencionamos anteriormente San Martín después de nombrarlo como Ministro de Hacienda, Unanue desempeña el rol de Diputado y senador hasta que en 1825 el Congreso Constituyente le rinde homenaje declarándolo como “Benemérito de la patria en grado de eminente”. Un año después Simón Bolívar decide retirarse del Mando Supremo del Perú encargándose a Unanue quien lo desempeño con gran amor patriótico y desinterés, es con esa nobleza de espíritu que Bolívar escribe a  Unanue:

“EL PERÚ SERÁ JUSTO, SI CONSIDERA A UD. COMO SUS PRIMEROS BIENHECHORES”.

 FInalmente Unanue decide retirarse a su Hacienda  San Juan de Arona en San Luis de Cañete, donde su hijo edificara el Palacio Unanue en 1840. Enfermo, tuvo que soportar todavía el dolor de perder a su segunda esposa, Josefa de la Cuba. Él mismo, ya en sus días últimos, frecuentó a un vecino ilustre, el ex director supremo de Chile, Bernardo O’Higgins, dueño de la hacienda Montalván.

Falleció el 15 de julio de 1833, a los 78 años de edad, en la hacienda San Juan de Arona, a la que se había retirado. Hoy su figura representa al Médico Peruano, su personalidad polifacética y su vida ampliamente conocida a través de la historia debe ser el recuerdo eterno de la misión del medico del mundo en favor de los seres humanos y el planeta que generosamente lo aloja.

BIBLIOGRAFÍA

  • Naranjo Plutarco. (1978) Precursores de la Medicina Latinoamericana. Academia de Medicina del Ecuador. Editorial Universitaria. Quito-Ecuador.

 

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Usos y Aplicaciones de los Éteres, Epóxidos y sulfuros en la industria alimenticia

Autores:

Espinoza B. Lesly M. (1)

Jaramillo C. Ana L. (1)

Aguirre F. Alejandro A. (1)

(1) Facultad de Ciencias Químicas-Universidad Central del Ecuador- Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

INTRODUCCIÓN

     Los éteres, epóxidos y sulfuros son tres grandes grupos de compuestos que pueden estudiarse como si se tratara de una  sola familia por sus características físicas  y químicas en común. La característica más notable entre ellos es que sus grupos sustituyentes (R o Ar), se encuentran unidos por un heteroátomo; que en el caso de los éteres y epóxidos se trata del oxígeno, estos últimos los epóxidos, son éteres cíclicos diferenciándose así de los éteres comunes que se presentan como moléculas abiertas, por otro lado los sulfuros del tipo tioéteres presentan como heteroátomo al azufre que une los sustituyentes (R o Ar) entre sí; los sustituyentes R representan radicales alquilo mientras que los Ar representan radicales aromático o arilo (Carey F. , 1997). El presente trabajo de investigación pretende recopilar los usos y aplicaciones de éteres, epóxidos y sulfuros, entorno a la industria alimenticia y agroindustrial con la finalidad de fortalecer el estudio de los éteres, epóxidos y sulfuros temas comprendidos dentro de la primera unidad de la cátedra de Química Orgánica II de la carrera de Química de Alimentos.

DESARROLLO DE LA INVESTIGACIÓN

Aplicaciones de los éteres

     Los éteres no forman puentes de hidrógeno por lo tanto sus puntos de ebullición son bajos así lo manifiesta  (Armendaris, 2009), ésta característica permite que los éteres sean utilizados como disolventes de grasas y aceites; adicionalmente los éteres poseen una muy baja reactividad y uno de los usos más populares que se dio a uno de sus representantes más comunes, el éter dietílico , fue dentro de la medicina como anestésico sin embargo en la actualidad se ha determinado que la exposición prolongada puede ser tóxica para el ser humano conllevando a una toxicomanía denominada eteromanía (adicción al consumo de éter). A continuación, presentamos algunas investigaciones recientes para el potencial uso de los éteres en el campo alimenticio.

 

Diseño de emulsiones con éteres de celulosa para reemplazar la grasa en alimentos: estabilidad, estructura y digestión in vitro.

 

     En marzo del 2017 la tesista Berta Pons Vidal para la obtención de su título de Ciencia y tecnología de alimentos de la Universidad Politécnica de Valencia propone como opción para reducir la ingesta calórica que en consecuencia se relaciona directamente con el sobrepeso la reformulación de alimentos en base al diseño de emulsiones capaces de reemplazar la grasa convencional de alimentos de baja digestibilidad lipídica reduciendo así la cantidad de grasas absorbibles por organismo como por ejemplo cremas y mantecas de relleno de galletas entre otros.

Las pruebas desarrollaron emulsiones aceite/agua (O/W) utilizando como emulsionantes  los éteres de celulosa, metilcelulosa e hidroxipropil celulosa, la tesis manifiesta que se analizaron factores como la estabilidad, estructura y digestibilidad in vitro de las soluciones dando como resultado una baja digestibilidad lipídica de las emulsiones diseñadas aperturando la posibilidad de sustituir de esta manera parte de las grasas presentes en diversos alimentos manufacturados así lo menciona (Pons Vidal, 2017 ), para soportar esta información presentamos la reacción de esterificación para la formación de éteres de celulosa véase la ilustración 1.

Ilustración 1 Esterificación de la celulosa en éteres de celulosa, Tomado de: http://www.quimicoshalter.com/eteres-de-celulosa

 

Un estudio experimental de ácidos grasos poliinsaturados, provenientes de R. fruticosus, por éter etílico

 

     Por las mismas propiedades nombradas anteriormente los éteres actúan y son ampliamente utilizados como disolventes para la extracción de aceites, sea por sus puntos de ebullición bajos o por su capacidad baja reactividad; cualquiera sea la razón los éteres se relacionan con la industria alimenticia como medios ideales para la extracción de aceites alimenticios.

(Ortiz, García, & Chávez, 2018) mencionan al estado de Michoacán- México como potencial productor de zarzamora (mora), la producción de este fruto de forma normal no es tan eficiente debido a que es un fruto muy delicado por ende en el proceso de aseguramiento de la calidad se descartan muchos frutos que no cumplen las especificaciones causando pérdidas económicas al sector agroindustrial y de igual forma un desperdicio de alimento. Estos jóvenes proponen recuperar aceites esenciales de la zarzamora mediante extracción de estos por arrastre de vapor usando solventes conocidos como éter etílico y pentano.

Resultado de imagen para zarzamoras

Ilustración 2 Zarzamoras (moras) (Rubus fruticosus). Fuente: http://mamiverse.com/es/10-recetas-con-zarzamora-2-63942/

La propuesta pretende aprovechar los residuos de la fruta sometiéndolas a un proceso previo de secado, esta propuesta pretende reducir perdidas económicas en los aspectos de producción de la semilla ya que de esta forma se busca aprovechar la totalidad del fruto incluido aquel que se encuentre en malas condiciones para ser vendido fresco del cual se pretende recuperar aceites esenciales que pueden ser utilizados no solo en el campo alimenticio si no también en la cosmética.

