Archivo de la categoría: Química Orgánica

Aplicaciones de los Ácidos Carboxílicos y sus derivados

Lucía Jaramillo Cando. [1]

Lesly Espinoza Buitrón. [1]

Alejandro Aguirre F. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

INTRODUCCIÓN

Los ácidos carboxílicos son compuestos orgánicos usados en procesos químicos e industriales, que naturalmente provienen de grasas, aceites vegetales, lácteos, frutos cítricos. Se caracterizan por estar formados por un conjunto de átomos unidos entre sí mediante enlaces covalentes carbono-carbono, denominado grupo carboxilo, que cuando se unen a otros elementos como hidrógeno, oxígeno o nitrógeno, integrando una infinidad de compuestos diferentes así lo menciona (Cornejo Arteaga, 2017). Químicamente los ácidos carboxílicos son una serie homóloga en la que los compuestos presentan este grupo funcional (-COOH) mientras que la formula general en la que se muestran dichos ácidos es: CnH2n+1COOH.
Los ácidos carboxílicos son derivados de hidrocarburos en los que uno o más de los átomos de hidrógeno del hidrocarburo han sido reemplazados por un grupo carboxílico. Los primeros cuatro ácidos carboxílicos derivados de los alcanos son el ácido metanoico (HCOOH), el ácido etanoico (CH3COOH), el ácido propanoico (C2H5COOH) y el ácido butanoico (C3H7COOH).
Los ácidos carboxílicos al ser de los compuestos más abundantes en la naturaleza ameritan un estudio minucioso que complemente la formación principalmente del estudiante de la carrera de Química de Alimentos; la función química de los ácidos carboxílicos es de carbono primario que contiene tanto al carbonilo, así como el hidroxilo en sí mismo, se nombran anteponiendo la palabra ácido con el sufijo oico.

Palabras clave: carboxilo, química, carbono, ácido, grupo, carboxílico.

DESARROLLO DE LA INVESTIGACIÓN

Importancia de los ácidos carboxílicos en las industrias.

En términos generales no solamente los ácidos carboxílicos son importantes, sino el grupo carboxilo, del cual se generan una gran cantidad de compuestos que son usados por diferentes sectores industriales como en la industria alimentaria:

• Aditivos, conservantes (ácido sórbico y benzoico), regulador de alcalinidad, agente antimicrobiano, acidulante en bebidas carbonatadas.
• Ayudante a la maduración del queso suizo (ácido propiónico), elaboración de col fermentada y bebidas suaves (ácido láctico).
• Conservantes (Ácido sórbico y ácido benzoico).
• Regulador de la alcalinidad de muchos productos.
• Producción de refrescos.
• Agentes antimicrobianos ante la acción de los antioxidantes. En este caso, la tendencia son los antimicrobianos líquidos que posibiliten la bio-disponibilidad.
• Principal ingrediente del vinagre común (Ácido acético).
• Acidulante en bebidas carbonatadas y alimentos (Ácido cítrico y ácido láctico).
• Ayudante en la maduración del queso suizo (Ácido propiónico).
• Elaboración de queso, chucrut, col fermentada y bebidas suaves (Ácido láctico).

Resultado de imagen para acidos carboxílicos

El ácido fórmico en las agroindustrias y alimentos.

La agricultura es una actividad económica de alto impacto e importancia para el ser humano en las sociedades modernas, y en torno al uso de ácido fórmico este sector representa un porcentaje elevado de consumo por sus propiedades antibacterianas.
El ácido fórmico es un químico irritante presente en el veneno pulverizado de algunas especies de hormigas y en la secreción liberada por algunas ortigas, así lo menciona el portal especializado (ACIDO CLORHIDRICO.org, 2010).

