Archivo de la etiqueta: aplicación química

Aplicaciones de los Ácidos Carboxílicos y sus derivados

Lucía Jaramillo Cando. [1]

Lesly Espinoza Buitrón. [1]

Alejandro Aguirre F. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

INTRODUCCIÓN

Los ácidos carboxílicos son compuestos orgánicos usados en procesos químicos e industriales, que naturalmente provienen de grasas, aceites vegetales, lácteos, frutos cítricos. Se caracterizan por estar formados por un conjunto de átomos unidos entre sí mediante enlaces covalentes carbono-carbono, denominado grupo carboxilo, que cuando se unen a otros elementos como hidrógeno, oxígeno o nitrógeno, integrando una infinidad de compuestos diferentes así lo menciona (Cornejo Arteaga, 2017). Químicamente los ácidos carboxílicos son una serie homóloga en la que los compuestos presentan este grupo funcional (-COOH) mientras que la formula general en la que se muestran dichos ácidos es: CnH2n+1COOH.
Los ácidos carboxílicos son derivados de hidrocarburos en los que uno o más de los átomos de hidrógeno del hidrocarburo han sido reemplazados por un grupo carboxílico. Los primeros cuatro ácidos carboxílicos derivados de los alcanos son el ácido metanoico (HCOOH), el ácido etanoico (CH3COOH), el ácido propanoico (C2H5COOH) y el ácido butanoico (C3H7COOH).
Los ácidos carboxílicos al ser de los compuestos más abundantes en la naturaleza ameritan un estudio minucioso que complemente la formación principalmente del estudiante de la carrera de Química de Alimentos; la función química de los ácidos carboxílicos es de carbono primario que contiene tanto al carbonilo, así como el hidroxilo en sí mismo, se nombran anteponiendo la palabra ácido con el sufijo oico.

Palabras clave: carboxilo, química, carbono, ácido, grupo, carboxílico.

DESARROLLO DE LA INVESTIGACIÓN

Importancia de los ácidos carboxílicos en las industrias.

En términos generales no solamente los ácidos carboxílicos son importantes, sino el grupo carboxilo, del cual se generan una gran cantidad de compuestos que son usados por diferentes sectores industriales como en la industria alimentaria:

• Aditivos, conservantes (ácido sórbico y benzoico), regulador de alcalinidad, agente antimicrobiano, acidulante en bebidas carbonatadas.
• Ayudante a la maduración del queso suizo (ácido propiónico), elaboración de col fermentada y bebidas suaves (ácido láctico).
• Conservantes (Ácido sórbico y ácido benzoico).
• Regulador de la alcalinidad de muchos productos.
• Producción de refrescos.
• Agentes antimicrobianos ante la acción de los antioxidantes. En este caso, la tendencia son los antimicrobianos líquidos que posibiliten la bio-disponibilidad.
• Principal ingrediente del vinagre común (Ácido acético).
• Acidulante en bebidas carbonatadas y alimentos (Ácido cítrico y ácido láctico).
• Ayudante en la maduración del queso suizo (Ácido propiónico).
• Elaboración de queso, chucrut, col fermentada y bebidas suaves (Ácido láctico).

Resultado de imagen para acidos carboxílicos

El ácido fórmico en las agroindustrias y alimentos.

La agricultura es una actividad económica de alto impacto e importancia para el ser humano en las sociedades modernas, y en torno al uso de ácido fórmico este sector representa un porcentaje elevado de consumo por sus propiedades antibacterianas.
El ácido fórmico es un químico irritante presente en el veneno pulverizado de algunas especies de hormigas y en la secreción liberada por algunas ortigas, así lo menciona el portal especializado (ACIDO CLORHIDRICO.org, 2010).

Resultado de imagen para acido formico

El ácido metanoico o ácido fórmico es un conocido conservante antimicrobiano y pesticida, siendo entonces un importante aliado del sector agrícola y alimentario. Sin embargo el mismo es muy peligroso en altas concentraciones; al ser empleado como agente antimicrobiano se puede controlar el aparecimiento de bacterias de origen industrial o agrícola, éste al ser consumido en mínimas cantidades no ocasiona intoxicación alguna en humanos ni animales, por lo tanto es empleado como aditivo en alimentos de animales así como al ensilado producido como producto de la molienda y del cultivo, dicho ensilado es suministrado a animales de corral como vacas y bovinos.

Resultado de imagen para acido formicoTras tratar el ensilado con ácido fórmico, éste actúa como precursor de la fermentación de azucares en el animal, que en el caso de las reses favorece la producción láctea reduciendo el tiempo de producción natural de la misma, sin alterar el valor nutricional ni calidad de la leche para consumo humano.

La fuente afirma que puede ser muy peligroso en concentraciones anormalmente altas, el ácido fórmico es en realidad un aditivo alimentario y un químico industrial muy versátil y extremadamente útil. Cuando se consume a niveles normales, es muy rápida y fácilmente metabolizada por nuestros cuerpos, y eliminada de una manera segura y saludable. Sin embargo, se ha encontrado que ingerir cantidades altamente concentradas de ácido fórmico puede resultar en daño renal y hepático. Como tal, es importante entender tanto los usos como los peligros de este producto químico tan versátil. (ACIDO CLORHIDRICO.org, 2010)

Resultado de imagen para ensilado

Aplicaciones del ácido acético en las industrias de alimentos.

El ácido acético es un aditivo de alta incidencia en las industrias alimenticias por su capacidad de regular la acidez y basicidad en los alimentos, es el principal ingrediente del vinagre. Su nombre se deriva del latín acetum, que significa agrio. Conocido y usado hace bastante tiempo por la humanidad, se emplea como condimento y conservante de alimentos (Fennema, Hablemos Claro: Ácido Acético, 2000).

Resultado de imagen para acido acetico
Entre sus aplicaciones más comunes se encuentran:
• Salsas de mesa y para cocinar.
• Alimentos en conserva.
• Pan y productos de panadería.
• Aderezos y vinagre.
• Condimento para botanas.
• Industria de plástico y aplicaciones químicas de tipo analítico.
• Industria textil, entre otras.

Imagen relacionada
Su principal uso industrial es la preservación de alimentos, principalmente conservas. Tradicionalmente éste ácido era generado como producto de la fermentación de frutos como la manzana, uvas y diversos cereales denominándolo tradicionalmente como vinagre. Con los años y gracias a los avances en torno a la química orgánica la obtención de este ácido se ha ido perfeccionando, siendo posible en la actualidad obtenerlo por fermentación controlada o síntesis química orgánica así lo afirma (Editores “Mestrillo”, 2018).
Dentro de la industria alimenticia, el ácido acético, como se ha mencionado, se emplea para la limpieza y conservación de alimentos. También se le da utilidad en el hogar como aderezo para comidas, y es capaz de regular la acidez de muchos alimentos.

Aplicaciones del ácido cítrico en las industrias de alimentos.

El ácido cítrico es el responsable de la acidez de las frutas cítricas. Para uso industrial, el ácido cítrico es fabricado por la fermentación aeróbica del azúcar de caña (sacarosa) o azúcar de maíz (dextrosa) por una cepa especial de Aspergillus niger. Su mayor empleo es como acidulante en bebidas carbonatadas y alimentos.

En la industria alimenticia el ácido cítrico también es conocido como E330 y es un buen conservante y antioxidante natural que se añade de forma industrial en el envasado de muchos alimentos. En el organismo humano el ácido cítrico ingerido se incorpora al metabolismo normal, degradándose totalmente y produciendo energía en una proporción comparable a los azúcares. Es perfectamente inocuo a cualquier dosis concebiblemente presente en un alimento (BRISTHAR LABORATORIOS C. A. ® , 2010).

Resultado de imagen para acido citrico

Según la fuente anterior el ácido cítrico y sus sales se pueden emplear en prácticamente cualquier tipo de producto alimentario elaborado. El ácido cítrico es un componente esencial de la mayoría de las bebidas refrescantes, (excepto las de cola, que contienen ácido fosfórico) a las que confiere su acidez, del mismo modo que el que se encuentra presente en muchas frutas produce la acidez de sus zumos, potenciando también el sabor a fruta. Con el mismo fin se utiliza en caramelos, pastelería, helados, etc. Es también un aditivo especialmente eficaz para evitar el oscurecimiento que se produce rápidamente en las superficies cortadas de algunas frutas y otros vegetales.
También se utiliza en la elaboración de encurtidos, pan, conservas de pescado y crustáceos frescos y congelados entre otros alimentos. Los citratos sódico o potásico se utilizan como estabilizantes de la leche esterilizada o UHT. En la tabla siguiente se puede encontrar una pequeña guía de aplicaciones del E330 en los alimentos

Resultado de imagen para Aplicación del aditivo E330 (ácido citrico)

El ácido propiónico en las industrias de alimentos.

Resultado de imagen para ácido propiónico
El ácido propiónico es el responsable por el olor característico del queso suizo (Snyder, 1995). Durante el período principal de maduración de este tipo de queso, Propionibacterium shermanii, y microorganismos similares, convierten ácido láctico y lactatos a ácidos propiónico, acético y dióxido de carbono. El CO2 gaseoso generado es responsable por la formación de los “huecos” característicos del queso suizo, así lo afirma (Ing. Netto, 2011).

El ácido propiónico es un componente con propiedades antimicrobianas frente a los mohos y algunas bacterias, también conocido como propanoico, es un ácido graso saturado con una cadena corta integrado por un etano unido a un carboxilo y es precursor de las sales del tipo propionatos. Este ácido carboxílico monoprótico, fue descubierto en el año 1844 por el químico Johann Gottlieb, durante la degradación del azúcar de algunos productos, constituyendo un ácido graso que forma una capa aceitosa cuando se sala en agua, produciendo sal potásica.

Resultado de imagen para ácido propiónico
El ácido propiónico se puede obtener de forma natural por la fermentación de la pulpa de la madera o a través de algunos quesos, como se mencionó. Sin embargo, industrialmente se produce con la oxidación del aire de propanal, mediante el empleo de cationes de cobalto o manganeso en bajas temperaturas. Igualmente se extrae como un subproducto del ácido acético, pero este método está en caducidad.
Biológicamente según menciona (Editores “ACIDOS.INFO”, 2018), el ácido propiónico se genera en el metabolismo de los ácidos grasos con carbonos impares y algunos aminoácidos. Este proceso se inicia cuando las bacterias que se encuentran en los estómagos de los rumiantes catabolizan el sebo secretado por los poros, siendo prácticamente la razón del característico olor del queso suizo y del sudor.