Las semillas se sometieron a extracción lipídica mediante Soxhlet recuperando de esta manera el aceite, se determinó por tanto que la zarzamora es fuente de ácidos grasos presentes en sus semillas del tipo C:18 poliinsaturados como son el ácido linoleico y linolénico, sin embargo considerando la cantidad de agua que presenta el fruto el rendimiento de extracción con éter etílico fue del 15.18% y con pentano del 12.40%; el estudio propone mayor investigación para la determinación de mejores solventes o métodos como el microonda, sin embargo de manera general es una propuesta que busca frenar el desperdicio de recursos en producción que puede acogerse en Ecuador puesto que también es ampliamente un gran productor de moras principalmente en la provincia de Tungurahua que en la actualidad presenta aproximadamente 840 Ha del cultivo, le siguen Cotopaxi con 430 Ha, Pichincha 220 Ha y Azuay con 50 Ha de producción del cotizado fruto de distintas variedades según lo afirma (EL COMERCIO, 2011) de las cuales se podría recuperar los ácidos antes mencionados reduciendo así las perdidas innecesarias de materia prima.

 

Aplicación de la Monensina sódica en la industria alimenticia

Resultado de imagen para Charles Pedersen

Ilustración 3 Charles Pedersen 1967.

ssssdsdf

Ilustración 4 monensina sódica, en amarillo el ión Na+.  (Carey & Giuliano, 2006)

     La Monensina sódica está clasificada dentro del grupo de los éteres corona, aunque en su estructura tienda a parecerse más a un epóxido. Algunos autores clasifican a este compuesto como un complejo de coordinación cuando ha pasado de Monensina a Monensina sódica. En el campo de los éteres corona se clasifica como un podando así lo menciona (Grupo de polímeros (Polymer Research Group), 2011).

Su descubrimiento se remonta a 1967 de la mano del Nobel de Química, Charles Pedersen, quien entonces siendo empleado de DuPont descubre un método sencillo para sintetizar un éter corona con la esperanza de desarrollar un agente quelante de cationes divalentes como puede ser el Ca2+, sin embargo y tras la experimentación quedó sorprendido al aislar un complejo como subproducto fuertemente complejado con iones potasio (K+) en 16-corona-4.

Posteriormente y con la finalidad de no trabajar con un elemento tan reactivo en agua como los es el potasio realiza la misma experimentación para la obtención de un derivado con sodio (Na+) obteniendo así la monensina de sodio; misma que dispone sus grupos alquilo hacia el exterior de complejo y los oxígenos polares se encuentran hacia el interior en estructura se asemeja a los hidrocarburos, esta estructura le permite llevar al ion sodio a través de la membrana celular para fines médicos veterinarios en la agro industria (Carey & Giuliano, 2006). A continuación, se puede observar en la ilustración 4 la estructura molecular monensina antes y después de formar el complejo.

Mecanismo de acción de la monensina

     La monensina posee un carácter ionóforo poliéter y es producto natural de la fermentación de la bacteria Streptomyces cinnamonensis. Los ionóforos pueden alterar el potencial de membrana mediante la conducción de iones a través de una membrana lipídica en ausencia de un poro proteínico, y por lo tanto tienen propiedades citotóxicas (Pisa Agropecuaria, 2015).

Resultado de imagen para Streptomyces cinnamonensis

Ilustración 5 Streptomyces cinnamonensis. Fuente: https://es.wikipedia.org/wiki/Streptomyces

Es una molécula indicada para utilizarse en ganado bovino cárnico y lechero, en caprinos y aves de corral, concretamente pollo de engorda y pavos donde se ha utilizado como coccidiostato. El mecanismo de acción puede describirse en la ilustración 6.

Dicho mecanismo favorece en 2 sentidos según la fuente mencionada:

  1. Interfiriendo con procesos celulares en la respiración celular, liquidando de esa manera a microorganismos patógenos.
  2.  Fijando los mismos iones que aportan a la nutrición del animal en cuestión.

mecanismo

Ilustración 6 Mecanismo de acción de la Monensina de a través de la membrana plasmática. (Pisa Agropecuaria, 2015)

De esta manera la monensina sódica es empleada como antiparasitario, antibiótico y adicionalmente como medio de fijación de iones alcalinos en la industria ganadera puesto que es un potente aliado para la modificación y manejo de la flora bacteriana rumiante y en el caso de aves de corral actúa como bactericida para el control de coccidiosis.

Ilustración 7 Uso de la monensina sódica como moléculas desarrolladas para combatir la coccidiosis en aves de corral (Pisa Agropecuaria, 2015)

Aplicaciones de los Epóxidos

 

     Los epóxidos al tener una estructura cíclica presentan en su forma cavidades que pueden ser aplicadas en la fabricación de espumas aislantes, la industria alimenticia emplea este tipo de materiales en diversas áreas que van desde el control microbiano hasta el recubrimiento del suelo como se realiza en la industria del pavimento.

 

Adhesivos y recubrimientos con resinas epóxicas

 

     Las resinas epóxicas son unidades polimerizadas de moléculas de epóxidos sintetizadas a partir de la epiclorhidrina y di o polihidroxifenoles, véase la ilustración 8; en la industria y no solo alimenticia suelen ser empleados como adhesivos y recubrimientos del tipo aislante así lo menciona (Blancas M., 2014). Según su aplicación estas sustancias pueden ser abrasivas, materiales de fricción, textil, fundición, filtros, lacas y adherentes.

res.jpg

reac.png

Ilustración 8 SUP. Presentación de 0.63 y 0.31 Kg de Resina epóxica comercial. INF. Reacción entre la epiclorhidrina y Bisfenol A, para la obtención de la masa epóxica bis fenólica.

Su naturaleza inerte similar a los policarbonatos lo hace un gran aliado de la industria alimenticia puesto que garantiza inocuidad, es empleada como aislante en zonas frigoríficas optimizando de esta manera las temperaturas y la compartición de calor con el medio ambiente, aunque su uso es más difundido en la industria de la construcción se emplea para el recubrimiento de pavimentos esta opción también es aprovechada en las fabricas de alimentos porque su presencia mejora los ambientes de manufacturación ya que inhibe el aparecimiento humedad desde el suelo sin embargo su principal beneficio radica en la fuerza que es capaz de soportar igual o aproximadamente de 65 N por esta razón es que se emplea en el recubrimiento de los suelos industriales debido al constante desgaste ocasionado por efecto humano y maquinaria de transporte interno.

Epóxido de etileno (ETO) como agente esterilizador en la agroindustria.

     Como se expresó anteriormente otro de los potenciales usos de los epóxidos es como bactericida por su capacidad oxidativa. El epóxido de etileno (ETO) dentro de la industria alimenticia tiene como función la esterilización puesto que tiene la capacidad de lisar casi a la mayoría de microorganismos incluyendo esporas y virus; estos esterilizantes se pueden presentar como gases comprimidos en cilindros o cámaras que mediante sofisticados sistemas de difusión son conducidos por cañerías hasta verdaderas estancias cerradas en donde se esterilizan diversos materiales empleados en el sector agroindustrial, como por ejemplo gavetas y canastillas usadas en el sector avícola para el transporte de pollos, en estas puede proliferar una gran cantidad de microorganismos por estar al contacto de sangre, heces fecales y demás restos biológicos (Puello Cabarca, 2016).

Resultado de imagen para camara de esterilizacion

Ilustración 9 Cámara de esterilización.

Mecanismo de acción del ETO.

