Archivo de la etiqueta: Physics

“Las cinco primeras de la ciencia y el Nobel” EDITORIAL ESPECIAL MARZO 2019

Alejandro Alfredo Aguirre Flores.

EDITOR

TODOS LOS DERECHOS RESERVADOS © Copyright 2019

     Corría el 25 de marzo de 1911, había pasado prácticamente una semana desde el 19 de marzo del mismo año, cuando se llevó a cabo la primera conmemoración del “Día internacional de la mujer” en Alemania, Austria, Dinamarca y Suiza; 123 jóvenes trabajadoras junto con otros 23 varones, todos empleados de la camisería neoyorquina Triangle Shirtwaist; la mayoría migrantes guiadas por las promesas de libertad y justicia sin embargo, fueron víctimas de uno de los crímenes de género más vergonzosos de la historia de la humanidad, muriendo en medio de un incendio en la fábrica sin mínima posibilidad de escape, puesto que habían sido encerradas por su patrón.

Durante la primera Guerra Mundial la lucha por la igualdad de género continuó, así como la reivindicación de la mujer en la sociedad que se libró en múltiples escenarios llevando consigo la voz de cientos de miles de mujeres que empezaron a luchar mucho antes del fatídico incendio de New York, como lo fue la denominada “Huelga de las Camiseras” en 1909, donde se levantaron en contra de la explotación laboral, cerca de 20000 mujeres trabajadoras textileras dirigidas por la valiente Clara Zetkin (sindicalista).  Finalmente, tras años de lucha la actriz polaca Beata Pozniak, reivindica en el Congreso de Estados Unidos el reconocimiento del Día Internacional de la Mujer en USA, el 8 de marzo de 1994, para finalmente en 2011, conmemorar el centenario de lucha del Día Internacional de la Mujer, operando desde entonces “ONU Mujeres” a favor de la equidad de género en todo el mundo, sin embargo, la movilización de mujeres no se ha detenido y tras  ocho años desde el centenario, el escenario no parece haber cambiado mucho, lastimosamente el rol de la mujer se ve atentado, los índices de femicidio en América Latina y el mundo parecen ir en aumento y en pleno siglo XXI hablar de violación y esclavismo no parece ser tema del pasado.

Resultado de imagen para Clara Zetkin

El pasado 8 de marzo del 2019, se conmemoró un año más de lucha, un año más que no tiene, lastimosamente, sabor a fiesta, sino más bien un silencio luctuoso por las voces de tantas mujeres que día a día mueren y son víctimas de una sociedad injusta y fría. Hoy el escenario de lucha nace en nuestros hogares y la llave maestra para encontrar la verdadera igualdad, es la educación, por esta razón Mi Septiembre Rojo, se une la conmemoración y rinde su homenaje mediante este editorial del mes de marzo a las mujeres, que desde las aulas, los laboratorios y la ciencia reivindican con su esfuerzo la verdadera posición y rol de la mujer en la sociedad. Pensando en ello qué mejor sino rendir homenaje a las cinco primeras mujeres que transformaron la ciencia y se han alzado con el Nobel en sus manos, ratificando que la mujer es y será siempre capaz de alcanzar sus aspiraciones.

Bienvenidos

 

UNO

Marie Skłodowska, el primer nobel por la igualdad de género

Resultado de imagen para marie curie

Corría el año de 1910 y la física para entonces se constituía como privilegio de varones, ese año se veía nacer uno de los tratados científicos más importantes y respetados de la ciencia, el tratado sobre la  radiactividad, es el fruto de las investigaciones realizadas junto con su esposo Pierre Curie y Henri Becquerel, quienes en 1903 ganan el Nobel de Física en reconocimiento a los extraordinarios servicios que han prestado con sus investigaciones conjuntas sobre los fenómenos de la radiación, siendo así que Marie Curie se convierte en la primera mujer galardonada con el Nobel [1]. Al ser la pionera del estudio de la radiactividad, lo que fue determinante en el estudio de la estructura atómica de la materia; años más tarde en 1911, se convierte en la ganadora del Premio Nobel a la Química por el descubrimiento del Radio y el Polonio en 1898, llegando a la conclusión de que la radioactividad reside en los átomos de cada elemento, convirtiéndose de esta manera en la Primera mujer en ganar un premio Nobel en la Química, la primera y única mujer en ganar dos premios Nobel en la historia de la humanidad en dos ciencias diferentes (Física y Química) (hasta el momento sería la única persona en conseguirlo) y a la vez se convierte en la primera y cuarta mujer galardonada con este reconocimiento, todo un orgullo para Francia y Polonia, puesto que poseía ambas nacionalidades.