Casi el 80% del consumo mundial de ácido propiónico está destinado a la conservación de alimentos elaborados para animales, cereales y la producción de propionatos de calcio o sodio, que son ingredientes básicos para alimentos humanos como el pan, bizcochos, pasteles y otros productos que son cocinados en horno, debido a su acción inhibidora del hongo.

Imagen relacionada

Existen propionatos de calcio y sodio presentes en los productos de panificación, originados de la leche entre otros ingredientes.

El ácido butírico en las industrias de alimentos.

Resultado de imagen para acido butírico

El ácido butírico (butanóico) deriva su nombre del latín butyrum, que significa mantequilla. Produce un olor peculiar por la rancidez de la mantequilla. Es usado en la síntesis de aromas, en fármacos y en agentes emulsionantes. (Parker, 1997) (Ing. Netto, 2011). Respecto a sus usos, el ácido butírico se emplea en la elaboración de esencias y sabores artificiales de aceite de vegetal. Así, en el caso del butirato de amilo, este es uno de los principales componentes del aceite de albaricoque.

Imagen relacionada
Por otra parte, en el caso del butirato de metilo, este es uno de los ingredientes esenciales del aceite de piña. Éste último es utilizado tanto como agente aromatizante como estimulante del crecimiento óseo y el tratamiento de resfriados.

El ácido butírico se manifiesta en forma de ésteres en ciertos aceites vegetales y en determinadas grasas animales. Se le encuentra en mayores proporciones en productos como la mantequilla rancia, el queso parmesano y la leche cruda. No obstante, también se produce en el colon humano, como producto de la fermentación bacteriana de los glúcidos. En cuanto a sus características, es incoloro, posee olor y sabor fuerte y desagradable, y puede diluirse en agua.

El ácido láctico en las industrias de alimentos.

Resultado de imagen para acido lactico
El ácido láctico se produce por la fermentación bacteriana de lactosa (azúcar de la leche) por Streptococcus lactis. Fabricado industrialmente por la fermentación controlada de hexosas de melaza, maíz y leche, se utiliza en la industria alimentaria como acidulante.

El ácido láctico es un aditivo utilizado ampliamente por su capacidad de regular la acidez de los productos. Dentro de sus principales aplicaciones se encuentran:
• Condimentos y vegetales en conserva.
• Pastillas, gomas de mascar y gomitas.
• Botanas a base de papa.
• Yogur, queso y fermentados lácteos.
• Salsa para pasta.
• Kit para preparar comidas.
• Productos cárnicos madurados.
El ácido láctico también se produce en nuestro propio cuerpo. Por ejemplo, cuando la glucosa es metabolizada por la actividad muscular anaeróbica, el ácido láctico se genera en los músculos y luego es descompuesto (oxidado por completo) a CO2 y H2O (Lehninger et al., 1995). Con el ejercicio intenso, el ácido láctico se forma más rápidamente de lo que puede ser eliminado. Esta acumulación transitoria de ácido láctico provoca una sensación de fatiga y dolor muscular. (Ing. Netto, 2011)

El ácido benzoico en las industrias de alimentos.

Sólido de fórmula C6H5—COOH, poco soluble en agua y de acidez ligeramente superior a la de los ácidos alifáticos sencillos. Se usa como conservador de alimentos. Es poco tóxico y casi insípido.

Resultado de imagen para acido ´benzoico
El ácido benzoico es uno de los conservantes más empleados en todo el mundo. Aunque el producto utilizado en la industria se obtiene por síntesis química, el ácido benzoico se encuentra presente en forma natural en algunos vegetales, como la canela o las ciruelas, por ejemplo, y en la industria se conoce como E210.
El ácido benzoico es especialmente eficaz en alimentos ácidos, y es un conservante barato, útil contra levaduras, bacterias (menos) y mohos. Sus principales inconvenientes son el que tiene un cierto sabor astringente poco agradable y su toxicidad, que, aunque relativamente baja, es mayor que la de otros conservantes.

El ácido fumárico en las industrias de alimentos.

El ácido trans-butenodioico, compuesto cristalino incoloro, de fórmula HO2CCH=CHCO2H, que sublima a unos 200 °C. Se encuentra en ciertos hongos y en algunas plantas, a diferencia de su isómero cis, el ácido maleico (cis-butenodioico), que no se produce de forma natural. Se utiliza en el procesado y conservación de los alimentos por su potente acción antimicrobiana, y para fabricar pinturas, barnices y resinas sintéticas.

Resultado de imagen para acido fumárico

En la industria alimenticia el ácido fumárico es comprendido como un ácido de origen natural que requieren los seres humanos y los animales para vivir. Este ácido se encuentra en las plantas también, y ha sido aprovechado por las compañías de alimentos y científicos por sus propiedades únicas que pueden ayudar a conservar el sabor y otros aspectos de varios alimentos. Dado que el ácido fumárico es seguro, natural y necesario, se encuentra en diversas aplicaciones en el servicio de comida y otras industrias que tienen que ver con la producción y distribución de alimentos.
Utilizado como ácido y estabilizador estructural en una amplia variedad de productos. También es usado como una fuente de ácido en el polvo para hornear.

El ácido linoleico en las industrias de alimentos.

Resultado de imagen para acido linoleico

De contextura líquida, oleoso, incoloro o amarillo pálido, de fórmula CH3(CH2)4(CH=CHCH2)2(CH2)6CO2H, cuyos dobles enlaces presentan configuración cis. Es soluble en disolventes orgánicos y se polimeriza con facilidad, lo que le confiere propiedades secantes. El ácido linoleico es un ácido graso esencial, es decir, es un elemento necesario en la dieta de los mamíferos por ser uno de los precursores de las prostaglandinas y otros componentes de tipo hormonal. Se encuentra como éster de la glicerina en muchos aceites de semillas vegetales, como los de linaza, soja, girasol y algodón. Se utiliza en la fabricación de pinturas y barnices.

Resultado de imagen para aceite de girasol

El ácido oleico en las industrias de alimentos.

Líquido oleoso e incoloro, de fórmula CH3(CH2)7CH=CH(CH2)7CO2H en su configuración cis (la cadena de carbono continúa en el mismo lado del doble enlace). Es un ácido graso no saturado que amarillea con rapidez en contacto con el aire. Por hidrogenación del ácido oleico se obtiene el ácido esteárico (saturado).

Resultado de imagen para acido oleico

Junto con el ácido esteárico y el ácido palmítico se encuentra, en forma de éster, en la mayoría de las grasas y aceites naturales, sobre todo en el aceite de oliva. Se obtiene por hidrólisis del éster y se purifica mediante destilación. Se utiliza en la fabricación de jabones y cosméticos, en la industria textil y en la limpieza de metales. (Ing. Netto, 2011)

El ácido esteárico en las industrias de alimentos.

Sólido orgánico blanco de apariencia cristalina, de fórmula CH3(CH2)16COOH. No es soluble en agua, pero sí en alcohol y éter. Junto con los ácidos láurico, mirístico y palmítico, forma un importante grupo de ácidos grasos. Se encuentra en abundancia en la mayoría de los aceites y grasas, animales y vegetales, en forma de éster-triestearato de glicerilo o estearina y constituye la mayor parte de las grasas de los alimentos y del cuerpo humano.

Resultado de imagen para acido estearico
El ácido se obtiene por la hidrólisis del éster, y comercialmente se prepara hidrolizando el sebo. Se utiliza en mezclas lubricantes, materiales resistentes al agua, desecantes de barnices, y en la fabricación de velas de parafina. Combinado con hidróxido de sodio el ácido esteárico forma jabón (estearato de sodio).

Resultado de imagen para acido estearico en alimentos

 El ácido esteárico se encuentra en buena parte en carnes, embutidos y ahumados.

A pesar de que el ácido esteárico está de igual manera en las grasas de origen vegetal y animal, se encuentra en mayor medida en las segundas, donde tiene alrededor de un 30%, mientras que en la grasa vegetal se encuentra en una menor cantidad al 5%. Sin embargo, existen grasas vegetales que poseen un mayor contenido de este ácido, las cuales son la manteca de karité y la de cacao, ambas teniendo aproximadamente un 28-45% de ácido esteárico.
El ácido esteárico se encuentra en el 2do lugar en cuando a ingesta de grasas saturadas dentro de la dieta, siendo consumido en un 25,8%, después del ácido palmítico, que es ingerido en un 56,3%. Es posible encontrar este ácido en mayor medida en carnes rojas, luego en el pescado, y por último tanto en cereales como en productos lácteos.
Aunque consiste en un ácido graso saturado, este ácido no parece contar con ninguno de los efectos perjudiciales que normalmente son vinculados a esta clase de grasa y de igual forma, parece ser que este ácido produce un efecto neutro en los triglicéridos, al igual que en el colesterol LDL también llamado colesterol “malo”, en el colesterol total o en el colesterol HDL conocido como colesterol “bueno”. (ADMINIDEG, 2017).

El ácido málico en las industrias de alimentos.

Es el ácido hidroxibutanodioico, compuesto incoloro de fórmula HO2CCH2CHOHCO2H. Se encuentra en las manzanas, uvas y cerezas verdes y en otros muchos frutos, así como en los vinos. Se puede obtener de forma sintética a partir del ácido tartárico y del ácido succínico.

Resultado de imagen para acido malico

Ácido Málico.

Al calentarlo se deshidrata y produce ácido fumárico y ácido maleico. Se utiliza como aditivo alimentario por su acción antibacteriana y su agradable aroma. También se emplea en medicina, en la fabricación de ciertos laxantes y para tratar afecciones de garganta.

Resultado de imagen para acido malico

El ácido málico es un aditivo utilizado en la industria de alimentos empleado como acidulante y emulsificante (Fennema, Hablemos Claro, 2000). Entre las aplicaciones más comunes se encuentran:
• Pastillas, gomas de mascar y gomitas.
• Dulces y caramelos duros.
• Bebidas de frutas y de sabores.
• Bebidas de soya.
• Botanas a base de papas.
• Helados, sorbetes y paletas.
• Vino.