     Phillips, en 1977, sugirió que la actividad microbicida de ETO se debe a la capacidad de alquilación de grupos sulfhídricos, amino, carboxílicos, fenoles e hidroxilos de las esporas o células vegetativas. La alquilación es el reemplazo de un átomo de hidrógeno por uno de un grupo alquilo. En la ilustración 10 se puede observar la alquilación de una célula viva con óxido de etileno, esta sustitución puede causar lesión y/o muerte en una bacteria o espora así lo menciona (ESTÉRICAL, SN).

ceñl.png

salmo.png

Ilustración 10 SUP. Alquilación de una célula viva mediante ETO. INF. Salmonella senftenberg

Existe evidencia experimental que indica que la reacción de ETO con ácidos nucleicos es la principal causa de su actividad bactericida y esporicida. La alquilación del trifosfato de guanosina de ADN en Salmonella senftenberg realizada por Michael y Stumbo en 1970 causó que las células perdieran el poder de reproducción (ESTÉRICAL, SN).

Estudios acerca de la resistencia de bacterias y esporas a la actividad bactericida y esporicida del óxido de etileno muestran que la espora de Bacillus subtilis var. niger presenta una resistencia más alta la exposición de ETO que las esporas de Clostridium sporogenes, Bacillus stearothermophilus o B. Pumilus.

 

Producción de epóxido de soya con ácido peracético generado in situ mediante catálisis homogénea.

 

     En la actualidad en relación con los epóxidos existen diversos estudios que proponen extraer epóxidos de ciertas semillas que contienen estas sustancias para el uso industrial, no precisamente en el campo alimenticio, pero sí a partir de él. Por ejemplo, la producción de epóxidos provenientes de la soya común con ácido peracético generado in situ mediante procesos de catálisis homogénea (Boyacá, 2010).

Los epóxidos obtenidos a partir de estos aceites se utilizan ampliamente como plastificantes y estabilizantes del PVC y como materia prima en la síntesis de polioles para la industria del poliuretano.

81128

Ilustración 11 Reacción de epoxidación de aceite de soya.

Heptacloro y Epóxido de heptacloro en alimentos

 

     El heptacloro es una sustancia química manufacturada usada en el pasado para matar insectos en el hogar, en edificios y en cosechas de alimentos. Desde el año 1988 no se usa para estos propósitos. No existen fuentes naturales de heptacloro o de epóxido de heptacloro. Algunas marcas registradas del heptacloro son: Heptagran®, Heptamul®, Heptagranox®, Hepatmak®, Basaklor®, Drinox®, Soleptax®, Gold Crest H-60®, Termide® y Velsicol 104®.

El epóxido de heptacloro también es un polvo blanco que no se inflama fácilmente. No es una sustancia manufacturada y, a diferencia del heptacloro, no se usó como plaguicida. Las bacterias y los animales degradan al heptacloro a epóxido de heptacloro. Este resumen describe a los dos compuestos simultáneamente ya que aproximadamente un 20% del heptacloro es transformado a epóxido de heptacloro en el ambiente y en el cuerpo en unas horas.

Usted puede encontrar heptacloro o epóxido de heptacloro en el suelo o en el aire de viviendas tratadas para controlar termitas, disuelto en agua de superficie o subterránea o en el aire cerca de sitios de desechos peligrosos. También se puede encontrar heptacloro o epóxido de heptacloro en plantas y animales cerca de sitios de desechos peligrosos. El heptacloro ya no puede ser usado para matar insectos en cosechas o en viviendas y edificios. Sin embargo, la EPA aun permite el uso del heptacloro para matar hormigas en transformadores bajo tierra, aunque no está claro si aún se usa con este propósito en Estados Unidos.

Son por tanto sustancias altamente peligrosas para el ser humano catalogados así según la Agencia de Protección del Medio Ambiente de EE. UU., misma que ha identificado a industrias manufactureras florícolas, agroindustriales y agrícolas como principales sitios de exposición a los mismos. Sostiene que la exposición prolongada, inhalación y consumo en alimentos y bebidas, así como el contacto con la piel puede provocar enfermedades como cáncer, daños en el sistema nervioso factor tumorante entre otras.

De forma adicional se ha determinado que estas sustancias pueden afectar al sector ganadero por las mismas causas expuestas debido a que los animales pueden desarrollar diversas enfermedades ocasionando enormes pérdidas al sector.

Lastimosamente no hay ninguna información acerca de los niveles de heptacloro y epóxido de heptacloro que ocurren comúnmente en el aire. En un estudio, los niveles de heptacloro en el agua potable y el agua subterránea en Estados Unidos oscilaron entre 20 y 800 partes de heptacloro en un trillón de partes de agua (ppt) así lo manifiesta (Agency for Toxic Substances and Disease Registry, 2016). También se han determinado contaminaciones en lechos y riveras de ríos y arroyos de uso agrario y de consumo humano.

eppp.gif

Ilustración 12 Heptacloro y Epóxido de heptacloro.

Aplicaciones de compuestos sulfurados (Tioéteres)

Compuestos azufrados volátiles en vino

 

     El vino es una de las bebidas alcohólicas de mayor distribución en el mundo, el mismo suele presentarse como vino tinto y blanco. Los compuestos sulfurados tienen un papel sumamente importante en las industrias vinícolas siempre y cuando sean ligeros y no se trate del DMS (dimetil sulfuro) ya que éste último es un indicador de mal sabor, es un compuesto tóxico y eliminarlo es el propósito de las vinícolas (Armas, Bolaños , & et all, 2015).

Como factor organoléptico puede entenderse como un vector de defecto que al superar el umbral de la detección olfativa confieren notas olfativas agradables al ser humano, hasta la fecha se ha determinado más de 100 compuestos sulfurados de los cuales los tioles y mercaptanos son los más apestosos.

En torno al costo que ciertos vinos pueden alcanzarse puede decir que el factor costo se ve claramente relacionado con el tipo de tratamiento que se dé a los sulfuros provenientes del viñedo y en especial con respecto al origen del sulfuro de hidrógeno en los mismos.

El origen puede ser natural o tradicional cuando procede de cepas de levaduras que pueden ser del tipo Advantage, Platinum Distinction o de origen laboratorial que abarata costos a la industria vinícola, pero puede afectar al producto por poseer trazas e impurezas generadas en la síntesis. Estos tratamientos pueden hacer que un vino tenga costos elevadísimos por su calidad artesanal, las levaduras forman dicho compuesto a través de procesos metabólicos que transforman compuestos inorgánicos como sulfatos y sulfitos e incluso orgánicos como la cisteína y el glutatión de la uva así lo manifiesta (Armas, Bolaños , & et all, 2015).

Imagen relacionada

Ilustración 13 Sulfuros como el DMS pueden afectar el sabor del vino.

Mercaptanos y dimetil sulfuro como indicadores de GLP (gas licuado de petróleo)

 

     El dimetil sulfuro (70%) y el tercburtilmercaptano (30%), son industrialmente utilizados como odorizantes del Gas Licuado de Petróleo o GLP, que no es más que el gas de uso doméstico el mismo que al carecer de olor de forma natural debido a su peligrosidad requiere ser olorizado con estas sustancias para alcanzar un olor fuerte como indicador de fuga. Las industrias alimenticias de forma indirecta en ciertos procesos de cocción aún utilizan el GLP como combustible puesto que diversos detectores de fugas de gas responden a estímulos de vectores organolépticos de olor producido por el VIGILEAK 7030 que es el nombrecomercial de la mezcla antes mencionada (Esteves, 2015).