Resultado de imagen para marie curie solvay conference

DOS

El legado de los esposos Curie: Irène Joliot-Curie

El octavo Nobel entregado a una dama fue nada más y nada menos que para el legado de los esposos Curie, su hija Irène Joliot-Curie, igual que su madre, Irène se convierte en la segunda mujer en ganar un Nobel para la ciencia, desde su madre se habían otorgado tres galardones a mujeres relacionadas con la Literatura y la Paz, sin embargo, Irène como su madre rompe el molde, dándole a Francia su siguiente Nobel a la Química en 1935, de la mano de su esposo Frédéric Joliot. Ambos habían continuado los estudios de Marie y Pierre Curie, en la Universidad de París, logrando ser los primeros en sintetizar nuevos elementos radiactivos (Radiactividad Artificial) [2]. Mérito que se logró en medio de la primera Guerra Mundial, la trascendencia de su trabajo fue que se permitiera con sus investigaciones la instalación de unidades de rayos X en los distintos hospitales militares. Tras la muerte de su madre y después de huir a Suiza en la Segunda Guerra Mundial, retorna a París a dirigir el Instituto de Radio como sucesora de su madre, así como la Comisión de Energía Atómica Francesa. Finalmente, Irène como Marie, muere por leucemia ocasionada por una prolongada exposición a la radiación de los elementos que estudiaban.

Resultado de imagen para irene joliot curie
Irene Joliot-Curie charlando con Albert Einstein 

TRES

Gerty Theresa Cori y el misterio del glucógeno

Resultado de imagen para Gerty Theresa Cori

Tuvieron que pasar 12 años para que una científica vuelva a ganar un Nobel, esta vez en la categoría de Fisiología o Medicina. La checo-norteamericana Gerty Theresa Cori en 1947 se convierte en la duodécima (12º) mujer en merecer un Nobel y la tercera en un ámbito científico; Cori fue maestra en la Washington University School of Medicine, junto con su esposo Carl Cori, sus estudios inician cuando descubren un importante éster que se constituye como el primer paso en la transformación del glucógeno en glucosa [3].

Su descubrimiento los llevaría a formular un verdadero ciclo al que denominaría el ciclo de Cori en el cual el glucógeno hepático es transformado en glucosa sanguínea y finalmente pasaría a constituir glucosa muscular. Los esposos Cori compartieron el Nobel con su colega argentino, el Dr. Bernardo Houssay. Gerty se convierte de esta manera en la PRIMERA norteamericana en alcanzar el Nobel.

CUATRO

Maria Goeppert-Mayer, la Madre de San Diego que ganó el premio Nobel

Imagen relacionada

Goeppert sin duda es una de las mentes femeninas más brillantes de la historia, se constituye como la segunda mujer en ganar un premio Nobel a la Física, después de Curie. Maria Goeppert alcanza su galardón desde la física teórica en 1963 cuando propone el Modelo de capas nucleares. La historia de Goeppert-Mayer nació en las aulas, puesto que por sí misma, es la séptima generación consecutiva de profesores docentes universitarios de su familia de orígen aleman, su vida siempre giró entorno a la ciencia, su padre Friedrich Goeppert fue un brillante profesor de pediatría en la Universidad de Gotinga, misma a la que años más tarde, en 1924, ingresara con la intención de convertirse en matemática [4].

Los apasionantes escritos y publicaciones que se hacían en la época entorno a la física cuántica, que apenas nacía, fueron suficientes para enamorarla de este campo de la ciencia, obteniendo así en 1930 su doctorado en física teórica, posteriormente se trasladarían con Joseph Edward Mayer, su esposo, hasta Baltimore – Estados Unidos. Es importante mencionar que sentía profunda deuda con Max Born quien le había ayudado con su orientación científica y que años más tarde también seria premio Nobel. Karl F. Herzfeld se interesó por su trabajo, y bajo su influencia y la de su esposo, Joseph Edward Mayer, se convirtió lentamente en una física química. Escribió varios artículos con Herzfeld y con su esposo, y comenzó a trabajar en el color de las moléculas orgánicas. Lastimosamente por ser mujer la consideraron molesta en múltiples centros de investigación, sin embargo, en 1946 en Chicago fue profesora en el Departamento de Física y en el Instituto de Estudios Nucleares donde no fue sino aceptada de brazos abiertos y no tardó en encontrar su camino allí, donde conoció al mismísimo Enrico Fermi y Edward Teller con quieres discutió mucho acerca de la física nuclear; en 1948 trabaja entorno a los números mágicos.

Resultado de imagen para Maria Goeppert-Mayer
Maria Goeppert-Mayer Nuclear Physicist

En su tesis doctoral calculó la probabilidad de que un átomo sea capaz de absorber dos fotones simultáneamente y excitar al átomo tal como lo haría un solo fotón con energía igual a la suma de energía de ambos fotones. Su teoría fue confirmada experimentalmente en la década de 1960 con el advenimiento del láser. De acuerdo con la física moderna, un átomo consiste en un núcleo formado por nucleones, protones y neutrones, rodeado de electrones distribuidos dentro de capas con un número fijo de electrones. Se hizo evidente que los núcleos atómicos en los que el número de nucleones correspondía a las capas de electrones completos son especialmente estables. En 1949, Maria Goeppert Mayer y Hans Jensen desarrollaron un modelo en el que los nucleones se distribuían en depósitos con diferentes niveles de energía. El modelo reflejaba observaciones de direcciones en las que los nucleones giraban alrededor de sus propios ejes y alrededor del centro del núcleo [4].