Resultado de imagen para acido formico

El ácido metanoico o ácido fórmico es un conocido conservante antimicrobiano y pesticida, siendo entonces un importante aliado del sector agrícola y alimentario. Sin embargo el mismo es muy peligroso en altas concentraciones; al ser empleado como agente antimicrobiano se puede controlar el aparecimiento de bacterias de origen industrial o agrícola, éste al ser consumido en mínimas cantidades no ocasiona intoxicación alguna en humanos ni animales, por lo tanto es empleado como aditivo en alimentos de animales así como al ensilado producido como producto de la molienda y del cultivo, dicho ensilado es suministrado a animales de corral como vacas y bovinos.

Resultado de imagen para acido formicoTras tratar el ensilado con ácido fórmico, éste actúa como precursor de la fermentación de azucares en el animal, que en el caso de las reses favorece la producción láctea reduciendo el tiempo de producción natural de la misma, sin alterar el valor nutricional ni calidad de la leche para consumo humano.

La fuente afirma que puede ser muy peligroso en concentraciones anormalmente altas, el ácido fórmico es en realidad un aditivo alimentario y un químico industrial muy versátil y extremadamente útil. Cuando se consume a niveles normales, es muy rápida y fácilmente metabolizada por nuestros cuerpos, y eliminada de una manera segura y saludable. Sin embargo, se ha encontrado que ingerir cantidades altamente concentradas de ácido fórmico puede resultar en daño renal y hepático. Como tal, es importante entender tanto los usos como los peligros de este producto químico tan versátil. (ACIDO CLORHIDRICO.org, 2010)

Resultado de imagen para ensilado

Aplicaciones del ácido acético en las industrias de alimentos.

El ácido acético es un aditivo de alta incidencia en las industrias alimenticias por su capacidad de regular la acidez y basicidad en los alimentos, es el principal ingrediente del vinagre. Su nombre se deriva del latín acetum, que significa agrio. Conocido y usado hace bastante tiempo por la humanidad, se emplea como condimento y conservante de alimentos (Fennema, Hablemos Claro: Ácido Acético, 2000).

Resultado de imagen para acido acetico
Entre sus aplicaciones más comunes se encuentran:
• Salsas de mesa y para cocinar.
• Alimentos en conserva.
• Pan y productos de panadería.
• Aderezos y vinagre.
• Condimento para botanas.
• Industria de plástico y aplicaciones químicas de tipo analítico.
• Industria textil, entre otras.

Imagen relacionada
Su principal uso industrial es la preservación de alimentos, principalmente conservas. Tradicionalmente éste ácido era generado como producto de la fermentación de frutos como la manzana, uvas y diversos cereales denominándolo tradicionalmente como vinagre. Con los años y gracias a los avances en torno a la química orgánica la obtención de este ácido se ha ido perfeccionando, siendo posible en la actualidad obtenerlo por fermentación controlada o síntesis química orgánica así lo afirma (Editores “Mestrillo”, 2018).
Dentro de la industria alimenticia, el ácido acético, como se ha mencionado, se emplea para la limpieza y conservación de alimentos. También se le da utilidad en el hogar como aderezo para comidas, y es capaz de regular la acidez de muchos alimentos.

Aplicaciones del ácido cítrico en las industrias de alimentos.

El ácido cítrico es el responsable de la acidez de las frutas cítricas. Para uso industrial, el ácido cítrico es fabricado por la fermentación aeróbica del azúcar de caña (sacarosa) o azúcar de maíz (dextrosa) por una cepa especial de Aspergillus niger. Su mayor empleo es como acidulante en bebidas carbonatadas y alimentos.

En la industria alimenticia el ácido cítrico también es conocido como E330 y es un buen conservante y antioxidante natural que se añade de forma industrial en el envasado de muchos alimentos. En el organismo humano el ácido cítrico ingerido se incorpora al metabolismo normal, degradándose totalmente y produciendo energía en una proporción comparable a los azúcares. Es perfectamente inocuo a cualquier dosis concebiblemente presente en un alimento (BRISTHAR LABORATORIOS C. A. ® , 2010).