Resultado de imagen para dimetil sulfuro

Resultado de imagen para GAS LICUADO DE PETROLEO

Ilustración 14 GPL odorizado con mercaptanos y sulfuros. (vigileak 7030). (Esteves, 2015)

Con respecto a los mercaptanos se puede decir que sus potentes olores se encuentran presentes como bases de olores desagradables tales como la carne podrida, heces fecales, la orina de animales como el zorrillo, este último factor requiere ser eliminado en la industria de la perfumería, también pueden ser los causantes del mal olor en la boca (halitosis), también se encuentran en productos naturales como ajo, cebolla o semillas de mostaza.

Sulfuros de origen fitoquímico y sus fuentes

 

     Algunos compuestos sulfurados se pueden encontrar de forma natural en ciertos alimentos que presentan olores fuertes, a este tipo de compuestos se les denomina organo sulfurandos y su principal representante es el alilsulfuro por su potente olor así lo afirma (Palencia Mendoza, SN) quien menciona que vegetales del superorden Liliflorae dentro de la familia Alliaceaes que contienen al género Allium cuyos principales representantes son el ajo, cebollas, puerro y cebollín, cabe mencionar que de ellos el ajo y las crucíferas presentan grandes cantidades de sulfuros.

La autora menciona que la incidencia e importancia de estos compuestos tienen la acción de bloquear y suprimir la carcinogénesis, alteran lípidos séricos y la agregación plaquetaria (cicatrizantes). En algunos estudios de puerro, ajo y cebollas o suplementos de ajo, no se observaron efectos sobre el cáncer de mama o pulmón en humanos. En otros se sugiere que el grupo de vegetales Allium puede inducir pemphigus (Palencia Mendoza, SN).

Muchos organosulfurados se han considerado como aditivos alimentarios reconocidos como seguros (GRAS, siglas en inglés), entre ellos: el alil isotiocianato, alil mercaptano, bencil disulfuro, bencil mercaptano, bencil sulfuro, butil sulfuro, dialil disulfuro, dialil sulfuro, dimetil mercaptano, furfuril mercaptano, metil mercaptano, metil 2- metiltiopropionato, propil disulfuro, 2-tienil mercaptano, 2- tieniltiol.

Resultado de imagen para Dialil disulfuro

Resultado de imagen para ajo

Ilustración 15 Dialil disulfuro presente en ajo y cebollas.

La autora afirma que se demostró la importancia de los grupos alilo en oposición a los grupos propil saturados para los efectos de los compuestos organosulfurados sobre la carcinogénesis en el consumo de alimentos que los contenían. Varios compuestos organosulfurados fueron examinados por su capacidad de inhibir la carcinogésis inducida por nitrosodietilamina, y el más potente fue el dialil-disulfuro el cual redujo los tumores de estómago hasta un 90%. El dialil disulfuro dietético también disminuyó el número de adenocarcinomas de colon inducidos por azoximetano en ratas. Parece ser que los compuestos que tienen el grupo alilo son más efectivos en la quimio-prevención del cáncer que los que no presentan este grupo (Palencia Mendoza, SN).

 

DISCUSIONES Y CONCLUSIONES

 

     El presente informe de investigación ha abarcado desde un eje aplicativo la importancia de la presencia de los éteres, epóxidos y sulfuros que se relacionan con la industria alimenticia y sus derivados. Se ha identificado que pueden estos compuestos relacionarse de forma directa al encontrarse intrínsecamente en los alimentos como es el caso de sulfuros en vinos y cebollas, o a su vez que pueden estar relacionados desde otros ámbitos industriales como lo es el uso de plaguicidas, como el caso del éter de heptacloro causante de múltiples enfermedades y de tipo carcinogénico; por otro lado, se ha mencionado el potencial uso del dialil disulfuro como agente anticancerígeno. Sin duda el conocimiento de este tipo de compuestos aperturan la comprensión de estos en el sector alimenticio y agroindustrial puesto que se encuentran en gran parte de los procesos de control y aseguramiento de la calidad

 

REFERENCIAS

Agency for Toxic Substances and Disease Registry. (2016, mayo 6). Resúmenes de Salud Pública – Heptacloro y epóxido de heptacloro (Heptachlor and Heptachlor Epoxide). Retrieved from Agency for Toxic Substances and Disease Registry: https://www.atsdr.cdc.gov/es/phs/es_phs12.html

Armas, C., Bolaños , A., & et all. (2015, 02 25). issuu.com. Retrieved from Éteres y compuestos azufrados aplicaciones industriales y reacciones de utilidad en la industria: https://issuu.com/azucena22060/docs/eteres_y_compuestos_azufrados

Armendaris, G. G. (2009). Éteres. In G. G. Armendaris, Química Orgánica 3 (pp. 125-126). Quito: Maya Ediciones C. LTDA.

Blancas M., P. S. (2014, Abril 22). El mundo de los polímeros. . Retrieved from es.slideshare.net: https://es.slideshare.net/LittleQuimicos/el-mundo-de-los-polmeros-33830219

Boyacá, L. A. (2010). Producción de epóxido de soya con ácido peracético generado in situmediante catálisis homogénea. INGENIERÍA E INVESTIGACIÓN VOL. 30, 136-140.

Carey , F. A., & Giuliano, R. M. (2006). Capítulo 16: Éteres, epóxidos y sulfuros. . In F. A. Carey, & R. M. Giuliano, Química Orgánica (p. 656). México: 9º Ed. Mc. GrawHill.

Carey, F. (1997). Epóxidos, éteres y sulfuros 6°edición. In F. Carey, Química orgánica. (p. 668). Madrid: Prince Hall Andersen.

EL COMERCIO. (2011, 12 31). El Comercio. Retrieved from Cuatro tipos de moras tiene el país: https://www.elcomercio.com/actualidad/negocios/cuatro-tipos-de-moras-pais.html

ESTÉRICAL. (SN, Santiago de Chile). ESTÉRICAL . Retrieved from https://www.esterical.cl/proceso.htm

Esteves, R. (2015). Aplicaciones comunes e industriales de tioles y sulfuro. Retrieved from prezi.com: https://prezi.com/gsmrpdzrgo7e/aplicaciones-comunes-e-industriales-de-tioles-y-sulfuros/

Grupo de polímeros (Polymer Research Group). (2011, Enero 28). Desarrollo histórico y aplicaciones de los compuestos corona (éteres corona – coronandos -,criptandos, podandos, entidades supramoleculares). . Retrieved from Univerdidad de Burgos (University of Burgos): https://es.slideshare.net/grupodepolimeros/compuestos-corona-6730199

Ortiz, R., García, M., & Chávez, R. (2018, Enero). Un estudioexperimentalde ácidos grasos poliinsaturados, provenientes de R. fruticosus, por tecnologías alternativas a los solventes orgánicos. REMAI,Revista Multidisciplinaria de Avances de Investigación ISSN: 2448-5772, vol. 3 núm. 3,septiembre-diciembre 2017, México. REMAI,Revista Multidisciplinaria de Avances de Investigación ISSN: 2448-5772, vol. 3 núm. 3,septiembre-diciembre 2017, Méxi 2018, 1-2. Retrieved from http://www.remai.ipn.mx/index.php/REMAI/article/view/36/35