El ácido oxálico en las industrias de alimentos.

Resultado de imagen para acido oxalico

ácido oxálico

El ácido etanodioico, sólido incoloro de fórmula HO2CCO2H, que cristaliza con dos moléculas de agua. Se encuentra en muchas plantas en forma de sales (oxalatos) de potasio. Su sal de calcio también aparece en ciertos vegetales y en los cálculos renales. Se utiliza en análisis químico por su poder reductor y en especial en la determinación de magnesio y de calcio. También se emplea en tintorería, en el curtido de pieles, en síntesis, de colorantes y como decapante.
Como es sabido, el ácido oxálico o los oxalatos, son compuestos contenidos en algunos alimentos que inhiben la absorción del calcio al unirse a este mineral y volverlo insoluble en el intestino. Por eso, para prevenir deficiencias de calcio.

El ácido palmítico en las industrias de alimentos.

Resultado de imagen para acido palmitico

Sólido blanco grisáceo, untuoso al tacto, de fórmula CH3(CH2)14COOH. Es un ácido graso saturado que se encuentra en una gran proporción en el aceite de palma, de ahí su nombre. Se encuentra en la mayoría de las grasas y aceites, animales y vegetales, en forma de éster (tripalmitato de glicerilo o palmitina). Por saponificación, es decir, por reacción del éster con un álcali (hidróxido de sodio o potasio) se obtiene la sal alcalina, y a partir de ella se puede obtener el ácido por tratamiento con un ácido mineral. Las sales alcalinas tanto del ácido palmítico como del ácido esteárico son los principales constituyentes del jabón. Se utiliza en aceites lubricantes, en materiales impermeables, como secante de pinturas y en la fabricación de jabón.

Resultado de imagen para acido palmitico

El ácido pirúvico en las industrias de alimentos.

Resultado de imagen para acido piruvico
Es el ácido a-cetopropanoico, líquido incoloro de olor fuerte y picante, soluble en agua y de fórmula H3CCOCO2H. Interviene en numerosas reacciones metabólicas. Por ejemplo, es un producto de degradación de la glucosa que se oxida finalmente a dióxido de carbono y agua. En las levaduras se produce un proceso de fermentación en el que el ácido pirúvico se reduce a etanol. También puede ser transformado en el hígado en el correspondiente aminoácido, la alanina.

Imagen relacionadaHabitualmente se localiza en las frutas fermentadas, vinagre y manzanas, de igual manera, es producido por nuestro cuerpo como resultado del proceso metabólico. Este ácido, que recibe el nombre de piruvato, fue descubierto por el químico sueco Jöns Jacob von Berzelius. (ACIDOS.INFO, 2018)

El ácido tartárico en las industrias de alimentos.

También llamado ácido dihidroxidosuccínico o ácido dihidroxibutanodioico, es un ácido orgánico de fórmula C4H6O6. Este ácido, que se encuentra en muchas plantas, ya era conocido por los griegos y romanos como tártaro, la sal del ácido de potasio que se forma en los depósitos de jugo de uva fermentada.
El ácido tartárico, en sus dos formas racémico y dextrorrotatorio, se emplea como aderezo en alimentos y bebidas. También se utiliza en fotografía y barnices, y como tartrato de sodio y de potasio (conocido como sal de Rochelle) constituye un suave laxante.

Resultado de imagen para acido tartaricoEl ácido tartárico es un ingrediente ampliamente utilizado en la industria de alimentos como regulador de acidez, antioxidante, secuestrante y agente leudante. (Fennema, Hablemos claro: Química de los Alimentos, 2000). Entre las aplicaciones más comunes se encuentran:
• Pastillas, gomas de mascar y gomitas.
• Galletas dulces.
• Pasteles, pastas y otros productos de panificación.
• Caramelos.
• Bebidas con gas.
• Vinos.
• Chocolates.
• Industria textil.
• Industria química y cosmética.

El ácido sórbico en las industrias de alimentos.

El ácido sórbico es el único ácido orgánico no saturado normalmente permitido como conservador en los alimentos. Posee un espectro antimicrobiano interesante ya que es relativamente ineficaz contra las bacterias catalasa-negativas como las bacterias lácticas. El ácido sórbico posee un amplio espectro de actividad contra los microorganismos catalasa-positivos, que incluyen las levaduras, mohos y bacterias y se utiliza, por tanto, para inhibir los contaminantes aeróbicos en los alimentos fermentados o acidificados, así lo manifiesta (BRISTHAR LABORATORIOS C. A. ®, 2010)

Resultado de imagen para acido sorbico
Estos últimos microorganismos resultan generalmente inhibidos por concentraciones de ácido no disociado de 0.01a 0.03%. Este compuesto constituye un eficaz agente antimicrobiano a valores de pH inferiores a 6.
Los sorbatos se utilizan en bebidas refrescantes, en repostería, pastelería y galletas, en derivados cárnicos, quesos, aceitunas en conserva, en postres lácteos con frutas, en mantequilla, margarina, mermeladas y en otros productos. En la industria de fabricación de vino encuentra aplicación como inhibidor de la fermentación secundaria permitiendo reducir los niveles de sulfitos.
Cada vez se usan más en los alimentos los sorbatos en lugar de otros conservantes más tóxicos como el ácido benzoico. Los sorbatos son los menos tóxicos de todos los conservantes, menos incluso que la sal común o el ácido acético (el componente activo del vinagre). Por esta razón su uso está autorizado en todo el mundo. Metabólicamente se comporta en el organismo como los demás ácidos grasos, es decir, se absorbe y se utiliza como una fuente de energía.

Resultado de imagen para acido sorbico
Este compuesto no debe ser utilizado en productos en cuya elaboración entra en juego la fermentación, ya que inhibe la acción de las levaduras. En productos de panadería por lo general se emplea en las masas batidas (magdalenas, bizcochos, etc.), siendo la dosis máxima de uso de 2 g/kg de harina.

El ácido ascórbico en las industrias de alimentos.

Resultado de imagen para acido ascórbico

Conocido como vitamina C, tiene su nombre químico que representa a dos de sus propiedades: una química y otra biológica. En cuanto al primero, es un ácido, aunque no pertenece a la clase de ácidos carboxílicos. Su característica ácida es derivada de la ionización de un hidroxilo y de un grupo enol (pKa = 4,25). Además, según menciona (Ing. Netto, 2011) la palabra ascórbico representa su valor biológico en la protección contra la enfermedad escorbuto, del latín scorbutus (Lehninger et al., 1995).

Resultado de imagen para acido ascórbico

DERIVADOS DE LOS ÁCIDOS CARBOXÍLICOS (en otras industrias químicas)

Aplicaciones de ésteres

Como disolventes de Resinas:

Los ésteres, en particular los acetatos de etilo y butilo se utilizan como disolventes de nitrocelulosa y resinas en la industria de las lacas, así como materia prima para las condensaciones de ésteres.

Resultado de imagen para nitrocelulosa
Nitrocelulosa

Como aromatizantes:

El acetato de etilo y el acetato de butilo son los ésteres más importantes. Los esteres sintéticos son usados como aromatizadores de alimentos. Los más conocidos son: Acetato de amilo (platano), Acetato de octilo (naranja), butirato de etilo (piña), butirato de amilo (albaricoque) y formiato de isobutilo (frambruesa). (IECIUDADDEASIS, 2012)
Algunos ésteres se utilizan como aromas y esencias artificiales. Por ejemplo, el formiato de etilo (ron, aguardiente de arroz), acetato de isobutilo (plátano), butirato de metilo (manzana), butirato de etilo (piña), y butirato de isopentilo (pera).

Resultado de imagen para aromatizantes

Lactonas

Las lactonas son ésteres cíclicos internos, hidroxiácidos principalmente gamma y delta. Estos compuestos son abundantes en los alimentos y aportan notas de aromas de durazno, coco, nuez y miel. Las lactonas saturadas e insaturadas se originan en la gama y delta hidroxilación de los ácidos grasos respectivos. La cumarina también es un éster cíclico (es decir, una lactona) que se aísla del haba tonka y otras plantas. W. H. Perkin sintetizó por primera vez la cumarina en el laboratorio y comercializó el compuesto como el primer perfume sintético, llamándolo Jockey Club y Aroma de heno recién segado.

Resultado de imagen para lactonas

Resultado de imagen para Haba Tonka y la sintetización de la cumerina

 Haba Tonka y la sintetización de la cumerina

Como Analgésicos

En la medicina encontramos algunos ésteres como el ácido acetilsalicílico (aspirina) utilizado para disminuir el dolor. La novocaína, otro éster, es un anestésico local. El compuesto acetilado del ácido salicilico es un antipirético y antineurálgico muy valioso, laaspirina (ácido acetilsalicílico) Que también ha adquirido importancia como antiinflamatorio no esteroide.

Resultado de imagen para aspirina

En la elaboración de fibras semisintéticas

Todas las fibras obtenidas de la celulosa, que se trabajan en la industria textil sin cortar, se denominan hoy rayón (antiguamente seda artifical). Su preparación se consigue disolviendo las sustancias celulósicas (o en su caso, los ésteres de celulosa) en disolventes adecuados y volviéndolas a precipitar por paso a través de finas hileras en baños en cascada (proceso de hilado húmedo) o por evaporación del correspondiente disolvente (proceso de hilado en seco).

Resultado de imagen para seda al acetato

Rayón al acetato (seda al acetato)

En las fibras al acetato se encuentran los ésteres acéticos de la celulosa. Por acción de anhídrido acético y pequeña cantidad de ácido sulfúrico sobre celulosa se produce la acetilación a triacetato de celulosa. Por medio de plastificantes (en general, ésteres del ácido ftálico) se puede transformar la acetilcelulosa en productos difícilmente combustibles (celon, ecaril), que se utilizan en lugar de celuloide, muy fácilmente inflamable.

Síntesis para fabricación de colorantes:

El éster acetoacético es un importante producto de partida en algunas síntesis, como la fabricación industrial de colorantes de pirazolona.