Resultado de imagen para acido citrico

Según la fuente anterior el ácido cítrico y sus sales se pueden emplear en prácticamente cualquier tipo de producto alimentario elaborado. El ácido cítrico es un componente esencial de la mayoría de las bebidas refrescantes, (excepto las de cola, que contienen ácido fosfórico) a las que confiere su acidez, del mismo modo que el que se encuentra presente en muchas frutas produce la acidez de sus zumos, potenciando también el sabor a fruta. Con el mismo fin se utiliza en caramelos, pastelería, helados, etc. Es también un aditivo especialmente eficaz para evitar el oscurecimiento que se produce rápidamente en las superficies cortadas de algunas frutas y otros vegetales.
También se utiliza en la elaboración de encurtidos, pan, conservas de pescado y crustáceos frescos y congelados entre otros alimentos. Los citratos sódico o potásico se utilizan como estabilizantes de la leche esterilizada o UHT. En la tabla siguiente se puede encontrar una pequeña guía de aplicaciones del E330 en los alimentos

Resultado de imagen para Aplicación del aditivo E330 (ácido citrico)

El ácido propiónico en las industrias de alimentos.

Resultado de imagen para ácido propiónico
El ácido propiónico es el responsable por el olor característico del queso suizo (Snyder, 1995). Durante el período principal de maduración de este tipo de queso, Propionibacterium shermanii, y microorganismos similares, convierten ácido láctico y lactatos a ácidos propiónico, acético y dióxido de carbono. El CO2 gaseoso generado es responsable por la formación de los “huecos” característicos del queso suizo, así lo afirma (Ing. Netto, 2011).

El ácido propiónico es un componente con propiedades antimicrobianas frente a los mohos y algunas bacterias, también conocido como propanoico, es un ácido graso saturado con una cadena corta integrado por un etano unido a un carboxilo y es precursor de las sales del tipo propionatos. Este ácido carboxílico monoprótico, fue descubierto en el año 1844 por el químico Johann Gottlieb, durante la degradación del azúcar de algunos productos, constituyendo un ácido graso que forma una capa aceitosa cuando se sala en agua, produciendo sal potásica.

Resultado de imagen para ácido propiónico
El ácido propiónico se puede obtener de forma natural por la fermentación de la pulpa de la madera o a través de algunos quesos, como se mencionó. Sin embargo, industrialmente se produce con la oxidación del aire de propanal, mediante el empleo de cationes de cobalto o manganeso en bajas temperaturas. Igualmente se extrae como un subproducto del ácido acético, pero este método está en caducidad.
Biológicamente según menciona (Editores “ACIDOS.INFO”, 2018), el ácido propiónico se genera en el metabolismo de los ácidos grasos con carbonos impares y algunos aminoácidos. Este proceso se inicia cuando las bacterias que se encuentran en los estómagos de los rumiantes catabolizan el sebo secretado por los poros, siendo prácticamente la razón del característico olor del queso suizo y del sudor.

Casi el 80% del consumo mundial de ácido propiónico está destinado a la conservación de alimentos elaborados para animales, cereales y la producción de propionatos de calcio o sodio, que son ingredientes básicos para alimentos humanos como el pan, bizcochos, pasteles y otros productos que son cocinados en horno, debido a su acción inhibidora del hongo.

Imagen relacionada

Existen propionatos de calcio y sodio presentes en los productos de panificación, originados de la leche entre otros ingredientes.

El ácido butírico en las industrias de alimentos.

Resultado de imagen para acido butírico

El ácido butírico (butanóico) deriva su nombre del latín butyrum, que significa mantequilla. Produce un olor peculiar por la rancidez de la mantequilla. Es usado en la síntesis de aromas, en fármacos y en agentes emulsionantes. (Parker, 1997) (Ing. Netto, 2011). Respecto a sus usos, el ácido butírico se emplea en la elaboración de esencias y sabores artificiales de aceite de vegetal. Así, en el caso del butirato de amilo, este es uno de los principales componentes del aceite de albaricoque.

Imagen relacionada
Por otra parte, en el caso del butirato de metilo, este es uno de los ingredientes esenciales del aceite de piña. Éste último es utilizado tanto como agente aromatizante como estimulante del crecimiento óseo y el tratamiento de resfriados.