Palencia Mendoza, Y. (SN). SUSTANCIAS BIOACTIVAS EN. Retrieved from http://www.unizar.es: http://www.unizar.es/med_naturista/bioactivos%20en%20alimentos.pdf

Pisa Agropecuaria. (2015). Efecto del uso de Ionóforosen Bovinos y alguna particularidades de la Adición de Monensina. . Retrieved from http://www.ganaderia.com: https://www.ganaderia.com/micrositio/Pisa-Agropecuaria/Efecto-del-uso-de-Ion%C3%B3forosen-Bovinos-y-alguna

Pons Vidal, B. (2017 , 03 10). Universidad Politécnica de Valencia. Retrieved from Diseño de emulsiones con éteres de celulosa para reemplazar la grasa en alimentos: estabilidad, estructura y digestión in vitro. : http://hdl.handle.net/10251/78622.

Puello Cabarca, V. (2016, Agosto 29). Epóxidos y sus aplicaciones Industriales. Retrieved from http://www.prezi.com: https://prezi.com/lboblu9t7r8y/epoxidos-y-sus-aplicaciones-industriales/

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Precursores de la Medicina Latinoamericana (Parte II: José Mutis y Bosio)

     Continuando con la recopilación histórica realizada por el Dr. Plutarco Naranjo (✞), es el turno para un ilustre personaje representante de la hermana República de Colombia, el español José Celestino Mutis y Bosio, un importante médico que entregó su tiempo y pasión científica al entonces Reino de la Nueva Granada, y cuyo esfuerzo trascendió a lo que hoy constituye la República de Colombia, si dudarlo su trabajo llena de orgullo al país cafetero; adicionalmente quisiera compartir con ustedes el documental que detalla su obra en concreto, espero que lo disfruten tanto como yo.

José Celestino Mutis y Bosio

(1732-1808)

Resultado de imagen para jose celestino mutisJosé Celestino Mutis y Bosio nace en Cádiz – España de una noble familia, su vida y obra, que hasta cierto punto puede considerarse “ad honorem”,  hoy en día se entiende como uno de los mayores aportes realizados al ámbito de la ciencia generada desde aquí, desde Latinoamérica, entregada al mundo entero, sea por su contexto histórico, el valor científico que posee o simplemente la enorme valía artística que se plasma en cada una de las láminas que componen la totalidad de su obra.

Precisamente por ello y con justo homenaje, el escritor y científico colombiano,  Luis López de Mesa, quien fuera Ministro de Relaciones Exteriores de Colombia del entonces presidente Eduardo Santos; se refiere a Mutis en muchas de sus obras como “Maestro protomédico y protomártir por la  libertad americana” (1944).

Resultado de imagen para lopez de mesa

Médico, botánico, físico, catedrático, matemático y sacerdote eran parte de lo que constituía formación científica y teológica de Mutis; desde jóven se reveló como un hombre de inteligencia y con amplias capacidades muy por fuera de lo común todo ello emparejado con una severidad de carácter inigualable que encajaba perfectamente con su disciplina y amplio sentido de realizar sus actividades con profunda excelencia.  Sus estudios superiores los realizó en las Universidades de Cádiz y Madrid, siendo esta última en donde terminara su doctorado en 1754.

Resultado de imagen para Pedro Messía de la Cerda
Don Pedro Mesía de la Cerda, capitán del Glorioso.

En muy poco tiempo logró hacerse de un importante prestigio y notoriedad en el aspecto profesional como médico a tal punto que fue solicitado para formar parte de la Real Comitiva que acompañaría al nuevo Virrey, don Pedro Messía de la Cerda,  hasta Santa Fe de Bogotá.

Finalmente Mutis llega hasta Nueva Granada en 1760, en calidad de médico del Virrey Carlos III, sin imaginar que esa tierra que lo acogiera entonces se convertiría en el foco central de todos sus sueños y a la que dedicaría el resto de su prolífica vida.

Como era común en la entonces Colonial de  Bogotá, había mucho por hacerse, para convertirla en un verdadero tesoro de la corona Española, Mutis lo sabía y empezó a ejecutar las nuevas orientaciones de la medicina y se dedicó en concreto a renovar la enseñanza de la ciencia de Esculapio. Sus primeros esfuerzos se centraron en crear y organizar la cátedra de medicina en el entonces célebre Colegio de Nuestra Señora del Rosario, cuna de los primeros médicos colombianos, sin embargo y ante la necesidad extrema de docentes, Mutis quien era todo un académico, sustentó también las cátedras de matemáticas física y astronomía.

Sin embargo, las cuatro paredes que rodean un aula de clases no era el destino queResultado de imagen para Linneo depararía la suerte de Mutis, ya que desde su llegada no pudo dejar de notar la abundancia de la flora del Reino de la Nueva Granada y es en esas selvas y páramos rodeados de exuberante vegetación que construyó su sueño, las plantas notoriamente eran su tentación y soñó con poder describir en detalle todas las especies que comprendían el  reino de la Nueva Granada con el fín de poder difundir sus  usos como aporte para la corona.

Conforme fue desarrollando la observación y colecta de las especies, no tardó en entrar en correspondencia con el renombrado Botánico sueco Carlos Linneo, mismo que quedó maravillado con su trabajo, dado que Mutis no hablaba sueco, ni Linneo español, la correspondencia se realizó en Latín, entorno a ellos se recreó una atmósfera de admiración mutua que cruzó el océano Atlántico; Mutis entre la inmensa variedad de plantas que descubrió quedó muy sorprendido por una en especial y no pudo resistirse en enviar una representación pictográfica a Linneo con el afán de poder clasificarla y nombrarla, esa especie representa toda la obra de Mutis, Linneo por su parte y al tratarse de una especie tan extraña aún para él, dado a que se asemejaba a un verdadero rompecabezas biológico, ya que por un lado presentaba hojas compuestas y por otro compartía rasgos que ponían en tela de duda la familia a la que se le clasificaría, finalmente Linneo rinde homenaje a Mutis bautizándola como Mutisia clematis L. f. representada por Salvador Rizo  a continuación:

Imagen relacionada
 Mutisia clematis. Salvador Rizo fue (Pintor de la Expedición de Mutis)

 

 

JBB13567
Mutisia clematis L.f. (Asteraceae) Colección: Díaz-Granados, Mauricio – 4153

Tiempo, fue un factor que siempre le faltó a José Celestino Mutis para realizar sus trabajos e investigaciones; en mi corta experiencia con botánicos en el Ecuador me atrevo a decir que el tiempo definitivamente es un factor que a todo botánico apasionado le hace falta; sin embargo entorno a Mutis el aspecto social y cortesano siempre fue algo que le repugnó a tal punto que jamás abandonó los hábitos sino más bien encontró una interesante armonía entre la medicina, la meditación y la botánica.