Imagen relacionada

En la industria alimenticia y producción de cosméticos

Los monoésteres del glicerol, como el monolaurato de glicerol. Son surfactantes no iónicos usados en fármacos, alimentos y producción de cosméticos.
En la obtención de jabones

Se realizan con una hidrólisis de esteres llamado saponificación, a partir de aceites vegetales o grasas animales los cuales son esteres con cadenas saturadas e insaturadas (Química Orgánica, 2013).

Resultado de imagen para jabones de acidos grasos

Resultado de imagen para jabon

Aplicaciones de las amidas

Por otra parte, podemos decir que las amidas sustituidas, en general, tienen propiedades disolventes muy importantes.

La dimetilformamida:
Se emplea como disolvente de resinas en la fabricación de cuero sintético, poliuretano y fibras acrílicas, como medio de reacción y disolvente en la extracción de productos farmacéuticos, en disolución de resinas, pigmentos y colorantes. Constituye un medio selectivo para la extracción de compuestos aromáticos a partir del petróleo crudo.

La dimetilacetamida
Se utiliza como disolvente de fibras acrílicas y en síntesis específicas de química fina y farmacia. Tanto la dimetilformamida como la dimetilacetamida son componentes de disolventes de pinturas.

POLIAMIDAS

Los nylons son unos de los polímeros más comunes usados como fibra. En todo momento encontramos nylon en nuestra ropa, pero también en otros lugares en forma de termoplástico. El verdadero éxito del nylon vino primeramente con su empleo para la confección de medias femeninas, alrededor de 1940. Pero antes de eso, el primer producto de nylon fue el cepillo de dientes con cerdas de nylon.

Resultado de imagen para nylon
Los nylons también se llaman poliamidas, debido a los característicos grupos amida en la cadena principal. Las proteínas, tales como la seda a la cual el nylon reemplazó, también son poliamidas. Estos grupos amida son muy polares y pueden unirse entre sí mediante enlaces por puente de hidrógeno. Debido a esto y a que la cadena de nylon es tan regular y simétrica, los nylons son a menudo cristalinos y forman excelentes fibras. (Helena, 2011)

[O=C(CH2)4-C=O-NH-(CH2)6-NH]n

Bibliografía

Resultado de imagen para quimica gif

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Usos y Aplicaciones de los Compuestos Aromáticos en la industria de Alimentos

Lucía Jaramillo Cando. [1]

Lesly Espinoza Buitrón. [1]

Alejandro Aguirre F. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

INTRODUCCIÓN

Los hidrocarburos aromáticos son parte de la gran familia del Benceno, puesto que tienen por núcleo uno o más anillos bencénicos, al presentar una estructura cíclica insaturada por esta razón se les denomina también arenos así lo menciona (Claramount, y otros, 2013); y son precisamente dicha característica que confiere aromaticidad a este tipo de compuestos debido a un traslape efectivo entre sus electrones π (pi) puesto que la presencia del anillo bencénico hace que su molécula presente tres pares de electrones deslocalizados en un ciclo plano adicionalmente el cumplimiento de los principios de Hückel. En definitiva estas características confieren cierta reactividad a este tipo de compuestos en los que reside una gran estabilidad proveniente de la deslocalización electrónica existente que en muchos casos incita a la resonancia, dando lugar a que las nubes electrónicas se encuentre en una relativa mayor “comodidad” como resultado de sus repulsiones débiles que si estuvieran localizadas en tres enlaces π.

Entorno a la investigación se han tomado en cuenta múltiples compuestos aromáticos derivados del Benceno así como compuestos heterocíclicos aromáticos que se relacionan con la industria de alimentos y derivados; tomando como factor común la “degeneración” de orbitales (con la misma energía) que tiene lugar en el núcleo del anillo bencénico, a su vez la presente investigación relaciona los aspectos negativos que pueden tener respecto a la industria alimentaria en efecto, su relación con la salud humana.

DESARROLLO DE LA INVESTIGACIÓN

 

Aplicaciones del benceno

El benceno desde su descubrimiento por parte de Michael Faraday en 1825, tras lograr aislarlo desde una sustancia oleosa extraída de una lámpara común de queroseno y su posterior formulación (C6H6) demostrando que posee seis átomos de carbono equidistantes y equivalentes, propuesta por Eilhard Mitscherlich en 1834; el benceno es por sí mismo el principal representante de los compuestos orgánicos aromáticos (Wade, 2011).

Tiempo después fueron múltiples los estudios realizados entorno a su síntesis y presencia en la naturaleza, así Hoffman en 1845 lo aísla a partir de la hulla, levantando así un indicio de su presencia en el petróleo. Pero no fue hasta que el Nobel de Química Linus Pauling consiguiera encontrar el verdadero origen de su comportamiento, la resonancia o mesomería en la cual ambas estructuras de Kekulé se sobreponen.

Resultado de imagen para anillo bencenico
Ilustración 1 Comportamiento del anillo bencénico.

De manera general el benceno es utilizado en la fabricación de tintas, detergentes, explosivos, caucho, plásticos y fármacos. Sin embargo y a pesar de presentar riesgos para la salud ya que normalmente según la FDA posee en sus etiquetas frases tales como la R45 que menciona riesgo para la salud y causa de aparecimiento de cáncer y sus respectivas R48/23/24/25 que lo consideran como un compuesto del tipo tóxico capaz de representar riesgo de efectos graves para la salud en caso de exposición prolongada por inhalación, contacto con la piel e ingestión (Documentacion Ideam, 2003). Las industrias alimenticias en algunos países lo siguen utilizando como solvente para la extracción de esencias y concentrados a continuación algunos ejemplos.

Especias y condimentos-determinación de humedad en pimienta gorda. Método de prueba.

 

Según la publicación mexicana cuyo título original fue publicado como: Spices and condiments-determination of moisture content of all spice method of test (1988). Menciona al benceno como solvente indicado para la determinación de la humedad en pimienta gorda, lo importante del artículo radica en que no atenta contra la salud de los consumidores puesto que el método propuesto es únicamente para el análisis laboratorial de la pimienta mas no para su consumo inmediato.

Resultado de imagen para pimienta negra
Ilustración 2 Pimienta Negra (gorda)

El método desarrollado por Secretaría de Agricultura y Recursos Hidráulicos de México menciona que el benceno por su punto de ebullición e insolubilidad en agua permite una adecuada destilación continua del agua presente en una muestra de 30 a 35 g de semillas de pimienta gorda en 75 a 100 cm3 de benceno, la investigación sugiere la ecuación siguiente para el cálculo de la humedad (Secretaría de Agricultura y Recursos Hidráulicos, 1988):

Donde:                                                   Humedad %=(A* ρ)/M*100

A= Volumen de agua (cm3)

ρ = Densidad del agua (g/cm3)

M= Peso de la muestra (g)

 

Benceno como contaminante de los alimentos, fuentes hídricas y agua potable

 

Por otra parte el benceno ha sido uno de los principales contaminantes del agua potable en comparación con otros compuestos según menciona (Echeverry, 2016), alimentos como café, pan comercial, agua potable y envasada, frutas, verduras, bebidas isotónicas, chicles, derivados cárnicos, alimentos con saborizantes, helados, yogurt e incluso cosméticos en todo el mundo han presentado trazas de benceno, que como se mencionó anteriormente es altamente tóxico, el origen de dicho mal puede deberse a malas prácticas de manufactura en las industrias no alimenticias, mismas que desechan sus aguar residuales sin un adecuado control de sustancias contaminando de esta manera los recursos hídricos, la norma técnica internacional establecida por la FDA menciona que no se excederá la cantidad de 1μg/l de agua caso contrario se considera como muestra contaminada y requiere tratamiento emergente, a su vez la OMS (Organización Mundial de la Salud) y la Agencia para la Protección del Medio Ambiente (EPA), clasifica al benceno como parte de la lista de compuestos emergentes en el tratamiento de aguas por su persistencia y sus efectos negativos para la salud humana así lo afirma (Barceló & López de Alda, 2010).

Benceno como producto residual en la síntesis de benzoatos presentes en alimentos

Alimentos tales como las salsas de tomate (Kétchup), sodas y aquellos que presenten benzoato de sodio o potasio en general pueden tener mayor incidencia de trazas de benceno, y aunque el benzoato puede parecer inofensivo las industrias alimenticias y químicas en general sintetizan este compuesto a partir del benceno, a su vez y al no existir un proceso ciento por ciento efectivo, nada puede frenar el aparecimiento de rachas de reactivo en los productos finales así lo afirma (Echeverry, 2016). A continuación la síntesis comúnmente utilizada para la formulación del benzoato sódico:

Resultado de imagen para sintesis del benzoato de sodio
Ilustración 3 Síntesis del Tolueno, Benzoato sódico y ácido benzoico. Fuente: https://es.wikipedia.org/wiki/%C3%81cido_benzoico

En relación al tema la Administración de Alimentos y Drogas de los Estados Unidos (FDA) por sus siglas en inglés, menciona que las sales de benzoato al ser expuestas a la luz y al calor en presencia de vitamina C (común en ciertos alimentos tales como gaseosas y fármacos) al reaccionar pueden causar cantidades residuales de benceno, este factor entorno a la industria de bebidas ha sido muy criticado por que normalmente las bebidas gaseosas son transportadas en vehículos con exposición directa a la luz solar creando el factor adecuado para su transformación y en consecuencia convertirse en un factor nocivo para la salud de los consumidores (Echeverry, 2016).

Imagen relacionada
Ilustración 4 Las gaseosas carbonatadas, por factores de estabilidad presentan benzoatos de sodio y potasio que al reaccionar con la luz y el calor pueden formar rachas de benceno.

 

Aplicaciones de otros compuestos aromáticos

 

Uso de las Quinolinas e Isoquinolinas en la industria alimenticia

Las quinolinas e isoquinolinas con compuestos cíclicos en los que un anillo bencénico y uno de piridina se hallan fusionados y eso aplica también para su correspondiente catión quinazolinio; aunque el criterio de carácter aromático de Hückel predice aromaticidad en compuestos mono cíclicos se conoce que este tipo de compuestos conservan sus propiedades aromáticas así lo considera (Dep. Fquím. UNAM, 2015); es así como muchos de sus derivados son utilizados en múltiples sectores industriales tales como el actinoquinol utilizado en la fabricación de pantallas UV, benzoquinolina utilizada en la fabricación de desinfectantes, lotrifen que es un derivado de las quinolinas ampliamente usado como abortivo o el dimetisoquin potente anestésico y finalmente la papaverina en la fabricación de relajantes musculares.

