Archivo de la etiqueta: Química Orgánica

Datos curiosos de la Química. (Parte V. 36-40) ESPECIAL DE NOMBRES CURIOSOS

Alejandro Alfredo Aguirre Flores. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

En la red existe sin fin de información no verificada y en ocasiones se divulga información falsa con la finalidad de hacer unos cuantos centavos en marketing y publicidad de Internet, pues bien de entre tantas cosas que encontré decidí realizar esta nueva entrega de Datos curiosos de la química donde abordaremos 5 curiosos nombres de sustancias químicas sorprendentes o que quizás no conocías que existían en la realidad. A su vez, si te interesa cualquiera de nuestras anteriores entregas, las puedes encontrar en la siguiente categoría de nuestro blog: Categoría: Curiosidades. BIENVENIDOS

36.- CLITORIACETAL

Resultado de imagen para clitoris

Este peculiar compuesto posee un nombre bastante peculiar, aunque su nombre IUPAC es el 6,11,12a-trihidroxi-2,3,9-trimetoxi-6,6a-dihidrocromeno [3,4-b] cromen-12-ona, no tiene NADA que ver con lo que vuestras mentes podrían llegar a pensar con respecto a una parte especial del órgano reproductor femenino. Según menciona PUBCHEM (2009) el clitoriacetal presenta la siguiente fórmula molecular C 19 H 18 O 9. 

Clitoriacetal.png
CLITORIACETAL

Según la misma fuente la mayoría de patentes registradas para el uso de este compuesto son de uso dermatológico, a su vez este glucósido toma su nombre del género vegetal Clitoria, género perteneciente a la familia de las Fabaceaes con más de 100 registros oficiales de especies de plantas de dicho género según se constato la Base de Datos de Tropicos® perteneciente al Jardín Botánico de Missouri.

37.- CADAVERINA Y PUTRECINA

La cadaverina (C5H14N2), también conocida como 1,5 diaminopentanopentametilenodiaminapentano-1,5-diamina es una diamina biogénica que se obtiene por la descomposición del aminoácido lisina.

Ldc.png

La cadaverina debe su nombre al olor fétido que desprende como propiedad, la cadeverina se encuentra en la materia orgánica en descomposición por tanto es el compuesto responsable del olor a putrefacción.

Resultado de imagen para cadaverina
CADAVERINA

Otro compuesto de similares características es la PUTRESCINA, o putresceína (NH2(CH2)4NH2), más exactamente 1,4-diaminobutano, es una diamina que se crea al pudrirse la carne, dándole además su olor característico. Está relacionada con la cadaverina; ambas se forman por la descomposición de los aminoácidos en organismos vivos y muertos.

Resultado de imagen para cadaverina
Cheilymenia cadaverina (FUNGI) Foto de Aurelio García Blanco TOMADO DE: http://asociacionvallisoletanademicologia.com/wordpress/portfolio/cheilymenia-cadaverina/

La putrescina y cadaverina fue descrito por primera vez en 1885 por el médico Alamán Brieg Ludwig (1849-1919).Su descubridor, dijo: “Llamé a este [compuesto]” putrescina “la palabra latina putresco significa podrido, podrido ” dicha sustancia se origina como producto de la descomposición de la materia orgánica a su vez es sintetizada por algunos tipos de hongos y bacterias.

Resultado de imagen para cadaverina y putrescina

38.- LUCIFERINA

voe02_mayo2014
Brasil— Decenas de pequeños hongos bioluminiscentes brotan en un tronco seco. Sus tallos de color verde brillan a la luz de la luna. Esta especie, Mycena lucentipes, prospera en la madera de los árboles con flor de los bosques lluviosos de Brasil y Puerto Rico. Se ignora si es comestible. Tomado de: https://www.nationalgeographic.com.es/fotografia/visiones-de-la-tierra/hongos-bioluminiscentes_8165

Aunque su nombre parece haber salido del infierno, las luciferinas son moléculas más reales y comunes de lo que usted creería, son una clase de compuestos orgánicos empleados en la obtención de luz en organismos bioluminiscentes (bacterias, hongos y algunos tipos de insectos).  Dicha luz se obtiene mediante procesos catalíticos de la enzima luciferasa reaccionado con el oxígeno en efecto la mayoría de los grupos funcionales removidos de la luciferina liberan energía en forma de luz. El nombre de luciferina está inspirado en Lucifer (del latín lux “luz” y fero “llevar”).