Ya entrado el año 1783, el Virrey Carlos III, cumple el anhelo de Mutis, nombrandolo mediante Cédula Real como Director de la Real Expedición Botánica al Nuevo Reino de Granada, a su cargo estaba el detallar pictográficamente las especies vegetales. Sin escatimar tiempo, esfuerzo, sacrificio; sin extenuación alguna producto de las largas jornadas que él y su equipo de colaboradores realizaban para la colecta de las especies, impertérrito ante el hambre, sed o el sol abrasador del trópico, Mutis trabajó de forma incansable innovando constantemente sus técnicas y las de sus pintores, basándose en técnicas y publicaciones europeas. Dado que Mutis era muy precavido ordenó realizar suficientes copias en tinta china con tal de no permitirse la pérdida de ningún espécimen; el campamento se centró en Santa Fe de Bogotá. La expedición recorrió casi todo el territorio de la Nueva Granada.

Resultado de imagen para reino de la nueva granada

En el territorio explorado, realizó investigaciones mineralógicas encontrando minas de oro y plata además colectó miles de plantas (aproximadamente 20.000 especies) mismas que se distribuyen en al menos 50 géneros; así como unas 7000 muestras zoológicas. Por la magnitud de su trabajo el Virrey Carlos III ordenó fiscalizar la obra nombrando como veedor al pintor Francisco Martínez del virreinato de Nueva España, quien conocía las técnicas que requerían las pinturas de Mutis; al examinarlas, quedó asombrado y dió lustre a su trabajo elogiándolo a él y a sus pintores ante el virrey, de esta manera se garantizó apoyo total por parte de la corona ya que el mismo, superaba de por sí el valor científico e incluso artístico por la perfección con la que se estaban realizando las representaciones, afirmando que dicho trabajo sería de mucha ayuda al mundo de la ciencia.

El taller-campamento de Mutis no tardó en convertirse en toda una escuela de grandes referentes de la pintura, por ella desfilaron grandes personalidades que enaltecieron su trabajo, por ejemplo Alexander Von Humboldt,  al enterarse de la expedición decide hacer una parada en Santa Fe de Bogotá con el afán de observar de cerca el trabajo que se estaba realizando donde calificó a Mutis como “el mejor ilustrador botánico del mundo”. La expedición comprendía varias disciplinas, Mutis tenia principal interés por describir diversos usos medicinales de las diferentes especies que colectaba, las que tenían una especial relevancia incluso trasladó y replantó en un Jardín que construyó en el recinto; a la expedición se unió el joven Francisco José de Caldas, científico, botánico y especialmente astrónomo al sentir gran admiración por el trabajo de Mutis decide contribuir desde la parte geográfica, se le nombra responsable de extender la expedición hasta los límites con el Reino de Quito, en Ibarra se reúne con Alexander Von Humboldt y descubren  que compartían en común ciertos métodos de medida para montes, montañas y cerros, su técnica barométrica era muy precisa y a la vez era compartida por Humboldt, gracias a ello adicionalmente Caldas aportó con su hipótesis de que las especies vegetales y su crecimiento depende directamente de la altitud en la que se encuentran, lo que fue de importante ayuda en el trabajo de Mutis.

Imagen relacionada
Ruinas de la casa y jardín botánico del sabio Mutis

La expedición duró 30 años y el gran pecado de Mutis fue no publicar su obra, quizá porque esperaba publicarla en su totalidad, aunque de por sí ya era monumental y tomaría muchísimo tiempo, y es precisamente el tanto tiempo de espera lo que generó ciertas inquinas con la Corte Española por lo que tuvo que publicar una  muy pequeña parte de su obra. Entre tales publicaciones se destacan: “El garcano de la quina” (1793), donde describe los usos del árbol de quina, especie descubierta en Ecuador con la finalidad de curar la malaria (Para mayor información sobre este descubrimiento: Precursores de la Medicina Latinoamericana (PARTE I: Pedro Leiva)), y “Memorias sobre las palmas del Nuevo Reino de Granada” donde hace especial énfasis sobre los diversos usos de aceites esenciales provenientes de palmas así como usos alimenticios, sin embargo la vida  no le alcanzó para ver su obra.

Resultado de imagen para laminas de mutis

Entre los descubrimientos más importantes fueron encontrar especies de quina en el territorio ya descrito, descubrió el denominado té de Bogotá, describió propiedades diversas del bejuco, procesos de aclimatación para cultivar canela, anís y nuez moscada.

Entre sus colegas y colaboradores estuvo el presbítero Juan Eloy Valenzuela cuya función era ayudar en la colecta y transportación de los especímenes así como informar sobre el consumo del material en calidad de administrativo fue nombrado como subdirector de la expedición; en calidad de oficial de pluma el dibujante Pedro Antonio García y Salvador Rizo, Francisco Javier Matiz figuró como dibujante a lápiz, con el tiempo ganó gran habilidad y se convirtió en pintor; Sinforoso Mutis Consuegra, sobrino de José C. Mutis, quien tiempo después le sucedieran en su obra también colaboró en el aspecto botánico; Francisco Antonio Zea, quien no tenía nada que ver con la botánica por ser periodista, se encargó de la crónica y documentación escrita de la expedición junto a Jorge Manuel Restrepo; Jorge Tadeo Lozano importante naturalista hizo parte en especies de animales y finalmente, el antes mencionado Francisco José de Caldas quien anhelaba sucederle tras su muerte sin embargo se dedicó exclusivamente a aspectos geográficos y astronómicos.

Resultado de imagen para francisco jose de caldas
El Gobierno de Colombia imprimió billetes de 20 pesos con la efigie de Francisco José Caldas

Con el tiempo el campamento dejó de ser solo un lugar con fines biológicos, ya que al tener en sus instalaciones, mismas que tiempo después pasaron a bautizarse como  la Fundación del Observatorio Astronómico de Santa Fe de Bogotá, en la que diversos proyectos científicos se crearon, como la Sociedad de Científicos Amigos, a la que pertenecieron los personajes que antes se detalló, allí se empezaron a debatir diversas ideas de la coyuntura política de la Colonia y los distintos acontecimientos que se venían dando en España, haciendo que el observatorio se vuelva una verdadera cuna de próceres para lo que el 20 de julio de 1810 se plantearía como un primer intento de independencia total de España, que no terminó nada bien, puesto que entre 1815-1816, tras diversas guerras civiles se diera la reconquista terminando por fusilar a Caldas y Lozano en el patíbulo.

Por orden de Pablo Morillo y Morillo las más de 6000 láminas terminadas de Mutis más otras 1000 sin terminar que pretendían realizar “La Flora de Bogotá” fueron empaquetadas y enviadas al Real Jardín Botánico de Madrid donde han permanecido hasta la actualidad, por más de un siglo permaneció inerte hasta que gracias al botánico Santiago Díaz Piedrahita (✞), y gracias a un pacto de cooperación entre el gobierno de la República de Colombia y España es que se logró la publicación de 33 volúmenes del trabajo de Mutis con un aproximado de 60-80 láminas por volumen, lo que constituye una de las más grandes y monumentales publicaciones científicas que posee el país cafetalero. Por esta razón Mutis se constituye como un importante personaje colombiano que logró instaurar los inicios de la medicina en Colombia gracias a todos los discípulos que vieron en su sombra paternal la inspiración para tan noble profesión así como botánicos y científicos. Pero también gracias a él crecieron los patriotas y próceres de la independencia, en especial de la manos de Caldas, cuyas últimas palabras antes de su ejecución servirán para terminar este artículo, esperando que sirva para rescatar la memoria de nuestra patria grande, quien dijo:

“España no necesita sabios” Francisco José de Caldas.