Cuando la Real Academia de las Ciencias de Suecia anunció que había ganado el premio Nobel, un periódico local de San Diego encabezó la noticia con la frase «Madre de San Diego gana el premio Nobel»

Desde 1960, Goeppert-Mayer fue nombrada para un puesto como profesora (a tiempo completo) de Física en la Universidad de California en San Diego y se trasladaron a vivir a la vecina localidad de La Jolla. A pesar de que sufrió un derrame cerebral poco después de llegar allí, continuó enseñando e investigando durante varios años.

En su discurso de aceptación Goeppert-Mayer dijo: «Ganar el premio ha sido la mitad de apasionante que hacer el trabajo».

 

CINCO

Dorothy Crowfoot Hodgkin, la transformadora de la química orgánica

Resultado de imagen para Dorothy Crowfoot Hodgkin

Ciudad del El Cairo-Egipto cuna de la gran Dorothy Crowfoot, nacida un 12 de mayo de 1910 en una colonia inglesa. Sus primeros años los vivió en Inglaterra junto con sus hermanas bajo los cuidados de su nodriza. Años más tarde se traslado a Cambridge donde trabajo con J. D. Bernal. Posterior a eso se traslada de regreso a Oxford donde ocupó una plaza de investigación y donde contrae nupcias con el Historiador Thomas Hodgkin. En 1947 es nombrada miembro de la Royal Society de Londres.

Su principal aporte científico es el desarrollo de la técnica de difracción de rayos x para la búsqueda de la estructura exacta de las moléculas, especialmente orgánicas. Escribió sobre los esteroles, vitaminas y antibióticos, en 1932. Determinó, en 1945 y 1954 respectivamente, la estructura del antibiótico penicilina y de la vitamina B12, que posee más de noventa átomos distribuidos en una estructura compleja. En 1969 descubre la estructura cristalina de la insulina, sustancia fundamental en la síntesis del fármaco que combate la diabetes mellitus, también descubre las estructuras de la lactoglobulina, ferritina y el virus del mosaico del tabaco; constituyéndose de esta manera como la pionera en la técnica de difracción de rayos x para la determinación de estructuras químicas de interés bioquímico encaminando los estudios en farmacología de la época. Finalmente, en 1964 fue galardonada con el Premio Nobel de Química por la determinación de la estructura de muchas sustancias biológicas mediante los rayos X. El trabajo de Hodgkin se consideró tan importante que se convirtió en la primera mujer, desde Florence Nightingale, a la que la Reina le concedió la Orden del Mérito.

Imagen relacionada

Incluyendo la edición 2017 y 2018 el premio Nobel ha sido entregado 844 veces a hombres, 24 veces a diversas organizaciones y tan solo 52 veces a mujeres, de ellas solo 20 han sido en torno a la ciencia siendo la primera Marie Curie, 17 mujeres han ganado un premio Nobel a la Paz y otras 14 a la literatura, como es evidente, la mujer ha jugado un papel fundamental en la ciencia en medio de tanta desigualdad, en el año 2009 fue el año en que más mujeres se alzaron con el Nobel con un total de cinco, y es por este número que el presente editorial tuvo por finalidad resaltar a las 5 pioneras en ganar este importante galardón en torno a la ciencia. Nikola Tesla entorno al rol de la mujer menciono: “no es con la imitación física superficial de los hombres como las mujeres afirmarán su igualdad, primero, y su superioridad después, sino mediante el despertar del intelecto de la mujer”. Por esta razón y esperando este artículo sirva para inspirar especialmente a niñas y jóvenes en la ciencia Mi Septiembre Rojo, la saluda y las invita a apoderarse de la verdadera lucha por la igualdad de género y oportunidades para todos y todas, la educación sea la herramienta y camino que nos conduzca a la verdadera libertad y es desde el seno materno o desde la esencia de la mujer; el trascender de los conocimientos de cada generación junto con el verdadero desarrollo humano, científico y social esta también en sus manos. Esperando que este editorial haya sido de su total agrado nos despedimos con esta bella frase: “La ciencia es bella y es por esa belleza que debemos trabajar en ella, y quizás, algún día, un descubrimiento científico como el Radio puede llegar a beneficiar a toda la humanidad” Madame Curie.

Referencias

[1]

CSIC, «Marie Salomea Skłodowska Curie,» Ministerio de Ciencia, Innovación y Universidades (ESPAÑA), 2010. [En línea]. Available: http://www.kids.csic.es/cientificos/curie.html. [Último acceso: 7 Marzo 2019].
[2] Clickímica, «Irene Joliot-Curie,» Clickímica, 2010. [En línea]. Available: https://clickmica.fundaciondescubre.es/conoce/nombres-propios/irene-joliot-curie/. [Último acceso: 2019].
[3] © Biografías y Vidas, «Gerty Theresa Cori,» © Biografías y Vidas, 2004. [En línea]. Available: https://www.biografiasyvidas.com/biografia/c/cori_gerty.htm. [Último acceso: 2019].
[4]

The Nobel Lectures, «THE NOBEL PRIZE,» Elsevier Publishing Company-Maria Goeppert Mayer, 1963-1972. [En línea]. Available: https://www.nobelprize.org/prizes/physics/1963/mayer/biographical/. [Último acceso: 18 03 2019].