Resultado de imagen para luciferina molecula

Imagen relacionada

39.-  ÁCIDO BOHÉMICO

Resultado de imagen para ACIDO BOHEMIO antibiótico

Esta particular mezcla a pesar de su nombre, no anda divirtiéndose como sugeriría su nombre.  Se trata de una mezcla de compuestos químicos de interés terapéutico en medicina que contiene una serie de moléculas que llevan por nombre los de los personajes principales de la ópera “La Bohème” de Puccini, reconocimiento dado por Donald E. Nettleton y cols con nombres de personajes de La bohème, como marcellomycin (por Marcello), musettamycin (por Musetta), rudolphomycin (por Rodolfo), mimimycin (por Mimí), collinemycin (por Colline), alcindoromycin (por Alcindoro) y schaunardimycin (por el músico Schaunard).

La solución puede estar, me parece, en un artículo que este mismo grupo de investigadores publicó en 1979 en el Journal of the American Chemical Society, sobre la estructura química del complejo del ácido bohémico, en el que proponen el nombre de rednose (rednosa) para un azúcar cíclico de fórmula  C6H8NO3 que forma parte de la molécula de la rudolfomicina, así lo afirma Fernando A. Navarro (2011).

40.- ÁCIDO ANGÉLICO

Resultado de imagen para acido angélico

Este ácido debe su nombre de la planta en la que se encuentra, la Angelica archangelica, misma que pertenece a la familia de las Apiaceaes, según menciona la Base de Datos de Tropicos® perteneciente al Jardín Botánico de Missouri que, a su vez, lo toma de la creencia popular de que es un regalo del arcángel San Gabriel. El ácido angélico fue aislado por primera vez en 1842 por el farmacéutico alemán Ludwig Andreas Buchner y se presenta como un sólido volátil con sabor penetrante y olor ligeramente agrio. Las sales derivadas de este ácido son denominadas angelatos.

REFERENCIAS:

Imagen relacionada

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Hablemos de Drogas! (PARTE II) LOS ALCALOIDES: Opio, morfina y heroína.

     Después de conocer algo sobre algunos conceptos básicos de lo que tiene  que ver con drogas, es momento de hablar de los alcaloides, estos compuestos orgánicos de tipo nitrogenados, poseen una estructura química compleja. Tienen un comportamiento básico frente a los ácidos,  es decir son alcalinos (álcalis) de allí su nombre, Poseen propiedades fisiológicas  muy notables y tóxicas.

Resultado de imagen para alcaloides

     Los alcaloides están presentes en las plantas, específicamente en los órganos que presentan mayor actividad como hojas, raíces, frutos y semillas. Sin embargo en la actualidad existen alcaloides de origen sintético, lo que significa como tal, que son desarrollados en laboratorios por acción humana. Así lo menciona el Dr. Gerardo Armendaris, en su libro “Química Orgánica” (2009).

     Sus acciones fisiológicas y tóxicas actúan casi de forma exclusiva en el sistema nervioso. El uso o consumo frecuente genera un efecto de “acostumbramiento” que mas bien se traduce como una adicción; incluso a dosis bajas con efectos psicoactivos. Muchos de ellos por esta razón son utilizados dentro del algunas medicinas comunes para tratar migrañas, o hasta  gripe. Poseen estructuras muy variadas como se puede apreciar en la figura anterior, por definición un  alcaloide es un compuesto orgánico que posee un nitrógeno heterocíclico procedente del metabolismo de aminoácidos, si su fuente proviene  de otro modo (sintética) suele denominarse pseudoalcaloide como lo es la solanina.

Resultado de imagen para solanina

  • a) Alcaloides verdaderos: Metabolitos secundarios que poseen un nitrógeno heterocíclico, y su esqueleto de carbono proviene, parcial o totalmente, de un aminoácido proteico.
  • b) Pseudoalcaloides: Metabolitos secundarios que poseen un nitrógeno, pero que no han sido biosintetizados a partir de aminoácidos sino que se forman por transferencia de nitrógeno en forma de amoniaco a un compuesto de origen terpénico, esteroide, policétido, monosacárido o a un ácido graso.