El ácido butírico se manifiesta en forma de ésteres en ciertos aceites vegetales y en determinadas grasas animales. Se le encuentra en mayores proporciones en productos como la mantequilla rancia, el queso parmesano y la leche cruda. No obstante, también se produce en el colon humano, como producto de la fermentación bacteriana de los glúcidos. En cuanto a sus características, es incoloro, posee olor y sabor fuerte y desagradable, y puede diluirse en agua.

El ácido láctico en las industrias de alimentos.

Resultado de imagen para acido lactico
El ácido láctico se produce por la fermentación bacteriana de lactosa (azúcar de la leche) por Streptococcus lactis. Fabricado industrialmente por la fermentación controlada de hexosas de melaza, maíz y leche, se utiliza en la industria alimentaria como acidulante.

El ácido láctico es un aditivo utilizado ampliamente por su capacidad de regular la acidez de los productos. Dentro de sus principales aplicaciones se encuentran:
• Condimentos y vegetales en conserva.
• Pastillas, gomas de mascar y gomitas.
• Botanas a base de papa.
• Yogur, queso y fermentados lácteos.
• Salsa para pasta.
• Kit para preparar comidas.
• Productos cárnicos madurados.
El ácido láctico también se produce en nuestro propio cuerpo. Por ejemplo, cuando la glucosa es metabolizada por la actividad muscular anaeróbica, el ácido láctico se genera en los músculos y luego es descompuesto (oxidado por completo) a CO2 y H2O (Lehninger et al., 1995). Con el ejercicio intenso, el ácido láctico se forma más rápidamente de lo que puede ser eliminado. Esta acumulación transitoria de ácido láctico provoca una sensación de fatiga y dolor muscular. (Ing. Netto, 2011)

El ácido benzoico en las industrias de alimentos.

Sólido de fórmula C6H5—COOH, poco soluble en agua y de acidez ligeramente superior a la de los ácidos alifáticos sencillos. Se usa como conservador de alimentos. Es poco tóxico y casi insípido.

Resultado de imagen para acido ´benzoico
El ácido benzoico es uno de los conservantes más empleados en todo el mundo. Aunque el producto utilizado en la industria se obtiene por síntesis química, el ácido benzoico se encuentra presente en forma natural en algunos vegetales, como la canela o las ciruelas, por ejemplo, y en la industria se conoce como E210.
El ácido benzoico es especialmente eficaz en alimentos ácidos, y es un conservante barato, útil contra levaduras, bacterias (menos) y mohos. Sus principales inconvenientes son el que tiene un cierto sabor astringente poco agradable y su toxicidad, que, aunque relativamente baja, es mayor que la de otros conservantes.

El ácido fumárico en las industrias de alimentos.

El ácido trans-butenodioico, compuesto cristalino incoloro, de fórmula HO2CCH=CHCO2H, que sublima a unos 200 °C. Se encuentra en ciertos hongos y en algunas plantas, a diferencia de su isómero cis, el ácido maleico (cis-butenodioico), que no se produce de forma natural. Se utiliza en el procesado y conservación de los alimentos por su potente acción antimicrobiana, y para fabricar pinturas, barnices y resinas sintéticas.

Resultado de imagen para acido fumárico

En la industria alimenticia el ácido fumárico es comprendido como un ácido de origen natural que requieren los seres humanos y los animales para vivir. Este ácido se encuentra en las plantas también, y ha sido aprovechado por las compañías de alimentos y científicos por sus propiedades únicas que pueden ayudar a conservar el sabor y otros aspectos de varios alimentos. Dado que el ácido fumárico es seguro, natural y necesario, se encuentra en diversas aplicaciones en el servicio de comida y otras industrias que tienen que ver con la producción y distribución de alimentos.
Utilizado como ácido y estabilizador estructural en una amplia variedad de productos. También es usado como una fuente de ácido en el polvo para hornear.

El ácido linoleico en las industrias de alimentos.