 

Amarillo de quinoleína (E E104) o amarillo de quinolina

 

El amarillo de quinolina es un importante ingrediente sintético para la industria de alimentos como agente colorante entre sus aplicaciones más destacadas están:

 

  • Dulces de azúcar y golosinas.
  • Repostería de naranja, vainilla y chocolate.
  • Panadería.
  • Bebidas alcohólicas y no alcohólicas hidratantes, energizantes, bebidas electrolíticas.
  • Heladería.
  • Snacks y botanas.
  • Salsas y condimentos.
  • Bebidas Carbonatadas.
  • Quesos en polvo.
  • Frituras y otros.

Según afirma (Badui, 2013), el color de los alimentos es muy importante para el consumidor a razón de ser el primer contacto e impresión que tiene un potencial comprador en respuesta de lo que visualmente aprecia del producto, lo que es determinante para la aceptación o rechazo del mismo.

Resultado de imagen para Alimentos que contienen colorante E E104 (Amarillo de quinolina)

Ilustración 5 Alimentos que contienen colorante E E104 (Amarillo de quinolina) Fuente: http://hablemosclaro.org/ingrepedia/amarillo-de-quinolina/#1502293691178-e5ac3059-a00b

La síntesis del compuesto parte del sulfonato 2-(2-quinolil)-1,3-indadiona, consiste principalmente de las sales sódicas de mezclas de sulfonatos, monosulfonatos, tiosulfonatos como agentes colorantes con la presencia de cloruro de sodio y/o sulfato de sodio como sustancias no colorantes.

Resultado de imagen para Alimentos que contienen colorante E E104 (Amarillo de quinolina)
Ilustración 6 Estructura Química del Amarillo de Quinolina. Fuente: http://hablemosclaro.org/ingrepedia/amarillo-de-quinolina/

El amarillo de quinolina es empleado en la industria de alimentos como agente colorante, lastimosamente estudios han demostrado riesgos para la salud ante este aditamento alimenticio, a tal punto que según menciona (Pliskin, 2017) ha sido prohibido en muchos países tales como: Estados Unidos, Australia, Finlandia, Noruega y Austria; y en muchos se ha sugerido evitar su consumo. Esta sustancia es soluble en agua y dentro de las industrias de mayor tendencia a su utilización son las de fabricación de fideos y pastas; así como también en marcas como HARIBO que fabrican dulces y gomas del tipo masticable (gomitas) y con respecto a las bebidas lácteas en diversas cremas y postres, de las bebidas más populares en las que se puede ubicar dicho colorante está la gaseosa FANTA de Coca Cola Spring Company. Entre los daños para salud más notables están la hipersensibilidad a la sustancia o su intolerancia (Pliskin, 2017).

 

Aplicaciones de las pirazinas en los alimentos

 

La pirazina es un compuesto orgánico aromático heterocíclico. Su molécula presenta una simetría con grupo puntual D2h. Es un sólido de apariencia cerosa o cristalina. Presenta un fuerte olor similar al de la piridina. Es volátil con vapor de agua (UDEA, 2010).

Imagen relacionada
Ilustración 7 Estructura de la Pirazina.

Las pirazinas normalmente son factores de control en la industria vinícola y su síntesis ha evolucionado de la siguiente manera:

  • Síntesis de Staedel-Rugheimer (1876): Reacción de 2-cloroacetofenona con amoniaco para obtener la 2- aminocetona, la cual se condensa para formar la dihidropirazidina, y se forma la aromaticidad por oxidación posterior.
  • Síntesis de Gutknecht (1879): Ciclización de α-aminocetonas, producidas por reducción de isonitroso cetonas, para obtenerse las dihidropirazinas. Estas son posteriormente deshidrogenadas con óxido de mercurio (I) o sulfato de cobre (II), e inclusive con oxígeno atmosférico: 34
  • Síntesis de Gastaldi (1921): Se requiere de (4-N-sulfonilamino)cianometil cetonas.
Imagen relacionada
Ilustración 8 Pirazinas en Alimentos Fuente: https://lanocheenvino.com/2017/03/28/que-son-las-pirazinas/

Las pirazinas actúan como descriptores aromáticos en ciertos alimentos como el pimiento verde, las mismas se distribuyen en diferentes alimentos y verduras (espárragos y arvejas), por otro lado, las pirazinas forman parte de las uvas blancas y tintas mismas que confieren notas olfativas al vino así lo afirma (Cabeller, 2018).

Resultado de imagen para vino blanco
Ilustración 9 Uvas Blancas (verdes) para la elaboración de vino blanco. Fuente: https://lanocheenvino.com/2017/03/28/que-son-las-pirazinas/

Según la autora la concentración de pirazinas disminuye a medida que madura la uva por lo que en ocasiones los niveles altos de esta molécula en el vino es asociado con la falta de maduración de las uvas; a su vez de encontrarse en este estado (muy concentrado) es indicador negativo en la calidad del vino.

Resultado de imagen para pirazinas
Ilustración 10 Pirazinas comunes en las uvas para vinos. Fuente: http://vinospasini.blogspot.com/2012/07/aromas-verdes-del-vino.html

Por esta razón la necesidad de exhaustivos controles en el viñedo antes y después de la cosecha en este proceso entra en juego el profesionalismo y experiencia del enólogo por encima del mismo agricultor, la dificultad radica en el momento de la cosecha, puesto que la madurez de la uva es un fenómeno asincrónico puesto que maduran en diferentes tiempos los racimos de una misma cepa, cada unidad (granos) del racimo madura de forma independiente y la pulpa, piel y semilla de los granos también es asincrónica razón por la cual es dificultoso determinar el momento óptimo de la cosecha.

Por los motivos expuestos en el párrafo anterior el momento de la cosecha es crucial para condicionar las características sensoriales del vino; factores externos como el clima, la temperatura ambiental durante el periodo de la maduración, agentes químicos presentes en insecticidas son principalmente los influencian de forma directa la concentración de pirazinas en las uvas. Por ejemplo entorno a la temperatura tenemos la siguiente relación: Las temperaturas bajas durante la maduración inducen a producir uvas con nieles mayores de pirazinas (maduración rápida incompleta, no natural o acelerada), las temperaturas cálidas a su vez generan uvas con menores niveles de pirazinas acompañado de tiempos óptimos de maduración.

Resultado de imagen para grados brix

Ilustración 11 El uso de polarímetros es indispensable para la obtención de índices de refracción que permitan identificar la presencia de compuestos como la pirazina. Fuente: http://agriculturers.com/que-son-los-grados-brix/

Finalmente las técnicas de vinificación, menciona la autora, impactan también con la concentración de pirazinas en el producto final y entorno a su detección se considera bajo siempre y cuando existan de 2 a 8 ng/l para vinos blancos y de 2 a 16 ng/l en los tintos.

Presencia de la piridina en industria alimenticia

La piridina fue descubierta por Thomas Anderson en 1849 y su nombre proviene del vocablo griego Pyros que significa fuego, en efecto este líquido incoloro presenta una alta inflamabilidad y de forma natural puede identificarse como un aceite (incoloro) de olor desagradable al calentar huesos de animales, la forma natural más común de este compuesto es el NAD, vitaminas B3, B6, B12, etc; es allí donde radica su importancia en la industria alimenticia.

Resultado de imagen para piridina
Ilustración 12 Piridina, azabenceno o azina. Fuente: https://www.ecured.cu/Piridina

Su síntesis parte del alquitrán crudo y es utilizada como solvente en la producción de muchos productos, los más comunes en el sector alimenticio es la producción de condimentos y vitaminas utilizadas en suplementos alimenticios, así lo afirma (Seco, 2014), es importante mencionar que la forma pura de la piridina es mortal, cancerígena, capaz de producir infertilidad se la puede encontrar en especies vegetales como la Belladona (Atropa belladona).

Resultado de imagen para Atropa belladona
Ilustración 13 Ilustración Naturalista de la Belladona. 

De manera general la formación de piridina en los procesos industriales de los alimentos se asocia a toxicidad salvo los casos en los que se contribuya con el aroma y el sabor cuyos derivados no son tóxicos así lo afirma (Seco, 2014).

Muchos de los alimentos de consumo diario contienen aromatizantes como resultado de la adición de compuestos que contienen piridina y de forma análoga por la adición de productos naturales en el medio ambiente. Una de las formas más conocidas de esta sustancia como derivado es la PIRIDOXINA, esta sustancia es conocida comúnmente como Vitamina B6, nutriente esencial con propiedades beneficiosas para el metabolismo y sistema nervioso del cuerpo humano, estudios han demostrado que es capaz de estimular energéticamente a un individuo motivo por el cual es ingrediente principal en muchas suspensiones orales y jarabes para niños y demás suplementos alimenticios (B. Pavlov, 1970).

Resultado de imagen para PIRIDOXINA

Resultado de imagen para PIRIDOXINA

Ilustración 14 Piridoxina (Vitamina B6)

Entre los valores más importantes en (mg/100g de muestra) de esta importante vitamina en alimentos podemos mencionar la siguiente lista:

  • Pistachos: 1.7mg.
  • Hígado de pavo: 1.0mg.
  • Atún: 0.9mg.
  • Semillas de girasol: 0.8mg.
  • Sésamo: 0.8mg.
  • Salmón: 0.6mg.
  • Maíz: 0.6mg.
  • Avellanas: 0.6mg.
  • Carne roja: 0.5mg.
  • Lentejas: 0.5mg.
  • Duraznos: 0.5mg.
  • Plátanos: 0.3mg.

 

Incidencia del ácido benzoico en industria alimenticia

El ácido benzoico pertenece al extenso grupo de los compuestos aromáticos y es por sí mismo uno de los compuestos orgánicos más utilizados en la industria alimenticia. Su uso más común es como conservante alimenticio, de forma natural el ácido benzoico puede obtenerse de arándanos, ciruelas, canela, frambuesas, clavos de olor entre otros.

Resultado de imagen para acido benzoico
Ilustración 15 Estructura molecular del ácido benzoico.