EL OPIO

Imagen relacionada

    El opio es el jugo deseado de la cápsula de la adormidera, la que contribuyó en el símbolo de Morfeo, dios griego del sueño. Dentro de botánica sistemática esta planta es de la familia Papaver somniferum.

Fuente: http://www.tropicos.org/Image/100010998?langid=66

    El jugo es extraído por incisiones en las cápsulas no maduras de las que brotan pequeñas lágrimas blanquecinas (como muestra la imagen) que se oscurecen al reaccionar con el aire que lo hace oxidar brevemente. Se amasan en panes y que según menciona la literatura, desde la antigüedad este olor es verdaderamente repugnante.

Resultado de imagen para opio significado

    El opio en bruto contiene muchos alcaloides como: morfina, narcotina, papeverina, codina, protopina, laudamina; siendo la morfina quizás el mas abundante.

Resultado de imagen para opio en bruto
Refinado del Opio

MORFINA

Resultado de imagen para morfina

     El uso NO terapéutico de la morfina, induce a la morfinomanía, que en la actualidad puede resultar difícil adquirirlo; debido a que las farmacias o droguerías, solo es suministrable por prescripción médica. Derivado de la morfina es la heroína que químicamente es la Diacetilmorfina.

Resultado de imagen para heroina
Heroína

   Esta droga a su vez, fisiológicamente hablando, tiene  una acción tóxica más poderosa, en un rango de unas 5 veces superior a la morfina y produce la heroinomanía.

   Los derivados de la morfina ocurren regularmente en los grupos OH (hidroxilo), para generar éteres derivados acetilados. Nótese los núcleos del fenantreno y de la fenil piridina.

Resultado de imagen para fenantreno

     La morfina tiene acción hipo analgésica por lo cual interviene o bloquea la conducción de las sensopercepciones,. normalmente dolorosas, esto genera sueño específicamente y es utilizado como anlagésico por su capacidad de aliviar el dolor principalmente en personas que han sido sometidas a intervenciones quirúrgicas o en pacientes cancerosos así como en pacientes con enfermedades catastróficas que experimentan intensos dolores. La Heroína tiene  una acción más potente que la morfina, la razón puede deberse a la actividad química que se puede generar desde su estructura. El dato curioso es que el opio puede suministrarse en forma de pan (comida), como bebida o simplemente tomándolo; el opiómano experimenta exaltaciones de fantasía, se ve transportado a un mundo de mil maravillas, incluye visiones fantásticas por lo tanto y de forma general recrea en su mente un paraíso artificial o más bien dicho menta. El consumidor se queda quieto o contemplativo, lo que es una claro síntoma en personas dependientes.

Referencia Bibliográfica:

*Armendaris Gerardo. Química Orgánica. (2009). Los Alcaloides. Editorial Maya. Quito Ecuador. pp.243-244

Desarrollo de la productividad agraria convencional y su aporte al medio ambiente y la salud humana.

Jessenia Jiménez *

Estudiante de Química de Alimentos

Fac. Ciencias Químicas- UCE  

     Actualmente, los cultivos agrícolas convencionales son sistemas que usan tecnologías disponibles, mismos que están en constante evolución, existe una tendencia por el consumos de productos orgánicos, puesto que se considera que los convencionales, al contener químicos son perjudiciales para la salud y el medio ambiente, a su vez existe desconocimiento por parte de los consumidores sobre los avances que han ido surgiendo para desarrollar este tipo de producción que no es del todo gris como se la estigmatiza. Generalmente se ignoran las ventajas que hay para el ser humano cuando existe control sanitario de los productos que se consumen, debido a esto, el presente ensayo analizará si existe la posibilidad de que los cultivos convencionales generen beneficios en la salud humana y en el medio ambiente, desarrollando una mayor productividad de estos, por lo cual, en las siguientes líneas  se expondrá la preferencia de las personas frente a los cultivos convencionales, los avances en su producción y las ventajas que estos ofrecen para el consumidor.