Resultado de imagen para acido linoleico

De contextura líquida, oleoso, incoloro o amarillo pálido, de fórmula CH3(CH2)4(CH=CHCH2)2(CH2)6CO2H, cuyos dobles enlaces presentan configuración cis. Es soluble en disolventes orgánicos y se polimeriza con facilidad, lo que le confiere propiedades secantes. El ácido linoleico es un ácido graso esencial, es decir, es un elemento necesario en la dieta de los mamíferos por ser uno de los precursores de las prostaglandinas y otros componentes de tipo hormonal. Se encuentra como éster de la glicerina en muchos aceites de semillas vegetales, como los de linaza, soja, girasol y algodón. Se utiliza en la fabricación de pinturas y barnices.

Resultado de imagen para aceite de girasol

El ácido oleico en las industrias de alimentos.

Líquido oleoso e incoloro, de fórmula CH3(CH2)7CH=CH(CH2)7CO2H en su configuración cis (la cadena de carbono continúa en el mismo lado del doble enlace). Es un ácido graso no saturado que amarillea con rapidez en contacto con el aire. Por hidrogenación del ácido oleico se obtiene el ácido esteárico (saturado).

Resultado de imagen para acido oleico

Junto con el ácido esteárico y el ácido palmítico se encuentra, en forma de éster, en la mayoría de las grasas y aceites naturales, sobre todo en el aceite de oliva. Se obtiene por hidrólisis del éster y se purifica mediante destilación. Se utiliza en la fabricación de jabones y cosméticos, en la industria textil y en la limpieza de metales. (Ing. Netto, 2011)

El ácido esteárico en las industrias de alimentos.

Sólido orgánico blanco de apariencia cristalina, de fórmula CH3(CH2)16COOH. No es soluble en agua, pero sí en alcohol y éter. Junto con los ácidos láurico, mirístico y palmítico, forma un importante grupo de ácidos grasos. Se encuentra en abundancia en la mayoría de los aceites y grasas, animales y vegetales, en forma de éster-triestearato de glicerilo o estearina y constituye la mayor parte de las grasas de los alimentos y del cuerpo humano.

Resultado de imagen para acido estearico
El ácido se obtiene por la hidrólisis del éster, y comercialmente se prepara hidrolizando el sebo. Se utiliza en mezclas lubricantes, materiales resistentes al agua, desecantes de barnices, y en la fabricación de velas de parafina. Combinado con hidróxido de sodio el ácido esteárico forma jabón (estearato de sodio).

Resultado de imagen para acido estearico en alimentos

 El ácido esteárico se encuentra en buena parte en carnes, embutidos y ahumados.

A pesar de que el ácido esteárico está de igual manera en las grasas de origen vegetal y animal, se encuentra en mayor medida en las segundas, donde tiene alrededor de un 30%, mientras que en la grasa vegetal se encuentra en una menor cantidad al 5%. Sin embargo, existen grasas vegetales que poseen un mayor contenido de este ácido, las cuales son la manteca de karité y la de cacao, ambas teniendo aproximadamente un 28-45% de ácido esteárico.
El ácido esteárico se encuentra en el 2do lugar en cuando a ingesta de grasas saturadas dentro de la dieta, siendo consumido en un 25,8%, después del ácido palmítico, que es ingerido en un 56,3%. Es posible encontrar este ácido en mayor medida en carnes rojas, luego en el pescado, y por último tanto en cereales como en productos lácteos.
Aunque consiste en un ácido graso saturado, este ácido no parece contar con ninguno de los efectos perjudiciales que normalmente son vinculados a esta clase de grasa y de igual forma, parece ser que este ácido produce un efecto neutro en los triglicéridos, al igual que en el colesterol LDL también llamado colesterol “malo”, en el colesterol total o en el colesterol HDL conocido como colesterol “bueno”. (ADMINIDEG, 2017).

El ácido málico en las industrias de alimentos.

Es el ácido hidroxibutanodioico, compuesto incoloro de fórmula HO2CCH2CHOHCO2H. Se encuentra en las manzanas, uvas y cerezas verdes y en otros muchos frutos, así como en los vinos. Se puede obtener de forma sintética a partir del ácido tartárico y del ácido succínico.