Imagen relacionada

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

EFECTO FOTOELÉCTRICO

  • Teoría de Maxwell

     James Clerk Maxwell fue un físico escocés nacido en 1831 que desarrolló la teoría electromagnética a través de experimentos y observaciones sobre la electricidad, magnetismo y la luz. Propuso que estos tres elementos son parte de un mismo “campo electromagnético” y que la causa de todo magnetismo era un movimiento de carga eléctrica, y estas cargas a su vez si circulan en el mismo sentido, se atraen, si circulan en sentido contrario, se repelen. Estas ondas electromagnéticas viajaban a la misma velocidad de la luz, con lo que se comprobó que la luz era una onda electromagnética. Este físico logró resumir todo a teoría de la electricidad y magnetismo en 4 ecuaciones basadas en las  leyes de Coulomb, Ampère, Faraday, Gauss, entre otros.

Resultado de imagen para maxwell

Dichas ecuaciones se resumen a continuación:

Resultado de imagen para Ecuaciones de Maxwell

  • La primera, ley de Gauss de la electricidad, relaciona el campo eléctrico con las cargas eléctricas.
  • La segunda, ley de Gauss del magnetismo, relacionada con el campo magnético, permite llegar a la conclusión de que no existen polos magnéticos aislados.
  • La tercera, ley de Ampere, plantea que a un campo magnético fluctuante le es inherente un campo eléctrico.
  • La cuarta, ley de Faraday, plantea que a un campo eléctrico fluctuante (o a una corriente eléctrica) le es inherente un campo magnético.
  1. Años después el físico alemán Heinrich Hertz después de comprobar las leyes de Maxwell, durante sus experimentos observó una chispa eléctrica podía saltar más fácilmente entre dos esferas cargadas cuando sus superficies eran iluminadas por la luz, así descubrió el efecto fotoeléctrico en 1887.

El efecto fotoeléctrico es la emisión de electrones de un metal cuando se hace incidir sobre él una radiación electromagnética.

“Debido a que los metales contienen electrones libres, se determinó que los electrones pueden extraerse de los metales utilizando los diferentes  mecanismos”. (Martínez, 2007)

  1. Emisión termoiónica (efecto Edison). Los son emitidos al calentar la superficie del metal.
  2. Emisión secundaria. Partículas energéticas incidentes sobre algunos materiales, liberan algunos electrones aun a otros electrones de la superficie
  3. Emisión de campo. Un campo eléctrico intenso extrae electrones de la superficie de un metal
  4. Efecto fotoeléctrico. Luz incidente sobre un metal que expulsa electrones

Cuando los fotones caen sobre una superficie metálica puede pasar:

  1. Los fotones son reflejados
  2. Los fotones desaparecen cediendo toda su energía para sacar los electrones

Resultado de imagen para efecto fotoeléctrico gif

Paquetes de Quantos de Energía

La energía de la luz no se distribuye de forma uniforme sobre el frente de onda clásico, sino que se concentra en regiones discretas denominados cuantos, cada uno con una energía específica hf y la energía de este se transfiere  totalmente a un electrón en el metal donde incide el haz de luz. La energía cinética máxima de los fotoelectrones (electrón emitido del metal) liberados no depende de la intensidad de la luz incidente. La intensidad de un haz de luz depende de la cantidad de fotones presentes, mientras que la energía de cada uno de esos fotones tiene relación con la frecuencia. Como se demuestra en la figura 2 el efecto foto eléctrico.

“El efecto fotoeléctrico no pudo ser explicado solamente con la teoría electromagnética de Maxwell, ya que se basaba en la suposición de que la energía radiaba en forma continua”. (Tippens, 2001)

Por lo que surge la hipótesis cuántica del físico alemán Max Planck en donde postuló que la energía electromagnética se absorbía o emitía en paquetes discretos o cuantos y donde su cantidad de energía era proporcional a la frecuencia de la radiación

E=hv

E= Energía del fotón

h= constante de Planck (6,625×10-34 J.s)

v= frecuencia del fotón

Einstein modifica esta teoría, ya que Planck la aplico sobre la base de la teoría ondulatoria. Así Einstein la aplico en su teoría del fotón:

hv=ϕ+Kmax

hv = energía del fotón absorbida por un solo electrón

ϕ = función de trabajo de la superficie emisora usada para hacer que el electrón escape de la superficie metálica.

hv-ϕ = exceso de energía cinética del electrón

Kmax = energía cinética máxima que el fotoelectrón puede tener fuera de la superficie.