Este compuestos tiene especial eficacia en alimentos del tipo ácido, la razón de su popularidad en la industria radica en su costo, puesto que no es elevado y resulta muy útil para controlar y frenar el aparecimiento y propagación de levaduras, bacterias (en casos muy específicos) y mohos (MILKSCI, 2003).

 

Sin embargo no todo es beneficio, uno de los principales problemas de este compuesto es su sabor astringente y de cierta forma desagradable, por otra parte presenta ciertos niveles de toxicidad, que aunque es relativamente baja pero mayor en comparación con otros conservantes, puede producir intolerancia a algunas personas, y por este motivo es que su control es muy importante.

Resultado de imagen para acido benzoico
Ilustración 16 El ácido benzoico en la industria de alimentos es identificado como aditivo-conservante E210.

El Conservante E210 (Ácido Benzoico) es utilizado principalmente en el continente europeo como conservante en bebidas refrescantes (gaseosas carbonatadas) como sucede en España así lo afirma (MILKSCI, 2003); entorno a la misma industria de bebidas es utilizado en la fabricación de zumos; productos lácteos utilizados en repostería y galletería así mismo en la elaboración de conservas de vegetales tales como tomates (Cherrys especialmente), pepinillos o pimiento envasados en grandes recipientes para uso de grandes cadenas de restaurantes de consumo masivo; crustáceos frescos o congelados y derivados de pescado; margarinas, salsas (especialmente en su forma de benzoato de sodio o potasio (E211 y E212 respectivamente) como es el caso de la salsa de tomate (MILKSCI, 2003).

Resultado de imagen para acido benzoico en alimentos
Ilustración 17 Ácido benzoico en los alimentos.

El mencionado conservante industrial se obtiene de al menos 3 formas diferentes en la industrial según menciona (Aditivos Alimentarios, 2016)

  • Oxidación de Naftaleno de anhídrido ftálico con óxido de Vanadio.
  • Oxidación de la mezcla de Tolueno y ácido nítrico.
  • Hidrólisis del clorobenceno.

De forma adicional este conservante está siendo empleado en la fabricación de gelatinas, humus, champiñones, miel, aceitunas, caviar, mermeladas, bebidas de malta y energizantes polos de helado, tortillas de trigo y patatas, frutas en almíbar, alimentos pre cocidos, licores y salsas picantes.

La OMS considera como aceptable una ingestión de hasta 5 mg por Kg de peso corporal y día. Con la actual legislación española esté límite se puede superar, especialmente en el caso de los niños. Otras legislaciones europeas son más restrictivas. En Francia sólo se autoriza su uso en derivados de pescado, mientras que en Italia y Portugal está prohibido su uso en refrescos. La tendencia actual es no obstante a utilizarlo cada vez menos sustituyéndolo por otros conservantes de sabor neutro y menos tóxico, como los sorbatos. El ácido benzoico no tiene efectos acumulativos, ni es mutágeno o carcinógeno (MILKSCI, 2003).

 

Incidencia del benzaldehído (C6H5CHO) en industria alimenticia

El benzaldehído (C6H5CHO), figura como un compuesto orgánico aromático perteneciente a los aldehídos y cetonas, y aunque el presente documento no tiene por finalidad centrarse en aldehídos y cetonas puesto que se abordará en la siguiente unidad de estudio, se considera al benzaldehído un compuesto aromático de alta importancia en la industria de alimentos. El benzaldehído es un compuesto químico que pertenece al extenso grupo de aldehídos aromatizantes, que consiste en un anillo de benceno con un sustituyente aldehído así lo afirma (Gavira Vallejo, 2015). A nivel organoléptico es un líquido incoloro con variaciones hasta tonalidades amarillas (dependerá de su pureza), se identifica por un olor frutal potente a cerezas y almendras amargas.

Resultado de imagen para Benzaldehído,
Ilustración 18 Benzaldehído, bencenal, fenilmetanal o aldehído benzoico.

En torno a sus propiedades químicas, el benzaldehído es ligeramente soluble en agua, miscible en alcohol y éter; se recomienda su almacenaje en envases cerrados en lugares frescos, ventilados y protegidos de la luz solar puesto que tiende a oxidarse rápidamente en presencia de aire por tanto es recomendable también su almacenaje en frascos ámbar.

Imagen relacionada
Ilustración 19  Semillas que contienen Benzaldehído de forma natural.

El método de obtención natural es desde las semillas de almendras, ciruelas, cerezas, duraznos, melocotones entre otros; estas semillas poseen cantidades significativas de amigdalinas [glucósido, molécula formada por una parte glucídica y una parte no glucídica (C20H27NO11)], cuando las amigdalinas se rompen por catálisis enzimática o por hidrólisis se obtienen dos tipos de azucares, un cianuro y un benzaldehído formando así benzaldehído de forma natural (Gavira Vallejo, 2015).

Según el autor a nivel industrial, el benzaldehído también puede obtenerse, entre otros métodos, a través de la oxidación del tolueno [hidrocarburo aromático (C6H5CH3)]

En la industria alimenticia, el benzaldehído se usa como aditivo alimentario, entendiendo un aditivo como toda sustancia o mezcla que no aporta valor nutricional y que es agregada en la mínima cantidad posible, para crear, modificar mantener o intensificar las propiedades organolépticas y sus condiciones de conservación.

Todos los productos empleados como aditivos alimentarios están altamente regulados para que su consumo no sea perjudicial para el ser humano.

Sea cual sea su origen, el benzaldehído, es un producto considerado peligroso por el CLP (clasificación, etiqueta y envasado de productos químicos), con la siguiente clasificación, ya que puede provocar reacciones alérgicas en la piel y reacciones en el hígado (no llega a categoría de mortal, mutagénico o cancerígeno), en la industria de alimentos se identifican las siguientes 4 especies numeradas:

  • H302: Nocivo en caso de ingestión
  • H319: Lesiones oculares graves o irritación ocular
  • H332: Nocivo en caso de inhalación
  • H335: Toxicidad específica en determinados órganos.

Y a pesar de ser considero peligroso, forma parte de determinado alimentos, como las piruletas.

Imagen relacionada
Ilustración 20 Piruletas de caramelo.

Uno de los organismos encargados de esta regulación es la FEMA (Flavors and Extract Manufacturing Assosiation), la cual clasifica el benzaldehído con el número FEMA 2127. Según esta asociación, el aldehído puede ser empleado para dar aroma a almendras amargas, azúcar quemado, cereza, pimientos asados y malta.

Para asegurarse que el consumo del benzaldehído no es peligroso para la salud humana, han establecido unos límites de ppm que los productos alimentarios finales no pueden sobrepasar A continuación la tabla de concentraciones límites en ppm para alimentos que contengan benzaldehído con la finalidad de asegurarse que el consumo del benzaldehído no es peligroso para la salud humana (Gavira Vallejo, 2015).

TIPOLOGÍA DE PRODUCTO PPM MÁXIMO AUTORIZADO
Bebidas no alcohólicas 36 ppm
Helados 42 ppm
Caramelos 120 ppm
Productos horneados 110 ppm
Gelatinas y pasteles 160 ppm
Chicles 840 ppm
Bebidas alcohólicas 60 ppm

 

Aplicación del estireno y poliestireno en el envasado de los alimentos

 

El poliestireno es un plástico versátil usado para fabricar una amplia variedad de productos de consumo. Se sabe que cerca del 50-60% de estireno producido a nivel industrial está destinado a la fabricación de envases de poliestireno para comestibles (Roque Marroquín, 2016).

Dado que es un plástico duro y sólido, se usa frecuentemente en productos que requieren transparencia, tales como envases de alimentos y equipos de laboratorio.

Cuando se combina con varios colorantes, aditivos y otros plásticos, el poliestireno se usa para hacer electrodomésticos, electrónicos, repuestos automotrices, juguetes, macetas y equipamiento para jardines, entre otros a su vez el poliestireno en espuma puede tener más de 95 % de aire.

(Roque Marroquín, 2016) Menciona en su artículo que dados los efectos nocivos para la salud del estireno reportados por el Programa Nacional de Toxicología y su reciente clasificación como “agente carcinógeno racionalmente anticipado” y conocido la factibilidad de la migración de monómeros de estireno a partir de los envases de alimentos hacia su contenido, se considera importante la determinación de esta sustancia como advertencia y prevención de futuros perjuicios contra la salud humana.

Imagen relacionada
Ilustración 21 Bandejillas fabricadas con poliestireno para el envasado de alimentos.

El envasado para el servicio de alimentos de poliestireno suele ser mejor aislante, mantiene los alimentos frescos por más tiempo y cuesta menos que las otras alternativas (Chemical Safety Facts, 2010).

Resultado de imagen para sintesis del poliestireno
Ilustración 22 Polimerización del estireno.

Existen 2 clases de poliestirenos utilizados en industrias varias estos son:

  • poliestireno expandido (EPS)
  • poliestireno extruido (XPS)

Con respecto al estireno se puede decir que es la molécula de partida del polímero antes mencionado, el estireno (C8H8) también conocido como VINILBENCENO etenilbenceno, cinameno o feniletileno. Se utiliza en la fabricación de una amplia gama de polímeros (como el poliestireno) y elastómeros copolímeros, como el caucho de butadieno-estireno o el acrilonitrilo butadieno-estireno (ABS), que se obtienen mediante la copolimerización del estireno con 1,3-butadieno y acrilonitrilo.

El estireno se utiliza ampliamente en la producción de plásticos transparentes y se ve relacionado con la industria alimenticia porque se considera como contaminante de diferentes alimentos, como frutas, hortalizas, nueces, bebidas y carnes. (Chemical Safety Facts, 2010)

DISCUSIONES Y CONCLUSIONES

Como se ha demostrado los compuestos aromáticos tienen una amplia incidencia en la industria alimenticia, sea por estar presentes en la fabricación de múltiples alimentos así como en los procesos de envasado; la identificación de los mismos permite tener una mayor prevención entorno al consumo de alimentos que pueden estar relacionados a compuestos aromáticos tóxicos o persistentes y en lo que respecta a la formación académica del profesional químico de alimentos permite conocer de forma efectiva las múltiples fuentes de contaminación de alimentos lo que en definitiva aporta en el mejoramiento y aseguramiento de la calidad dentro de la industria garantizando alimentos inocuos para el consumo humano, por otra parte es recomendable la socialización tanto de la presencia, utilidad, beneficios y riesgos de los diversos compuestos aromáticos y derivados del benceno con la sociedad misma que se relaciona directamente con el patrón de consumo de los alimentos mencionados en el presente informe investigativo.