Resultado de imagen para acido malico

Ácido Málico.

Al calentarlo se deshidrata y produce ácido fumárico y ácido maleico. Se utiliza como aditivo alimentario por su acción antibacteriana y su agradable aroma. También se emplea en medicina, en la fabricación de ciertos laxantes y para tratar afecciones de garganta.

Resultado de imagen para acido malico

El ácido málico es un aditivo utilizado en la industria de alimentos empleado como acidulante y emulsificante (Fennema, Hablemos Claro, 2000). Entre las aplicaciones más comunes se encuentran:
• Pastillas, gomas de mascar y gomitas.
• Dulces y caramelos duros.
• Bebidas de frutas y de sabores.
• Bebidas de soya.
• Botanas a base de papas.
• Helados, sorbetes y paletas.
• Vino.

El ácido oxálico en las industrias de alimentos.

Resultado de imagen para acido oxalico

ácido oxálico

El ácido etanodioico, sólido incoloro de fórmula HO2CCO2H, que cristaliza con dos moléculas de agua. Se encuentra en muchas plantas en forma de sales (oxalatos) de potasio. Su sal de calcio también aparece en ciertos vegetales y en los cálculos renales. Se utiliza en análisis químico por su poder reductor y en especial en la determinación de magnesio y de calcio. También se emplea en tintorería, en el curtido de pieles, en síntesis, de colorantes y como decapante.
Como es sabido, el ácido oxálico o los oxalatos, son compuestos contenidos en algunos alimentos que inhiben la absorción del calcio al unirse a este mineral y volverlo insoluble en el intestino. Por eso, para prevenir deficiencias de calcio.

El ácido palmítico en las industrias de alimentos.

Resultado de imagen para acido palmitico

Sólido blanco grisáceo, untuoso al tacto, de fórmula CH3(CH2)14COOH. Es un ácido graso saturado que se encuentra en una gran proporción en el aceite de palma, de ahí su nombre. Se encuentra en la mayoría de las grasas y aceites, animales y vegetales, en forma de éster (tripalmitato de glicerilo o palmitina). Por saponificación, es decir, por reacción del éster con un álcali (hidróxido de sodio o potasio) se obtiene la sal alcalina, y a partir de ella se puede obtener el ácido por tratamiento con un ácido mineral. Las sales alcalinas tanto del ácido palmítico como del ácido esteárico son los principales constituyentes del jabón. Se utiliza en aceites lubricantes, en materiales impermeables, como secante de pinturas y en la fabricación de jabón.

Resultado de imagen para acido palmitico

El ácido pirúvico en las industrias de alimentos.

Resultado de imagen para acido piruvico
Es el ácido a-cetopropanoico, líquido incoloro de olor fuerte y picante, soluble en agua y de fórmula H3CCOCO2H. Interviene en numerosas reacciones metabólicas. Por ejemplo, es un producto de degradación de la glucosa que se oxida finalmente a dióxido de carbono y agua. En las levaduras se produce un proceso de fermentación en el que el ácido pirúvico se reduce a etanol. También puede ser transformado en el hígado en el correspondiente aminoácido, la alanina.

Imagen relacionadaHabitualmente se localiza en las frutas fermentadas, vinagre y manzanas, de igual manera, es producido por nuestro cuerpo como resultado del proceso metabólico. Este ácido, que recibe el nombre de piruvato, fue descubierto por el químico sueco Jöns Jacob von Berzelius. (ACIDOS.INFO, 2018)

El ácido tartárico en las industrias de alimentos.

También llamado ácido dihidroxidosuccínico o ácido dihidroxibutanodioico, es un ácido orgánico de fórmula C4H6O6. Este ácido, que se encuentra en muchas plantas, ya era conocido por los griegos y romanos como tártaro, la sal del ácido de potasio que se forma en los depósitos de jugo de uva fermentada.
El ácido tartárico, en sus dos formas racémico y dextrorrotatorio, se emplea como aderezo en alimentos y bebidas. También se utiliza en fotografía y barnices, y como tartrato de sodio y de potasio (conocido como sal de Rochelle) constituye un suave laxante.