Naturaleza dual de la  luz: corpuscular propuesta por Max Planck y ondulatoria de Maxwell

 Antecedentes sobre la naturaleza de la luz

La óptica, estudio de la luz, es una de las ramas más antiguas de la física y el intento de determinar cuál es su naturaleza ha dado lugar a grandes controversias. Para las civilizaciones antiguas, como la “escuela atomística”, hacia 450 a.C. postulaba que la visión se producía debido a la emisión de imágenes por parte de los objetos, y a través de los ojos llegaban a nuestra alma. La “escuela pitagórica”, unos años después, suponía al contrario, que la visión se producía por un fuego invisible que exploraba los objetos.

Resultado de imagen para escuela atomista

Basándose en la teoría anterior, Euclides hacia el 300 a.C. introduce el concepto de rayo (emitido por el ojo), la propagación rectilínea de la luz y la ley de la reflexión.

A finales del siglo XVI y comienzos del XVII se producen grandes avances en óptica como consecuencia de las aportaciones de Kepler (1571-1630)y Galileo (1565-1642).

En 1621 Snell descubre experimentalmente la ley de la reflexión y Descartes en 1638 en su “Óptica” enuncia las leyes de la reflexión y de la refracción, pero sin tener en cuenta cual era la naturaleza de la luz. Así lo afirma (Universidad Politécnica de Madrid, 2010)

Teoría ondulatoria de Maxwell

 En 1864 el físico y matemático inglés James C. Maxwell publicó la teoría electromagnética de la luz, en ella predecía la existencia de ondas electromagnéticas que se propagaban con una velocidad de 3 x 108 m/s, obtenida a partir de las leyes de la electricidad y magnetismo y que coincidía con el valor de la velocidad propagación de la luz. Con esto se confirmaba teóricamente que la luz no es una onda mecánica sino una onda electromagnética que puede propagarse sin necesidad de un medio material.

La comprobación experimental de la existencia de ondas electromagnética fue efectuada en 1887 por el físico alemán Hertz quien utilizando circuitos eléctricos generó y detectó dichas ondas. Las ondas electromagnéticas son, en el caso más sencillo, ondas armónicas transversales, constituidas por la oscilación de dos campos, uno eléctrico y otro magnético, de direcciones perpendiculares, siendo ambos a su vez perpendiculares a la dirección de propagación, que se propagan en el vacío a la velocidad de la luz. La velocidad de la luz en el vacío es una constante universal, como postuló Einstein en 1905. En 1963 el National Bureau of Standards oficialmente fija la velocidad de la radiación electromagnética en el vacío en 299.792,8 km/s. Para la mayoría de las aplicaciones, la velocidad de las ondas electromagnéticas es aproximadamente 300 000 km/s.

Resultado de imagen para Componentes de la onda Electromagnética
Componentes de la onda Electromagnética

Resultado de imagen para velocidad de la luz

La onda electromagnética está caracterizada por la magnitud frecuencia ν, o por la magnitud longitud de onda en el vacío λ0, relacionadas entre si por la velocidad de la luz en el vacío c:

c = ν λ0 ν = c/ λ0 λ0 = c/ν

Cuando una onda electromagnética pasa de un medio a otro de diferente densidad la frecuencia no varía, pero al variar la velocidad lo hace también la longitud de onda. Conclusión: la frecuencia de una onda siempre permanece constante. La relación entre las magnitudes frecuencia, longitud de onda y velocidad en un medio distinto del vacío, será análogas a las que existen en el vacío, pero con la velocidad y la longitud de onda que corresponden al referido medio:

v = ν λ ν = v/ λ λ = v/ν

Teoría corpuscular de la luz según Planck y Einstein

Resultado de imagen para max planck y albert einstein

El estudio de fenómenos como la radiación del cuerpo negro, el efecto fotoeléctrico y los espectros atómicos no se pudieron explicar con el modelo ondulatorio. Aunque la teoría ondulatoria explica la propagación de la luz, falla cuando se produce interacción con la materia. En 1900 Max Planck, para obtener la ley de radiación del cuerpo negro, supuso que la emisión de luz no es de forma continua sino por cuantos discretos.

La teoría cuántica de Plank permitió que en 1905, que A. Einstein explicara el efecto fotoeléctrico y llamó fotones a los corpúsculos luminosos. El fotón al igual que otras partículas lleva consigo energía y momento desde la fuente, pero a diferencia de otras partículas, tales como protones o electrones, no posee masa en reposo. La intensidad de la radiación luminosa es directamente proporcional al número de fotones presentes, y la energía contenida en un fotón o cuanto de radiación esta definida por:

E = h ν

donde E = energía de un fotón en julios (J) y h = constante de Planck = 6,626. 10 – 34 J.s

Se puede decir que los fotones de las diversas radiaciones se distinguen entre si por su energía proporcional a la frecuencia de la onda considerada. Se aceptaba que la luz se comportaba como una onda electromagnética en los fenómenos de propagación, y como un corpúsculo en los fenómenos de emisión absorción e interacción con la materia.

sssss
Resumen de la teoría Corpuscular

La Naturaleza dual de la luz actualmente

Resultado de imagen para La Naturaleza dual de la luz actualmente


La luz tiene una doble naturaleza, corpuscular y ondulatoria y en cada fenómeno concreto se manifiesta como onda o como corpúsculo. La complementariedad de los aspectos ondulatorio y corpuscular fue puesta de manifiesto por Luis de Broglie (premio Nobel en 1929) al establecer en 1924, que todo corpúsculo en movimiento (sea material, eléctrico o de cualquier naturaleza) lleva asociado una onda y que la intensidad de una onda en un punto, en un cierto instante, es la probabilidad de que el corpúsculo asociado esté en ese punto en el instante considerado. De esta forma fija la base de la Mecánica Cuántica desarrollada posteriormente por Schrödinger, Heisenberg, Born y Dirac, fundamentalmente.