Resultado de imagen para DDTA inicios del siglo XX comenzó el uso de diversos químicos en los cultivos agrícolas con el fin de aumentar la cantidad y calidad del producto con el fin de cumplir con la meta de alimentar a la población de ese entonces, sin embargo estos causaron graves estragos a largo plazo en el medio ambiente, el uso de pesticidas se elevó como por ejemplo de DDT (dicloro difenil tricloroetano) que actualmente pertenece a la negra lista de los COP’s (compuestos orgánicos prohibidos), por parte de los agricultores debido al desconocimiento de los niveles de toxicidad de esas sustancias y la aparición de enfermedades crónicas como el cáncer, principalmente en piel dado por la exposición con químicos que conforman estas sustancias plaguicidas,  estos efectos ampliamente conocidos han hecho que, en la actualidad los consumidores prefieran productos orgánicos, o bueno por lo menos que procedan de alguna fuente agrícola no contaminante, pero esto ha ido cambiando a lo largo de los años, el desarrollo de tecnologías para la agroindustria; amigables al medio ambiente, acompañado de políticas de control a los agricultores y sus prácticas por parte de entidades públicas y privadas han hecho que los productos convencionales mejoren y sean más rentables y seguros que los orgánicos. (Bruulseman, 2012).

Resultado de imagen para cultivos organicosGeneralmente, las personas piensan que los cultivos orgánicos al estar en auge han logrado mayores avances en pro de la humanidad, sin embargo es algo que visto objetivamente aún puede estar alejado de la verdad ya que según varios estudios se ha visto lo contrario, por ejemplo, un producto orgánico tiene mayor costo y es menos rentable que un cultivo convencional, al momento de cultivar un producto orgánico este utiliza fertilizantes y abonos naturales degradados de materia orgánica que muchas veces no son bien tratados; por ejemplo: usted que es un consumidor, confiaría en un producto “orgánico” que utilizó en su desarrollo heces fecales de animales varios; de fondo verdaderamente ese no es el problema, sin embargo dicho “abono” está sujeto a diversos riesgos, por citar un ejemplo la posibilidad de proliferación de parásitos y hongos procedentes de dicho “abono natural”, y lo que es peor ¿confía usted en sus propias prácticas al momento de manipular alimentos en casa? Un dato revelador de la Universidad Nacional Autónoma de  México, en su portal del Departamento de microbiología y parasitología, se afirma que una de las principales causas de infección atribuida al toxoplasma gondii se debe al consumo de carne con coquistes del parásito, o a su vez por cultivos de hortalizas que hayan estado expuestas al paso de roedores o aves portadoras del parásito y que hayan dejado heces fecales en el producto y no como injustamente se ha mitificado a la figura de los felinos domésticos entorno a la toxoplasmosis. (UNAM, 2017).

Resultado de imagen para toxoplasma gondii ciclo de vida
Ciclo de vida del toxoplasma

Al usarse insumos complejos que son de costo elevado, a comparación de los cultivos convencionales, este utiliza pesticidas herbicidas y plaguicidas sintéticos que ya han pasado por un proceso de certificación que avalan su seguridad, utilizando materiales de siembra sencillos lo que hace que sean más baratos de producir. El tiempo de producción de un cultivo orgánico es mayor,  muchas veces no solventa la demanda, en cambio los convencionales han logrado que, dependiendo de la semilla, el tiempo de germinación sea menor y el resultado final tenga una mejor calidad, de esta manera se puede afirmar que estos han logrado mayores avances  a lo largo del tiempo. (Caza, 2014).

 

Resultado de imagen para agricultura
Drones para la agricultura

En los últimos años, los cultivos convencionales han ido mejorando en cuanto a productividad, seguridad sanitaria y ambiental se refiere. El uso de fertilizantes, herbicidas, plaguicidas en los cultivos convencionales ha ayudado a los agricultores a aumentar su producción, haciendo que el tiempo de cultivo reduzca y los productos obtenidos sean de mejor calidad, es así que los avances en los químicos utilizados para este tipo de producción han logrado que exista menor contaminación al suelo y al aire utilizando compuestos bio-degradables y técnicas para prevenir la erosión del suelo de la misma forma se ha comprobado que usando plaguicidas en estos productos se ha reducido el riesgo de contagio en los consumidores de enfermedades producidas por microorganismos patógenos comunes en las zonas donde se han realizado los cultivos. (Cartago, 2012).