Bibliografía

Aditivos Alimentarios. (01 de 2016). Aditivos Alimentarios . Obtenido de Ácido Benzoico E210: https://www.aditivos-alimentarios.com/2016/01/E210.html

Pavlov, A. T. (1970). Curso de Química Orgánica. En A. T. B. Pavlov, Traducido por Victoria Valdéz Mendoza. (pág. 589). Moscú: Editorial MIR. . Obtenido de Curso de Química Orgánica. Traducido por Victoria Valdéz Mendoza. Editorial MIR. Moscú. 1970 – Pág. 589

Badui, S. (2013). Hablemos Claro: Amarillo de Quinolina. Obtenido de Química de los Alimentos: http://hablemosclaro.org/ingrepedia/amarillo-de-quinolina/#1502293691178-e5ac3059-a00b

Barceló, L., & López de Alda, M. J. (2010). El Agua Potable.com. Obtenido de Contaminación y calidad química del agua: El problema de los contaminantes emergentes : http://elaguapotable.com/Contaminaci%C3%B3n%20y%20calidad%20qu%C3%ADm%20del%20agua-los%20contaminantes%20emergentes.pdf

Cabeller, C. (28 de Marzo de 2018). La Noche en Vino. Obtenido de ¿Qué son las Pirazinas?: https://lanocheenvino.com/2017/03/28/que-son-las-pirazinas/

Chemical Safety Facts. (2010). Chemical Safety Facts. Obtenido de Poliestireno. : https://www.chemicalsafetyfacts.org/es/poliestireno/

Claramount, R. M., Cornago, M., Esteban Santos, S., Farrán Morales, M., Pérez Torralba , M., & Sanz del Castillo, D. (2013). Principales Compuestos Químicos. Madrid: Universidad Nacional de Educación a Distancia.

Dep. Fquím. UNAM. (14 de 03 de 2015). depa.fquim.unam.mx. Obtenido de Quinolinas e isoquinolinas: http://depa.fquim.unam.mx/amyd/archivero/06QuinolinaseIsoquinolinas_24315.pdf

Documentacion Ideam. (2003). Documentacion Ideam. Obtenido de FICHA TÉCNICA DEL BENCENO: http://documentacion.ideam.gov.co/openbiblio/bvirtual/018903/Links/Guia7.pdf

Echeverry, N. (5 de Agosto de 2016). BENCENO EN LOS ALIMENTOS. Obtenido de Prezi: https://prezi.com/8lehb7sm4cgh/benceno-en-los-alimentos/

Gavira Vallejo, J. M. (23 de Diciembre de 2015). TRIPLENLACE. Obtenido de EL BENZALDEHIDO EN LA INDUSTRIA ALIMENTARIA: https://triplenlace.com/2015/12/23/usos-industriales-del-benzaldehido/

MILKSCI. (2003). MILKSCI. Obtenido de UNIZAR: http://milksci.unizar.es/adit/conser.html

Pliskin. (11 de 06 de 2017). ImparaTudos. Obtenido de E104 Quinolina amarilla : http://imparatudos.com/article/e104-quinolina-amarilla

Roque Marroquín, M. S. (2016). ALICIA. Obtenido de El estireno en envases de alimentos: http://alicia.concytec.gob.pe/vufind/Record/UNIJ_522fb2a0e25c7cf78d3b95d03f8ef4d1

Seco, M. G. (6 de Octubre de 2014). UNAM. Obtenido de Piridinas en Alimentos: http://depa.fquim.unam.mx/amyd/archivero/PIRIDINAS_28867.pdf

Secretaría de Agricultura y Recursos Hidráulicos. (1988). COLPOS. Obtenido de ESPECIAS Y CONDIMENTOS-DETERMINACIÓN DE: http://www.colpos.mx/bancodenormas/nmexicanas/NMX-FF-064-1988.PDF

UDEA. (2010). QuimicaOrganica III. Obtenido de Aromaticidad: http://docencia.udea.edu.co/cen/QuimicaOrganicaIII/paginas/aromaticidad/sesion18/heteroaromaticidad.html

Wade, L. G. (2011). Química Orgánica: Capítulo 16 Compuestos Aromáticos. México : Mc. Grow Hill.

Si te ha gustado este artículo o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

ESPECTROSCOPIA UV-Visible (UV-VIS).

¿De qué se trata?

La espectroscopia UV-Vis está basada en el proceso de absorción de la radiación ultravioleta-visible (radiación con longitud de onda comprendida entre los 160 y 780 nm) por una molécula. La absorción de esta radiación causa la promoción de un electrón a un estado excitado. Los electrones que se excitan al absorber radiación de esta frecuencia son los electrones de enlace de las moléculas, por lo que los picos de absorción se pueden correlacionar con los distintos tipos de enlace presentes en el compuesto. Debido a ello, la espectroscopia UV-Vis se utiliza para la identificación de los grupos funcionales presentes en una molécula. Las bandas que aparecen en un espectro UV-Vis son anchas debido a la superposición de transiciones vibracionales y electrónicas.Imagen relacionada

La espectrometría ultravioleta-visible o espectrofotometría UV-Vis implica la espectroscopia de fotones en la región de radiación ultravioleta-visible. Utiliza la luz en los rangos visible y adyacentes (el ultravioleta (UV) cercano y el infrarrojo (IR) cercano.En esta región del espectro electromagnético, las moléculas se someten a transiciones electrónicas.

Esta técnica es complementaria de la espectrometría de fluorescencia, que trata con transiciones desde el estado excitado al estado basal, mientras que la espectrometría de absorción mide transiciones desde el estado basal al estado excitado.La espectrometría UV/Vis se utiliza habitualmente en la determinación cuantitativa de soluciones de iones metálicos de transición y compuestos orgánicos muy conjugados. (Anónimo, espetrometría.com, s.f.)Resultado de imagen para ? espectroscopia uv vis

Se investiga la distribución de electrones, en especial en moléculas que tienen sistemas de electrones π conjugados.La principal aplicación de la espectroscopia de UV-VIS, la cual depende de transiciones entre niveles de energía electrónica, es para identificar sistemas de electrones p conjugados.

 

¿Cómo se visualiza el registro de la alteración de los electrones?

Imagen relacionada

Imagen relacionada

Compuestos orgánicos

Los compuestos orgánicos, especialmente aquellos con un alto grado de conjugación, también absorben luz en las regiones del espectro electromagnético visible o ultravioleta. Los disolventes para estas determinaciones son a menudo el agua para los compuestos solubles en agua, o el etanol para compuestos orgánicos solubles. Los disolventes orgánicos pueden tener una significativa absorción de UV, por lo que no todos los disolventes son adecuados para su uso en espectrometría UV. El etanol absorbe muy débilmente en la mayoría de longitudes de onda. La polaridad y el pH del disolvente pueden afectar la absorción del espectro de un compuesto orgánico. La tirosina, por ejemplo, aumenta su máximo de absorción y su coeficiente de extinción molar cuando aumenta el pH de 6 a 13, o cuando disminuye la polaridad de los disolventes.

Resultado de imagen para espectros uv vis bandas

La ley de Beer-Lambert establece que la absorbancia de una solución es directamente proporcional a la concentración de la solución. Por tanto, la espectrometría UV/VIS puede usarse para determinar la concentración de una solución. Es necesario saber con qué rapidez cambia la absorbancia con la concentración. Esto puede ser obtenido a partir de referencias (las tablas de coeficientes de extinción molar) o, con más exactitud, determinándolo a partir de una curva de calibración.

Cada sustancia tiene un espectro de absorción característico que dependerá de la configuración electrónica de la molécula, átomo o ión y de los posibles tránsitos electrónicos que se puedan producir con la radiación que incide sobre ella. (Anónimo, ocw.uc3m.es, s.f.)

Resultado de imagen para espectros uv vis bandas

Resultado de imagen para espectros uv vis bandas

Ejemplo:

En la figura 13.37 se muestra el espectro de UV del dieno conjugado cis, trans-1,3-ciclooctadieno, medido en etanol como el disolvente. Como es típico en la mayoría de los espectros de UV, la absorción es bastante ancha y con frecuencia se habla de ella como 13.374.pnguna “banda” en lugar de como un “pico” o “señal”. La longitud de onda en un máximo de absorción se conoce como la lmáx de la banda. Para el 1,3-ciclooctadieno su lmáx es de 230 nm. Además de la lmáx, las bandas de UV-VIS se caracterizan por su absorbancia (A), la cual sirve para medir la radiación que es absorbida cuando pasa a través de la muestra. Para corregir los efectos de la concentración y la longitud de la trayectoria, la absorbancia se convierte en absortividad molar (P) dividiéndola entre la concentración c en moles por litro y la longitud de la trayectoria l en centímetros.

En la figura se ilustra la transición entre estados de energía electrónica responsables de la banda de UV de 230 nm del cis, trans-1,3-ciclooctadieno. La absorción de la radiación oct66.pngUV excita un electrón del orbital molecular más alto ocupado (HOMO) al orbital molecular de más bajo desocupado (LUMO). En alquenos y polienos, tanto el HOMO como el LUMO son orbitales tipo p (en lugar de s); el HOMO es el orbital p de mayor energía y el LUMO es el orbital p* de menor energía. La excitación de uno de los electrones p a partir de un orbital p de enlace a un orbital p* de antienlace se conoce como transición p → p*.

 Resultado de imagen para espectros uv vis bandas

Bibliografía:

 

 

¿Sabía ud. Qué… Los estereoisómeros tienen propiedades terapéuticas diferentes?

Los estereoisómeros en la química orgánica son isómeros que se diferencian en la orientación de sus átomos en el espacio; manteniendo el mismo orden en el que sus átomos se enlazan. Por isómeros se entiende que son compuestos diferentes, sin embargo poseen la misma formula molecular. Normalmente se los diferencia, según la posición que tengan, como Cis (mismas direcciones de sus enlaces de referencia) o Trans (direcciones opuestas de sus enlaces referencia). Esto es muy importante porque difieren entre si sus propiedades físicas y químicas.