UNIVERSIDAD CENTRAL DEL ECUADOR
FACULTAD DE CIENCIAS QUÍMICAS
QUÍMICA FARMACÉUTICA-QUÍMICA DE ALIMENTOS
ALEJANDRO AGUIRRE*; FERNANDA QUIROGA

Bibliografía

  • Martínez, J. E. (2007). Fisica Moderna Edicion Revisada. Atlacomulco : Pearson Educación.
  • Tippens, P. (2001). Física conceptos y aplicaciones. Chile : McGRAW-HILL INTERAMERICANA.
  • Giancoli, D. (2006). Física principios con aplicaciones. Acapulco: Pearson Educación.
  • Julián Fernández Ferrer, M. P. (1981). Iniciación a la física, Volumen Barcelona: Reverté.
  • Universidad Politécnica de Madrid. (2010). Apoyo para la preparación de los estudios de Ingeniería y Arquitectura. Madrid: Algabarra.

 

La Reina de la Ciencia del Carbono, Mildred Dresselhaus

Alejandro Alfredo Aguirre Flores. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

     Científica, maestra, investigadora y especialista física son solo unos pocos de los grandes logros que posee la Dra. Mildred Dresselhaus; una mujer que enaltece no solo a su género si no que reivindica la posición de la mujer en torno al mundo de la ciencia. El ambiente se remonta al corazón de New York  (Brooklyn),  siendo un 11 de noviembre de 1930, y de padres inmigrantes de origen polaco-judío, nace una promesa de la ciencia, Mildred Spiewak. Criada en el entorno festivo de las estrellas de Bronx, Mildred se ve Imagen relacionadairremediablemente cautivada por el mundo de la ciencia obteniendo en 1951 por el Hunter College (NY) su licenciatura en Física. En 1953, y tras recibir el sabio consejo de quien después sería premio Nobel, Rosalyn Yalow, quien le sugiere cursar estudios de posgrado en Harvard; Mildred obtiene en Radcliffe College & U. Harvard, su maestría en Física valiéndose de la beca Fulbright. Finalmente y en 1958, obtiene  su doctorado en la Universidad de Chicago, donde laboró junto al Nobel Enrico Fermi. Adicionalmente curso  dos años de postdoctorado en la Universidad Cornell. Ya en campo laboral se destaco en diferentes áreas, a continuación un recuento de sus diferentes puestos profesionales de mayor relevancia:

  • 1960-1967: Investigadora en Lincoln Lab.
  • 1967: Profesora visitante de ingeniería eléctrica en MIT (Massachusetts Institute of Technology).
  • 1968: Científica permanente en MIT.
  • 1983: Profesora de Física en MIT.
  • 1985: Primera mujer Profesora del MIT.
  • 1984: Presidente de la Sociedad Americana de Física (APS).
  • 1998: Presidente (primera mujer) de la AAAS (American Association for the Advancement of Science).
  • 2000-2001: Directora de la Oficina de Ciencia de Dpto. de Energía de USA.
  • 2003-2008: Miembro del consejo de gobierno de AIP (American Institute of Physics).
  • Tesorera de la Academia Nacional de Ciencias de USA.

“Cuando comencé mis estudios en Hunter College, se trataba de una institución eminentemente femenina, así que adquirí la idea de que las chicas podían estudiar Física exactamente igual que los chicos. Al llegar a la Universidad de Cambridge, éramos sólo unas pocas mujeres, pero nos defendíamos bien. No descubrí que se suponía que yo no debía dedicarme a la Física hasta que me incorporé a la comunidad científica general. Cuando me doctoré en 1958 me sentía muy sola, en aquel momento las mujeres sólo representábamos el 2% de los físicos”.

Mildred Dresselhaus

Al igual que su perfil por demás asombroso, y antes de hablar sobre su trabajo, es importante mencionar que Mildred Dresselhaus es por si misma un ìcono de las luchas sociales por la igualdad de género, defendía abiertamente la integración de la mujer en la ciencia, siempre lo dijo:

Resultado de imagen para mildred dresselhaus
https://mujeresconciencia.com/2015/11/11/mildred-dresselhaus/

…Tenía una plaza de investigación en MIT Lincoln Labs, y por supuesto éramos muy pocas mujeres, éramos dos entre cientos de hombres. Así que éramos menos, pero creo que nuestro trabajo era valorado. Y sigo en ello, porque me sigue interesando…

Y esa lucha hizo que Mildred sea reconocida, por lo menos entre las mujeres académicas. General Electric  en el 2017 (año de su deceso) lo reconoció buscando emplear 20000 mujeres con conocimientos pertenecientes a STEM (en castellano CTIM, ciencia, tecnología, ingeniería y matemáticas) para el 2020, con lo que se espera aumentar la plaza laboral para mujeres en áreas tecnológicas.