Resultado de imagen para granjas circulares
Cultivos circulares en zonas desérticas (Egipto)

Por todo lo dicho anteriormente está claro que por lo general, el consumidor aún no tienen una idea clara en cuanto al desarrollo de productos convencionales se refiere pero, se ha podido comprobar que estos buscan ser más seguros y saludables que los productos orgánicos ya que se acogen a normas técnicas de producción, así también estos han tenido mayores avances tanto en tecnología, modo de siembra, y conciencia social porque han podido generar compuestos que utilizados de manera adecuada han generado productos ideales para solventar la demanda alimentaria, a la vez que han creado mayor rentabilidad para los agricultores y precios bajos para los consumidores sin perder su calidad, no con ello se desconoce el poder de las grandes industrias que poseen un gran poder hegemónico y monopólico en la producción agropecuaria que pueden tener intereses económicos por encima de los intereses de salud pública, sin embargo se concluye de manera amigable que la tecnología puede ser una gran aliada para la agroindustria en beneficio del ser humano, puede ser una herramienta de apoyo y aprendizaje para el cultivo orgánico no masivo y masivo, no se pretende estigmatizar colateralmente a las granjas orgánicas, sino más bien sentar un precedente que concentre esfuerzos por la salud pública  y por la lucha de prácticas adecuadas de manejo de alimentos y de  técnicas de producción a pequeña, mediana y gran escala. Los químicos no son lo enemigos, ni los agricultores que los utilizan; el enemigo siempre será el desconocimiento y el uso inadecuado de los mismos, a su vez lo orgánico no es precisamente malo, de forma simultanea enfrenta la desinformación y está sujeto a malas prácticas de manufactura. El consumidor de las sociedades modernas requiere satisfacer no solo su consumo propiamente dicho, si no deberá generar conciencia de consumo, un consumo responsable nos conducirá a una producción agropecuaria más responsable sea de tiente orgánico como de carácter convencional.

Resultado de imagen para agricultura

BIBLIOGRAFÍA

 

ESPECTROSCOPIA UV-Visible (UV-VIS).

¿De qué se trata?

La espectroscopia UV-Vis está basada en el proceso de absorción de la radiación ultravioleta-visible (radiación con longitud de onda comprendida entre los 160 y 780 nm) por una molécula. La absorción de esta radiación causa la promoción de un electrón a un estado excitado. Los electrones que se excitan al absorber radiación de esta frecuencia son los electrones de enlace de las moléculas, por lo que los picos de absorción se pueden correlacionar con los distintos tipos de enlace presentes en el compuesto. Debido a ello, la espectroscopia UV-Vis se utiliza para la identificación de los grupos funcionales presentes en una molécula. Las bandas que aparecen en un espectro UV-Vis son anchas debido a la superposición de transiciones vibracionales y electrónicas.Imagen relacionada

La espectrometría ultravioleta-visible o espectrofotometría UV-Vis implica la espectroscopia de fotones en la región de radiación ultravioleta-visible. Utiliza la luz en los rangos visible y adyacentes (el ultravioleta (UV) cercano y el infrarrojo (IR) cercano.En esta región del espectro electromagnético, las moléculas se someten a transiciones electrónicas.

Esta técnica es complementaria de la espectrometría de fluorescencia, que trata con transiciones desde el estado excitado al estado basal, mientras que la espectrometría de absorción mide transiciones desde el estado basal al estado excitado.La espectrometría UV/Vis se utiliza habitualmente en la determinación cuantitativa de soluciones de iones metálicos de transición y compuestos orgánicos muy conjugados. (Anónimo, espetrometría.com, s.f.)Resultado de imagen para ? espectroscopia uv vis

Se investiga la distribución de electrones, en especial en moléculas que tienen sistemas de electrones π conjugados.La principal aplicación de la espectroscopia de UV-VIS, la cual depende de transiciones entre niveles de energía electrónica, es para identificar sistemas de electrones p conjugados.

 

¿Cómo se visualiza el registro de la alteración de los electrones?