La Quinina y la Quinidina son un ejemplo muy claro sobre estereoisómeros.

Ambas comparten la misma fórmula química: C20H24N2O2 

Por lo tanto comparten la misma masa molecular: 324.42 g/mol

Estas dos características nos conllevarían a pensar que son el mismo compuesto sin embargo son totalmente diferentes, veamos:

Reconozcamos sus estructuras:

275
QUIDININA
Quinine structure.svg
QUININA

 

 

 

 

 

 

 

Como podemos notar existe una notoria diferencia en la diseccionan de sus enlaces que conectan el grupo OH- así como el que une al heteroátomo (N). por lo tanto habrá que suponer que sus propiedades terapéuticas no serán las mismas:

QUININA: esta sustancia se obtiene aislando la corteza del árbol de la quina (Cinchona Officinalis)  es un alcaloide natural, blanco y cristalino, es un alcaloide natural, blanco y cristalino, con propiedades antipiréticas, antipalúdicas y analgésicas. Utilizado para el tratamiento de la malaria y malaria resistente. También se intentó utilizar para tratar pacientes infectados con priones, pero con un éxito limitado.  Es un compuesto empleado frecuentemente en la adulteración de la heroína.

Sustitutos:  quinacrina, cloroquina y primaquina.

QUINIDINA: (2-etenil-4-azabiciclo[2.2.2]oct-5-il)- (6-metoxiquinolin-4-il)-metanol) es un medicamento que actúa a nivel del corazón como agente antiarrítmico clase I y, químicamente, es un estereoisómero de la quinina. Se indica en el tratamiento de la frecuencia cardíaca anormal y otros trastornos del ritmo cardíaco, haciendo que el corazón sea más resistente a la actividad eléctrica anormal.

El carbonato de calcio en la industria panificadora

RESUMEN

El carbonato de calcio es un compuesto químico con la fórmula química CaCO3, es una sustancia común que se encuentra en las rocas en todas partes del mundo, este compuesto es mayormente insoluble en agua, pero su solubilidad se incrementa en condiciones ácidas, se caracteriza por las siguientes propiedades: alta pureza, alto grado de blancura, bajo índice de refracción. La obtención que intervienen en el compuesto son factores físicos y químicos. Una aplicación industrial alimenticio es en el pan,

El CaCO3 puede ser evidenciado físicamente en las zonas blancas del pan francés.

fortificando a la harina de trigo “000”, para facilitar el acceso a este nutriente a través de un alimento muy económico y de máximo consumo y mejorar el problema de la ingesta de calcio que existe en el mundo. Su proceso es de acuerdo con las concentraciones de la IDR (Ingesta Diaria Recomendada) para cada una de las fuentes de calcio. Este mineral debido a que su disolución de una sal es poco soluble y la concentración del agua es constante con relación de los iones, se menciona que es por equilibrio, además de las reglas generales de las concentraciones que existe, que al final obtendremos su Kps teórico.

DESARROLLO:

El carbonato de calcio cuya fórmula es la siguiente CaCO3, es un compuesto químico ternario oxosal. También llamado carbonato cálcico o trioxocarbonato (IV) de calcio por la nomenclatura IUPAC. Es muy abundante en la naturaleza forma parte de las rocas, presente en las conchas de moluscos, o formando estructuras como en los corales o cáscaras de huevo, principal causa del agua dura. (Guerrón, 2015)

PROPIEDADES FÍSICAS:

APARIENCIA: Polvo blanco inodoro.

DENSIDAD: 2,711 g/cm3

MASA MOLAR: 100.0869 g/mol.

PUNTO DE FUSIÓN: 1172 K (899 °C)

PUNTO DE EBULLICIÓN: 1612 K (1339 °C)

PROPIEDADES QUÍMICAS

SOLUBILIDAD EN AGUA: 0.0013 g/100 mL (25°C)

RELACIÓN TEÓRICA:

El carbonato de calcio se puede obtener a partir de óxido de calcio (cal viva), se añade agua para formar hidróxido de calcio y posteriormente, se le adiciona dióxido de carbono para precipitar carbonato de calcio, esta última reacción da como producto el carbonato de calcio y agua:

CaO+CO2→↓CaCO3+H2O

Aspecto del carbonato de calcio precipitado con microscopio electrónico de barrido.

58.png

Es por esto que relación que existe es por el equilibrio del carbonato de calcio con agua, presente como un polvo blanco cristalino, el cual se produce por un proceso físico-químico, donde la  constante de equilibrio apropiada para este proceso involucra una disolución de una sal poco soluble en agua, en donde la concentración del agua es constante y se relaciona con la concentraciones de iones mediante la siguiente ecuación donde los reactivos y los productos no presentan ningún  cambio. (Colin, 2004). Además de ser una  representación de efecto global del carbonato de calcio.

CaCO3(s) +H2O(ac)↔Ca2+ +HCO3 +OH

Debido a esto podemos decir que la ecuación tiene equilibrio ya que establece que existen dos reacciones opuestas a la mismas velocidad por lo tanto se  encuentra desplazado hacia la derecha por la cantidad de iones es decir que favorece a los productos, también se ha  aplicado para el carbonato de calcio  la  regla general las concentraciones de los sólidos puros ya que se  pueden considerar prácticamente constantes mientras no se agoten, es decir mientras existan como sólidos en el equilibrio, por lo que no son incluidos en la constante de equilibrio (Acuña, 2014). Por ello el valor de las concentraciones de los sólidos y de los líquidos puros se incluyen en la constante de equilibrio, en cuya expresión aparecen sólo las concentraciones de las sustancias disueltas en un medio líquido o gaseoso. Esto dándonos un valor teórico del carbonato de calcio que es  Kps =9,7×10-13 (Colin, 2004).

APLICACIONES DEL CARBONATO DE CALCIO

Existen múltiples aplicaciones donde el carbonato de calcio es usado en la industria como colorantes, antiaglomerantes, espesantes y aditivos indirectos de alimentos, porque se lo agrega intencionalmente con el objeto de provocar un cambio tecnológico, ya que un  mismo aditivo puede cumplir varias funciones y de esta manera  el carbonato de calcio puede emplearse de diversas maneras  tanto como neutralizante, endurecedor y anti humectante (Herrera, 2012) .

La falta de calcio en la población conforma la  importancia de este en el cuerpo así como la ingesta diaria de este mineral para la prevención de enfermedades tanto en niños como adultos, a causa de esto se ha profundizado en las propiedades del carbonato y cómo incorporar este mineral en los alimentos tanto  como espesante y aditivo alimentario. Por lo que se ha permitido la fortificación de harina “000” para la elaboración principalmente del pan francés,

Productos alimenticios con contenido de carbonato de calcio.

ya que al ser incorporado en la panificación esta ayuda a endurecer es decir imparte firmeza o mejora la textura mediante la adición de una o más sales cálcicas; debido a que mantienen la estabilidad e integridad de los tejidos vegetales (Revelant, 2014). Además sobre todo es un gran antiglomerante, porque en los alimentos es fundamental para mantener la calidad de los ingredientes permitiendo una mayor facilidad  durante el proceso de producción y a la vez que esta resulte en algo homogéneo, tomando en cuenta que este actúa en conjunto al bicarbonato de sodio y  almidón (polvo de hornear), obteniendo resultados favorables no solo en lo que es la corteza, textura y estructura del producto ya que mediante reacciones químicas que suceden al mom

Drusa de calcita

ento del horneado liberas los iones de carbono favoreciendo al pan en este elemento.

En los estudios realizados muestran que la fortificación de la harina de trigo con carbonato de calcio no altera químicamente las características organolépticas del pan como olor sabor y textura mostrando diferencias favorables hacia el pan fortificado con carbonato donde se obtuvo una excelente prueba de aceptabilidad del producto, ya que cumple  y mejora características de los panes realizados de manera artesanal (Revelant, 2014).

CONCLUSIONES:

El calcio es un elemento vital para los seres humanos, y su consumo adecuado garantiza beneficios en el plano de la salud. Su modo de consumo puede ser medicado sin embargo en la actualidad la industria alimenticia ha desarrollado técnicas apropiadas para la inclusión de este elemento en alimentos de consumo masivo diario, es el caso del uso del CaCO3 como agente fortificador de harinas de trigo, que en primer lugar se convierte en una fuente significativa de calcio y segundo no altera ninguna de las propiedades organolépticas del pan.

Estructuras naturales con CaCO3 en sus estructuras.

La Oxosal Carbonato de calcio por su fórmula CaCO3, es insoluble en agua y desde su formación a partir de la cal viva se constituye como un precipitado favorable para mejorar ciertas características como es la dureza y el anti aglutinamiento, considerando que posee un enlace iónico que puede favorecer la absorción de calcio cuando el enlace puede ser manipulado bajos ciertas condiciones que se relacionan con el equilibrio que presenta el compuesto, lo que sin duda se recomienda en la industria de la panificación como un compuesto que bien puede estar presente en la fortificación de harinas directamente o en el favorecimiento del polvo de hornear ya que actúa dando dureza en el proceso de leudado, que en efecto mejora el rendimiento del alimento esta característica se denomina probiótica por que deja un beneficio a largo plazo para quien lo consume, en este caso el fortalecimiento de sistema oseo sin la necesidad del consumo directo de calcio como un producto sintetizado en farmacia.

BIBLIOGRAFIA:

Acuña, R. (2014). Wikillerato.org. Recuperado el 2017, de Equilibrios en sistemas heterogéneos: http://www.wikillerato.org/Equilibrios_en_sistemas_heterog%C3%A9neos._Solubilidad_de_una_sustancia._Producto_de_Solubilidad.html

Colin, B. (2004). Química Ambiental. Bogota: Reverté S.A.

Guerrón, R. (2015). EcuRed. Recuperado el 2017, de Carbonato de calcio: https://www.ecured.cu/Carbonato_de_calcio

Herrera, J. (2012). Quiminet. Recuperado el 2017, de El carbonato de calcio en los alimentos: https://www.quiminet.com/articulos/el-carbonato-de-calcio-en-los-alimentos-8219.htm

Revelant, G. (2014). Pan francés fortificado con sales de calcio. Santa Fé: Instituto de tecnología de alimentos .