BIBLIOGRAFÍA

  • Naranjo Plutarco. (1978) Precursores de la Medicina Latinoamericana. Academia de Medicina del Ecuador. Editorial Universitaria. Quito-Ecuador.

 

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios y seguirnos en redes.

Datos curiosos de la química (Parte II. 11-15)

Edición especial: Envenenamientos, muertes e intentos de asesinato.

Continuando con esta pequeña recopilación de curiosidades químicas he decido compartir con ustedes algunas interesantes formas de morir por ingesta de sustancias químicas, esta entrada forma parte de una meta personal de entregar a ustedes 100 datos curiosos que involucren la química, pues bien, esta entrada es una edición especial dado su contexto; espero que la disfruten.

11.- ENVENENAMIENTO CON CIANURO: (Tiempo estimado para el deceso 1 minuto)

     La muerte por cianuro es una muerte muy dolorosa. Sólo 50 mg (miligramos) de este potente veneno produce parálisis respiratoria al actuar sobre el aparato respiratorio. El diafragma se agita sin control produciendo convulsiones finalmente a la víctima se le dilatan las pupilas justo antes de sentir un paro cardíaco.

La muerte de los Hitler

Eva Braun, esposa de Adolf Hitler, recurrió al envenenamiento con cianuro a manera de ÁCIDO PRÚSICO [H-C≡N(g)] (ácido cianhídrico), un 30 de abril de 1945, al mismo tiempo sucedió el suicidio de su esposo, quien murió de un disparo en la sien derecha, ambos cadáveres yacían tendidos en las escaleras de un búnker por la salida de emergencia hacia el jardín situado detrás de la Cancillería del Reich, donde fueron parcialmente incinerados, dicho evento sucedió en la  ciudad de Berlín, cuando  Braun apenas tenía 33 años.

12.- ENVENENAMIENTO POR INGESTA DE CICUTA (Conium maculatum L.)

     La cicuta (Conium maculatum) es una especie botánica de planta con flor herbácea de la familia de las apiáceas, dentro de ésta, perteneciente al género Conium. Es un potente veneno. Los antiguos griegos utilizaban esta planta para ejecutar a los condenados a muerte. La cicuta pasó a la historia gracias a Sócrates, ilustre personaje que perdió la vida bebiendo una infusión de esta planta venenosa. Juzgado por no reconocer a los dioses atenienses y por, supuestamente, corromper a la juventud, el gran filósofo griego fue condenado a morir ingiriendo el potente veneno.

Resultado de imagen para muerte de socrates

La fitoquímica detrás de esta planta comprende la presencia de alcaloides desde la raíz hasta la punta de sus hojas; entre los que se destacan glucósidos flavónicos y cumarínicos, un único aceite esencial, además de la CONICEINA y la CONIÍNA, siendo estos dos últimos los factores de más alta toxicidad, esta última suele ser llamaba como  conina, conicina o cicutina, ésta es una neurotoxina que inhibe el funcionamiento del sistema nervioso central y es la causante del denominado “Cicutismo”, los efectos de la toxina son similares al curare. Sin embargo, la cicuta en sí misma no es peligrosa: sólo la dosis decide si una sustancia inocua puede resultar tóxica, alucinógena o medicinal en función de la cantidad empleada, cuando se habla de las propiedades de las plantas siempre se las relaciona con sus ventajas medicinales sin embargo la historia demuestra que el poder tóxico de algunas especies han sido ligado al hombre, bien como veneno, bien como alucinógeno.

Resultado de imagen para cicutina
Cicutina (C8H17N)

Imagen relacionada

13.- RADIACIÓN CON POLONIO (210)

[foto de la noticia]     El Polonio [Po], es el elemento número 84 de la tabla periódica es altamente radioactivo y se encuentra presente en la naturaleza. Su descubrimiento se remonta a 1898 gracias a los esposos Pierre y Marie Curie, quienes lograron extraerlo de la uranita o pechblenda. Se ha determinado que existen alrededor de 27 isótopos de polonio con masas atómicas que van desde 192 a 218; siendo el 210, el único que se encuentra de en la naturaleza y resulta ser un elemento muy difícil de manipular. En la actualidad el uso más común es ser empleado en centrales nucleares y en temas de investigación. En la vida cotidiana y en cantidades muy pequeñas suele estar presente en técnicas de fotografía y en cigarrillos.

En forma de óxido éste se presenta como un polvo rojizo no observable para el ser humano, común en entornos industriales y centrales nucleares.

Tan solo MEDIO (1/2) miligramo (mg) bastaría para considerarse como dosis mortal por efectos de la radiación. Considérese que su manejo implica cámaras y equipo de protección de plomo en ambientes especiales. Cuando una persona ha sido contaminada por ingesta de la sustancia en concreto, no hay nada que se pueda hacer, su muerte es inevitable, si su exposición fue superficial, se procede a “secuestrar ” por medio de quelantes hasta que quede libre del mismo. La KGB, entre otras organizaciones han utilizado al polonio desde su descubrimiento como un potente veneno capaz de producir la muerte con alto sufrimiento y de manera lenta dado que resulta indetectable ante los sentidos.

La controversial muerte de Alexandder Litvinenko

Alexandder Valterovic Litvinenko, era quizás el último espía (agente) de la KGB, su extraña muerte fue foco de controversia en especial en el ámbito político salpicando dudas sobre el gobierno de Vladimir Putin. Más allá de la controversia llama la atención su muerte, Litvinenko pasó de la KGB al servicio de inteligencia del Reino Unido (MI6), diversas fuentes señalan al mandatario como autor mediato del hecho, incluso señalan a su muerte como un objetivo que perseguía la SFS (Servicio Federal de Seguridad ruso). Su muerte se produjo posiblemente tras liberarse una fragancia al abrir su paraguas  o bebida preferida que pudieron haber servido como vehículo del veneno, (Polonio 210). Muchos pueden preguntarse ¿cómo una sustancia de este tipo pudo haber sido ingerida tan fácilmente? pues bien, Lo pudo ingerir en una comida o bebida que estuviera lo suficientemente salada o azucarada como para no percibir variaciones en el sabor. También pudo haber fumado un cigarro impregnado en polonio 210. Otra opción sería la inyección pero Litvinenko se habría dado cuenta.

https://twitter.com/Mundo_ECpe/status/690191567202717700/photo/1

14.- ENVENENAMIENTO CON ÁCIDO RICINOLEICO 

     La especie de vegetal Ricinus communis L. o ricino es una planta muy común en la región americana, recibe nombres comunes como jiguerilla, higuerilla, higrillo, castor oil plant o arand (Pakistán); es una especie de tipo arborescente cuyos frutos crecen en forma de cápsulas espinosas en su interior se alojan sus semillas con manchas marrones, esta planta familia de las Euphorbiaceaes, su uso industrial tiene a la fabricación de hilos con su resina y la extracción de aceite de ricino comercialmente suele denominarse como (aceite de castor), éste es tóxico y su uso también suele ser industrial.