Imagen relacionada

Imagen relacionada

Compuestos orgánicos

Los compuestos orgánicos, especialmente aquellos con un alto grado de conjugación, también absorben luz en las regiones del espectro electromagnético visible o ultravioleta. Los disolventes para estas determinaciones son a menudo el agua para los compuestos solubles en agua, o el etanol para compuestos orgánicos solubles. Los disolventes orgánicos pueden tener una significativa absorción de UV, por lo que no todos los disolventes son adecuados para su uso en espectrometría UV. El etanol absorbe muy débilmente en la mayoría de longitudes de onda. La polaridad y el pH del disolvente pueden afectar la absorción del espectro de un compuesto orgánico. La tirosina, por ejemplo, aumenta su máximo de absorción y su coeficiente de extinción molar cuando aumenta el pH de 6 a 13, o cuando disminuye la polaridad de los disolventes.

Resultado de imagen para espectros uv vis bandas

La ley de Beer-Lambert establece que la absorbancia de una solución es directamente proporcional a la concentración de la solución. Por tanto, la espectrometría UV/VIS puede usarse para determinar la concentración de una solución. Es necesario saber con qué rapidez cambia la absorbancia con la concentración. Esto puede ser obtenido a partir de referencias (las tablas de coeficientes de extinción molar) o, con más exactitud, determinándolo a partir de una curva de calibración.

Cada sustancia tiene un espectro de absorción característico que dependerá de la configuración electrónica de la molécula, átomo o ión y de los posibles tránsitos electrónicos que se puedan producir con la radiación que incide sobre ella. (Anónimo, ocw.uc3m.es, s.f.)

Resultado de imagen para espectros uv vis bandas

Resultado de imagen para espectros uv vis bandas

Ejemplo:

En la figura 13.37 se muestra el espectro de UV del dieno conjugado cis, trans-1,3-ciclooctadieno, medido en etanol como el disolvente. Como es típico en la mayoría de los espectros de UV, la absorción es bastante ancha y con frecuencia se habla de ella como 13.374.pnguna “banda” en lugar de como un “pico” o “señal”. La longitud de onda en un máximo de absorción se conoce como la lmáx de la banda. Para el 1,3-ciclooctadieno su lmáx es de 230 nm. Además de la lmáx, las bandas de UV-VIS se caracterizan por su absorbancia (A), la cual sirve para medir la radiación que es absorbida cuando pasa a través de la muestra. Para corregir los efectos de la concentración y la longitud de la trayectoria, la absorbancia se convierte en absortividad molar (P) dividiéndola entre la concentración c en moles por litro y la longitud de la trayectoria l en centímetros.

En la figura se ilustra la transición entre estados de energía electrónica responsables de la banda de UV de 230 nm del cis, trans-1,3-ciclooctadieno. La absorción de la radiación oct66.pngUV excita un electrón del orbital molecular más alto ocupado (HOMO) al orbital molecular de más bajo desocupado (LUMO). En alquenos y polienos, tanto el HOMO como el LUMO son orbitales tipo p (en lugar de s); el HOMO es el orbital p de mayor energía y el LUMO es el orbital p* de menor energía. La excitación de uno de los electrones p a partir de un orbital p de enlace a un orbital p* de antienlace se conoce como transición p → p*.

 Resultado de imagen para espectros uv vis bandas

Bibliografía:

 

 

¿Sabía Ud. Qué… los radicales libres contribuyen al envejecimiento?

Los radicales libres pueden jugar un papel importante en las enfermedades y el aceleramiento del envejecimiento. pero ¿Qué son los radicales libres? Pues bien se denomina como radical o radical libre a una especie química, átomo propiamente dicha con electrones desapareados y su nombre se debe a que al electrón libre  o impar se le denomina electrón radical o electrón impar. En resumidas palabras un radical es una especie carente de electrones, porque no alcanza el octeto.

¿De qué manera se relacionan estos radicales libres con el envejecimiento?

Resultado de imagen para radicales libresEn el transcurso de la vida diaria, las especies de oxigeno reactivo que se encuentran en el medio ambiente y que se producen en el interior del cuerpo humano en el proceso de respiración (intercambio gaseoso); estas especie se descomponen, dando lugar a radicales hidroxilo de vida corta. El problema radica en que el R. Hidróxilo durante su corta estancia en el interior del ser humano puede reaccionar con diversas proteínas e incluso con el mismo ADN celular. El daño que producen es acumulativo y puede dar lugar a enfermedades cardíacas, cáncer y envejecimiento prematuro.