Resultado de imagen para mildred dresselhaus
http://www.cui.uni-hamburg.de/en/2017/02/mildred-dresselhaus-dies-at-86/

Quizás será recordada por siempre como “La Reina del Carbono”, dicha denominación se la otorgo en base a sus estudios sobre los comportamientos de este elemento para la formación de polímeros y transmisores de datos, hecho que sin duda revolucionaria el mundo de la informática. Ya más profundamente en torno a sus investigaciones, Dresselhaus fue pionera en el estudio de las formas exóticas (polimorfismo) de materiales derivados del carbono, como las laminas de grafeno, y las buckybolas o fullerenos (clusters de carbono). Escribió nada más y nada menos que 1700 publicaciones científicas además de 8 libros y los mas importante, tuvo el agrado de formar 60 nuevos doctores en su área. Sus investigaciones se basaron y aportaron fundamentalmente en el campo de la nanotecnología, que por cierto aún es una ciencia relativamente joven, también aporto en el estudio sobre capas finas y

Resultado de imagen para fullerenos
Cluster de Grafeno

adelantos en el campo de la física entorno a las capas de grafeno, es importante mencionar que actualmente las capas y laminas de grafeno son utilizadas actualmente en la fabricación de pantallas de smartphones, televisores de nueva generación, entre otros aparatos tecnológicos, la razón de sus estudios radicó en ciertas propiedades de este compuesto, como por ejemplo el hecho de ser extraordinariamente ligero y fuerte, mucho mas que el grafito e incluso puede ser comparado en sus características con el carbono en estado puro, se ha demostrado que un metro cuadrado de grafeno pesa 0.77 mg aproximadamente, además su fortaleza es 200 veces mayor que el acero  y por si fuera poco su densidad es similar a la de las fibras de carbono, estas características lo convierten en un material flexible, fuerte y liviano; lo que significo la revolucion en la siguiente generación de smartphones ya que gracias a ello se logró fabricar pantallas flexibles y delgadas. Conjuntamente estudio el comportamiento de otros compuestos orgánicos particularmente  con la finalidad de determinar potenciales eléctricos y formación de microestructuras.

Otro de sus más grandes aportes fue el descubrimiento del comportamiento de la estructura electrónica de ciertos semimetales lo que sirvió fundamentalmente para sus diversas investigaciones en nanomateriales y sistemas que permitieran a las nanoestructuras movilizarse a traves de campos electromagnéticos, estos sistemas a los que se denominaría como sistemas nanoestructurales, se basaron en materiales estratificados como los mismos fullerenos, dicalcogenuros y fosfenos. Antes de su muerte reactivó el estudio sobre transformaciones de energía termoeléctrica; tema en la actualidad se encuentra en debate científico. Lastimosamente y a una avanzada edad (86 años de edad) fallece el 20 de febrero del 2017. Dejando  un importante legado académico, una lucha incansable por la igualdad de genero lograda a través de la ciencia, y una basta y bien fortalecida base de estudio entorno a los materiales del futuro, conmemorando un año de su fallecimiento este blog le rinde tributo a tan distinguida científica que enaltece la aspiración del ser humano por conseguir un mundo mejor.

 

Imagen relacionada

A continuación una lista de todos los premios y honores que recibió:

OBRAS SELECCIONADAS 

REFERENCIAS LINCOGRÁFICAS:

Resultado de imagen para mujer cientifica gif

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

¿Qué son las Auroras Polares?

Las auroras polares son un fenómeno atmosférico luminoso verdaderamente hermoso, que pueden ser observadas sobre los polos de nuestro planeta Tierra. Cuando las partículas cargadas de las ondas electromagnéticas emitidas por el Sol, en sus explosiones, llegan arrastradas por el viento solar y chocan contra la magnetosfera (Campo electromagnético de la Tierra), como muestra la imagen siguiente, es aquí cuando se libera una cantidad grande de energía en forma de luces de diferentes colores, debido a que las longitudes de onda de estas emisiones va variando dentro del espectro de luz visible.

¿Cómo se producen las auroras?

Fijémonos en la imagen siguiente:

Las partículas procedentes del Sol, que es la estrella mas cercana a nuestro planeta, entran en la atmósfera terrestres sufriendo una desviación debida a la fuerza magnética de la Tierra. Como nuestro planeta tiene dos polos magnéticos, estas partículas se concentran alrededor de los polos Norte y Sur, produciendo el fenómeno luminoso.