Su semilla marmórea contiene un aceite viscoso y algo insípido (aunque dependiendo de la variedad de la especie puede presentar un sabor desagradable), su aceite (aceite recinoleico) actúa sobre la mucosa intestinal y acelera el peristaltismo (movimientos de los intestinos-retortijones) del 100% de las semillas, entre el 50% y 85%  constituyen aceites el resto de sus componentes son albuminoides entre los que se encuentra la ricina, esta proteína se considera como uno de los componentes más altamente tóxicos existentes conocidos por el hombre, la dosis potencialmente MORTAL va de 3 a 8 semillas. Sin embargo la intoxicación depende de la forma de ingestión:

INTOXICACIÓN MÁXIMA: o envenenamiento si se mastican.

INTOXICACIÓN MÍNIMA: o nula si se traga entera.

La vía de eliminación de la toxina es por vía urinaria,los síntomas son: somnolencia,

Estructura de la ricina. La cadena A se muestra en azul y la cadena B en anaranjado.

náuseas, vómito, gastroenteritis hemorrágica, dolor abdominal, daño renal y hepático, hemólisis, convulsiones, coma, hipotensión, depresión respiratoria y shock. El tiempo de latencia entre la ingesta y los síntomas suele ser de 2 a 10 horas.

Químicamente la ricina se considera como una fitotoxina por su origen, con actividad citotóxica, su efecto tóxico fue descubierto por  Stillmark en 1888, allí se observó que la toxina aglutinaba las células sanguíneas por un efecto producido por tan solo el 5% de la semilla que contiene en peso ricina y aglutinina (RCA).

Estructuralmente la ricina se compone por dos cadenas una cadena A (RTA), unida por un puente disulfuro a una cadena B (RTB); este puente entre ambas cadenas se establece mediante dos cisteínas. Esta proteína  forma parte del grupo de proteínas inactivadoras de ribosomas (RIPs) de tipo 2, que se caracterizan por presentar dos cadenas polipeptídicas: una capaz de inhibir la síntesis de proteínas y otra con propiedades de lectina, es decir, capaz de unirse a hidratos de carbono.

Fuente: Romanos A. Intoxicación por semillas de Ricino. Rev Toxicol Esp, 1 (1983), pp. 30-31

INTENTO DE ENVENENAMIENTO AL PRESIDENTE BARACK OBAMA

Las autoridades de inteligencia del entonces presidente de Estados Unidos, Barack Obama informaron en 2013, que a su despacho llegó un sobre impregnado de ricino, sustancia mortal, el Servicio de Inteligencia Norteamericano calificó al hecho como un atentado en contra de la integridad del entonces mandatario y de uno de sus senadores el republicano Roger Wicker así lo afirmó el Departamento de Justicia mediante un comunicado donde expresó cómo se llevó a cabo la captura del sospechoso implicado  Paul Kevin Curtis, un imitador de Elvis Presley, arrestado por el FBI quien se cree fue el responsable del envió de tres sobres tipo carta enviados mediante el servicio postal. Las cartas llevaban el mensaje: “Soy KC y apruebo esto mensaje” este hecho se suscitó en 2013 mismo año cuando el tema se volvió más polémico dado que el intento de asesinato se repitió, pero esta vez con la actriz Shannon Guess Richardson, quien envió cartas que estaban también impregnadas de ricino, la actora de la afamada serie “The Walking Dead” inicialmente culpò a su esposo de hacerlo sin embargo, tiempo después se declaró culpable, las cartas contenían el mensaje:

“Lo que hay en esta carta no es nada comprado. Lo he reservado para usted, señor presidente.

“Tendrás que matarme a mí y a mi familia antes de que entregue mis armas. Quien quiera venir a mi casa recibirá un disparo en la cara”.

La actriz de entonces 36 años hoy enfrenta una sentencia por 18 años de prisión y una fianza de 367.000 $.

 

15.- ENVENENAMIENTO POR ARSÉNICO

     A la intoxicación por arsénico se le conoce como arsenicosis o arsenismo, y seResultado de imagen para arsina entiende como un conjunto de alteraciones en la salud, es decir es potencialmente peligroso para el ser humano, su origen puede derivarse de compuestos de naturaleza orgánica o inorgánica. Este semimetal esta presente en la naturaleza y puede encontrarse en la comida, agua, aire y suelo. Sus efectos son claramente tóxicos y dependen del origen del mismo que puede ser inorgánico, orgánico o gas a manera de arsina; suele depender también de su valencia: trivalente como el caso del arsenito, pentavalente como el caso del arseniato o arsénico elemental.

Ordenando los niveles de toxicidad de mayor a menor las diferentes formas del arsénico pueden organizarse de la siguiente forma:

  • Gas arsina (arsano) (muy tóxico, letal).
  • Compuestos inorgánicos trivalentes.
  • Compuestos orgánicos trivalentes.
  • Compuestos inorgánicos pentavalentes.
  • Compuestos orgánicos pentavalentes.
  • Arsénico elemental (prácticamente sin efectos).

Un dato curioso, en ciertos países del mundo el gas arsina es utilizado por las fuerzas policiales y militares como herramienta anti motines o para dispersar manifestantes por tanto la exposición al mismo puede ser muy perjudicial, este se presenta de color rojizo.

Resultado de imagen para gas arsina
ESE GAS ROSA-NARANJA ES ARSINA (COMPUESTO DE ARSÉNICO) TOXICO Y CARCINOGÉNICO.

Toxicidad:

Sustancia Química Toxicidad Efectos, síntomas o consecuencias
Arsénico inorgánico ALTA

*Cantidades elevadas: síntomas gastrointestinales, alteraciones en las funciones cardiovascular y neurológica y eventualmente la muerte.

*Alteraciones: depresión de la médula ósea, hemólisis, hepatomegalia, melanosis, polineuropatía y encefalopatía.

*Por exposición en cantidades menores: trastornos dermatológicos, neuropatía periférica, encefalopatía, bronquitis, fibrosis pulmonar, hepatoesplenomegalia, hipertensión portal, enfermedad vascular periférica («síndrome del pie negro»), aterosclerosis, cáncer y diabetes mellitus.

Arsénico orgánico MEDIA Y BAJA

*Compuestos que presentan toxicidad: ácido monometil arsénico (MMA) y sus sales, el ácido dimetilarsínico (DMA) y sus sales, y la roxarsona. La arsenobetaina y la arsenocolina son compuestos orgánicos frecuentemente presente en los peces y de bajo grado de toxicidad. Todos con efectos parecidos a los descritos anteriormente en los inorgánicos.

Napoleón: arsénico por accidente (o no)

La causa de la muerte de Napoleón Bonaparte (1769-1821) en su destierro de la isla de Santa Elena sigue generando controversia. Oficialmente se trató de un cáncer de estómago, pero estudios recientes de muestras de su cabello han revelado un contenido de arsénico muy superior a lo normal. Hay distintas hipótesis: que se envenenó accidentalmente al inhalar el arseniuro de cobre presente en la pintura de su prisión o que se lo suministrara su asistente, el conde de Montholon, siguiendo instrucciones de los ingleses, que querían evitar a toda costa que Napoleón volviese a Francia. Sin embargo su muerte aùn es tema de debate.

Imagen relacionada