 

¿SABÍA UD. QUÉ SON LOS VOC’s?

Los compuestos orgánicos volátiles, a veces llamados VOC (por sus siglas en inglés), o COV (por sus siglas en español), se convierten fácilmente en vapores o gases. Junto con el carbono, contienen elementos como hidrógeno, oxígeno, flúor, cloro, bromo, azufre o nitrógeno.

La combustión incompleta de la gasolina y otros combustibles (Fósiles), de los motores de explosión, libera cantidades significativas de compuestos orgánicos volátiles (VOC, Volatile Organic Compounds) a la atmósfera. Los VOC estan formados por cadenas de alcanos cortas, alquenos, compuestos aromáticos y otros hidrocarburos. Los VOC son contribuyentes importantes a la contaminación del aire y originan enfermedades cardíacas y respiratorias.

Algunos ejemplos de compuestos orgánicos volátiles son:
Naturales: isopreno, pineno y limoneno
Artificiales: benceno, tolueno, nitrobenceno
Otros ejemplos son el formaldehído, clorobenceno, disolventes como tolueno, xileno, acetona, y tetracloroetileno (o percloroetileno), el principal disolvente usado en la industria de lavado en seco.
Muchos compuestos orgánicos volátiles se usan comúnmente en disolventes de pintura y de laca, repelentes de polillas, aromatizantes del aire, materiales empleados en maderas, sustancias en aerosol, disolventes de grasa, productos de uso automotor y disolventes para la industria de lavado en seco.

¿SABÍA UD. QUÉ… existen vitaminas que en sobre dosis podrían matarlo?

La mayoría de vitaminas tienen grupos cargados, esta característica hace que sean en solubles en agua.  Como por ejemplo la vitamina C que normalmente es consumida como solucion. Sin embargo y como consecuencia de dicha solubilidad en agua, se eliminan rápidamente y generalmente no son tóxicas. Sin embargo y al hablar de la vitamina A y D químicamente son moléculas NO polares y son almacenadas en el tejido adiposo (graso) que como sabemos, también es un no polar, por lo tanto, estas dos vitaminas son o podrian ser potencialmente tóxicas en grandes dosis.

All-trans-Retinol2.svg
RETINOL (VITAMINA A)

¿Sabía ud. Qué… Los estereoisómeros tienen propiedades terapéuticas diferentes?

Los estereoisómeros en la química orgánica son isómeros que se diferencian en la orientación de sus átomos en el espacio; manteniendo el mismo orden en el que sus átomos se enlazan. Por isómeros se entiende que son compuestos diferentes, sin embargo poseen la misma formula molecular. Normalmente se los diferencia, según la posición que tengan, como Cis (mismas direcciones de sus enlaces de referencia) o Trans (direcciones opuestas de sus enlaces referencia). Esto es muy importante porque difieren entre si sus propiedades físicas y químicas.

La Quinina y la Quinidina son un ejemplo muy claro sobre estereoisómeros.

Ambas comparten la misma fórmula química: C20H24N2O2 

Por lo tanto comparten la misma masa molecular: 324.42 g/mol

Estas dos características nos conllevarían a pensar que son el mismo compuesto sin embargo son totalmente diferentes, veamos:

Reconozcamos sus estructuras:

275
QUIDININA
Quinine structure.svg
QUININA

 

 

 

 

 

 

 

Como podemos notar existe una notoria diferencia en la diseccionan de sus enlaces que conectan el grupo OH- así como el que une al heteroátomo (N). por lo tanto habrá que suponer que sus propiedades terapéuticas no serán las mismas:

QUININA: esta sustancia se obtiene aislando la corteza del árbol de la quina (Cinchona Officinalis)  es un alcaloide natural, blanco y cristalino, es un alcaloide natural, blanco y cristalino, con propiedades antipiréticas, antipalúdicas y analgésicas. Utilizado para el tratamiento de la malaria y malaria resistente. También se intentó utilizar para tratar pacientes infectados con priones, pero con un éxito limitado.  Es un compuesto empleado frecuentemente en la adulteración de la heroína.

Sustitutos:  quinacrina, cloroquina y primaquina.