Resultado de imagen para campo electromagnetico de la tierra

  • Las Explosiones en la corona solar desprenden gran cantidad de energía en forma de partículas con carga que conforman el viento solar. El viento solar arrastra partículas mas pequeñas que un átomo, cargadas eléctricamente: electrones protones y partículas alfa, actualmente se cree que también se encuentran particulas betas, y gamma. Estas partículas viajan a una velocidad de 450 Km/s y tarda dos días en llegar a la Tierra. AQUÍ UN VIDEO MUY BUENO SOBRE DICHAS PARTÍCULAS: mediatheque.lindau-nobel
  • Algunas partículas se desvian y siguen su viaje hasta chocar contra los campos electromagnéticos de otros planetas del sistema solar, o incluso ser absorbidas por otros cuerpos celestes.
  • La zona de formación de las auroras, está sobre los polos de la Tierra.
  • Las auroras se producen en la ionósfera, donde los átomos pierden sus electrones y se encuentran como partículas con carga, llamadas iones (cationes y aniones), que reaccionan al chocar con las partículas que arrastra el viento solar.
  • El campo Electromagnético de la Tierra o magnetósfera se deforma por acción del viento solar.

LA CIENCIA DETRÁS DE LOS HERMOSOS COLORES DE LAS AURORAS BOREALES

  • Los colores de la aurora dependen de la velocidad del viento solar y de las partículas que intervienen en el choque.
  • Las partículas solares más rápidas en cambio penetran de manera más profunda en nuestra atmósfera. Si el choque se produce con Oxigeno a unos 150 km sobre el nivel del mar las formaciones se verán de color amarillentos en todos sus diferentes tonos.
  • Cuando el viento solar es relativamente lento, los corpúsculos se quedan en las capas superiores de la atmósfera. En este caso, si la colision se produce fundamentalmente con atomos de oxígeno a unos 400 Km de altura o mas la aurora resultante será morada hasta el azul.
  • Las partículas más veloces que penetran hasta los 90 km por encima de nuestras cabezas, producen auroras rojas y azul muy brillantes al chocar fundamentalmente con nitrógeno.

Resultado de imagen para aurora boreal roja

LAS FORMAS DE LAS AURORAS 

Las auroras se muestran de formas diferentes, algunas son inmóviles y otras adquieren movilidad y color. A continuación se enumeran sus formas más conocidas:

  1. DE ARCO UNIFORME: Semejante a un arcoiris, con su borde inferior muy marcado; debajo se ve el cielo oscuro  y el punto más alto está en el meridiano magnético.
  2. DE ARCO RADIADO: Los rayos parecen trasladarse a lo largo del arco y aparecen colores cambiantes: rojos, blancos, rosados violáceos y verdosos.
  3. DE CORONA: El arco iluminado se cierra aveces en forma de círculo muy brillante, con centro en el meridiano magnético.Resultado de imagen para aurora boreal circular
  4. DE BANDAS: En ellas parecen que los arcos se mantuvieran colgados, como si fueran enormes banderas llameando en el cielo.Resultado de imagen para aurora boreal de bandas

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¿Cómo construir una pila voltáica a partir de limón y vinagre?

En los enlaces siguientes usted puede obtener más información:

VÍDEO COMPLETO DEL PROCESO

INFORME DE RESULTADOS PDF.

Un sistema electrolítico, es un sistema heterogéneo en el que hay una diferencia de potencial eléctrico entre dos o más fases (un ejemplo es una pila o batería). Se puede utilizar el vinagre para caracterizar un sistema electro-químico debido a que se puede establecer una diferencia de fases entre dos electrodos metálicos (ya sea cobre, zinc, grafito o una cinta de magnesio) que se ionizan en el ácido acético del vinagre transportando iones debido a las reacciones REDOX, obteniendo de esta forma una diferencia de potencial que generará una corriente eléctrica. Las características del vinagre como pila electro-química serán definidas a partir de la pila galvánica (o voltáica).
Una pila o celda galvánica es un sistema electro-químico multifásico en el que las diferencias de potencial en las interfaces originan una diferencial de potencial neta entre los terminales. Las fases de una pila galvánica deben ser conductores eléctricos, de otro modo no podrá fluir una corriente continua. El sistema de electrodos, consiste de dos o más fases conductoras eléctricas conectadas en serie, entre las cuales pueden intercambiarse transportadores de carga –iones o electrones- siendo una de las fases terminales un conductor electrónico (metal), y la otra electrolítica (solución de ácido acético). A todo este electrodo está asociada una reacción de transferencia o semireacción REDOX y debido a esta reacción es que puede pasar corriente eléctrica por él.
El potencial de una pila galvánica, es la diferencia del potencial eléctrico entre los dos conectores electrónicos externos de la pila, por ejemplo el electrodo de cobre. Si puede despreciarse el potencial de unión liquida (el de ácido acético), la diferencia de potencial
galvánico (o potencial interno) de los electrodos, por lo que al cerrar el circuito exterior habrá un flujo de electrones. Al momento que se cierra el circuito eléctrico exterior entre los electrodos circula una corriente eléctrica de forma espontánea ocurriendo en los electrodos las reacciones de transferencia o las semireacciones redox, El vinagre es un generador químico, pues transforma la energía química en energía eléctrica mostrando de esta manera que las diferentes formas de energía son interconvertibles entre sí.