QUINIDINA: (2-etenil-4-azabiciclo[2.2.2]oct-5-il)- (6-metoxiquinolin-4-il)-metanol) es un medicamento que actúa a nivel del corazón como agente antiarrítmico clase I y, químicamente, es un estereoisómero de la quinina. Se indica en el tratamiento de la frecuencia cardíaca anormal y otros trastornos del ritmo cardíaco, haciendo que el corazón sea más resistente a la actividad eléctrica anormal.

¿SABÍA UD. QUÉ… existe un tipo de soldadura submarina?

El acetileno se combina con oxígeno, y arde con  una llama intensa que tiene diversas aplicaciones. Se puede utilizar para soldar las piezas de un puente debajo del agua o para reparar las tuberías de un oleoducto en Siberia. Esto puede deberse a que tiene un triple enlace en su estructura dotándole de una naturaleza reactiva relativamente alta. Al ser un gas, que es altamente inflamable haciendo que su llama pueda llegar a los 3480°C.

¿Qué es y de qué está hecho el JARVIK 7 (CORAZÓN ARTIFICIAL)?

JARVIK 7

A continuación les presentaré los datos más relevantes sobre Jarvik 7:

*SU CREADOR: Robert Koffler Jarvik (n. 11 de mayo de 1946) científico y médico estadounidense. 611389341

*1963, año en que bajo registro de Paul Winchell se patentó por primera vez un corazon artificial dicha patente fue cedida a la Universidad de Utah, misma universidad donde R. Koffler crea el prototipo Jarvik-7; presentando en el grandes innovaciones a los modelos anteriores mediante uso de compuestos orgánicos que recubrieran las paredes internas permitiéndole adherir tejido vivo, dotando de un flujo mas natural de sangre.

*En 1982, el exitoso trasplante del doctor William DeVries a un paciente que sobrevivió 620 días con un Jarvik-7 permitió que todas las primeras planas de los medios se ocuparan del tema, considerándolo un hito en la medicina moderna.

*Su éxito le impulsó a Robert Jarvik a lanzar su propia compañía, Symbion Inc, la cual malogró a causa de sus escasas habilidades empresariales.

*Presentan una capacidad de 70 o 100 mL. Se conectan a las aurículas. Implantados en el cuadrante superior izquierdo abdominal y conectados a la consola mediante tubos percutáneos, por medio de los cuales cada ventrículo es regulado independientemente. Los conductos salen por vía percutánea debajo del arco costal lateral izquierdo, cerca de la línea axilar. Ambos ventrículos se colocan de manera que el derecho se encuentra a la izquierda del esternón y el izquierdo se ubica inferior y lateralmente al primero. En pacientes cuya caja torácica es pequeña, el ventrículo izquierdo debe colocarse en el espacio pleural para prevenir obstrucción del retorno venoso y permitir el cierre del esternón. El funcionamiento de los ventrículos es permanentemente monitoreado.

*La actividad de este dispositivo se realizaba mediante un compresor de aire, fuera del cuerpo del enfermo, de un tamaño grande, y con una fuente de energía, pero la vida del corazón artificial se veía limitada por las conexiones a dicha fuente, las cuales al parecer eran poco fiables y difíciles de desplazar.

MATERIALES Y COMPUESTOS UTILIZADOS EN LA FABRICACIÓN DE JARVIK-7

*Base: Aluminio ortopédico.

*Para sus 4 válvulas mecánicas: 2 de ellas flexibles elaboradas con poliuretano. Las otras dos con tubos del mismo material con dirección al pecho.

*Para el diafragma: también se utilizó poliuretano.(liso para la superficie)

n-poliuretano

Resultado de imagen para poliuretano MOLECULA

Representacion Molécular  3D de poliuretano

¿PORQUÉ EL POLIURETANO?

El poliuretano denominado también como PUR, es un polímero orgánico, normalmente es clasificado según su comportamiento frente a la temperatura, así tenemos poliuretanos termoestables (espumas, muy utilizadas como aislantes térmicos) y poliuretanos termoplásticos (elastómeros, adhesivos selladores de alto rendimiento, suelas de calzado, pinturas, fibras textiles, sellantes, embalajes, juntas, preservativos), estos últimos, utilizados en Jarvik 7, debido a la resistencia que presentaba en otros productos como son los preservativos.