Resultado de imagen para acido tartaricoEl ácido tartárico es un ingrediente ampliamente utilizado en la industria de alimentos como regulador de acidez, antioxidante, secuestrante y agente leudante. (Fennema, Hablemos claro: Química de los Alimentos, 2000). Entre las aplicaciones más comunes se encuentran:
• Pastillas, gomas de mascar y gomitas.
• Galletas dulces.
• Pasteles, pastas y otros productos de panificación.
• Caramelos.
• Bebidas con gas.
• Vinos.
• Chocolates.
• Industria textil.
• Industria química y cosmética.

El ácido sórbico en las industrias de alimentos.

El ácido sórbico es el único ácido orgánico no saturado normalmente permitido como conservador en los alimentos. Posee un espectro antimicrobiano interesante ya que es relativamente ineficaz contra las bacterias catalasa-negativas como las bacterias lácticas. El ácido sórbico posee un amplio espectro de actividad contra los microorganismos catalasa-positivos, que incluyen las levaduras, mohos y bacterias y se utiliza, por tanto, para inhibir los contaminantes aeróbicos en los alimentos fermentados o acidificados, así lo manifiesta (BRISTHAR LABORATORIOS C. A. ®, 2010)

Resultado de imagen para acido sorbico
Estos últimos microorganismos resultan generalmente inhibidos por concentraciones de ácido no disociado de 0.01a 0.03%. Este compuesto constituye un eficaz agente antimicrobiano a valores de pH inferiores a 6.
Los sorbatos se utilizan en bebidas refrescantes, en repostería, pastelería y galletas, en derivados cárnicos, quesos, aceitunas en conserva, en postres lácteos con frutas, en mantequilla, margarina, mermeladas y en otros productos. En la industria de fabricación de vino encuentra aplicación como inhibidor de la fermentación secundaria permitiendo reducir los niveles de sulfitos.
Cada vez se usan más en los alimentos los sorbatos en lugar de otros conservantes más tóxicos como el ácido benzoico. Los sorbatos son los menos tóxicos de todos los conservantes, menos incluso que la sal común o el ácido acético (el componente activo del vinagre). Por esta razón su uso está autorizado en todo el mundo. Metabólicamente se comporta en el organismo como los demás ácidos grasos, es decir, se absorbe y se utiliza como una fuente de energía.

Resultado de imagen para acido sorbico
Este compuesto no debe ser utilizado en productos en cuya elaboración entra en juego la fermentación, ya que inhibe la acción de las levaduras. En productos de panadería por lo general se emplea en las masas batidas (magdalenas, bizcochos, etc.), siendo la dosis máxima de uso de 2 g/kg de harina.

El ácido ascórbico en las industrias de alimentos.

Resultado de imagen para acido ascórbico

Conocido como vitamina C, tiene su nombre químico que representa a dos de sus propiedades: una química y otra biológica. En cuanto al primero, es un ácido, aunque no pertenece a la clase de ácidos carboxílicos. Su característica ácida es derivada de la ionización de un hidroxilo y de un grupo enol (pKa = 4,25). Además, según menciona (Ing. Netto, 2011) la palabra ascórbico representa su valor biológico en la protección contra la enfermedad escorbuto, del latín scorbutus (Lehninger et al., 1995).

Resultado de imagen para acido ascórbico

DERIVADOS DE LOS ÁCIDOS CARBOXÍLICOS (en otras industrias químicas)

Aplicaciones de ésteres

Como disolventes de Resinas:

Los ésteres, en particular los acetatos de etilo y butilo se utilizan como disolventes de nitrocelulosa y resinas en la industria de las lacas, así como materia prima para las condensaciones de ésteres.

Resultado de imagen para nitrocelulosa
Nitrocelulosa

Como aromatizantes:

El acetato de etilo y el acetato de butilo son los ésteres más importantes. Los esteres sintéticos son usados como aromatizadores de alimentos. Los más conocidos son: Acetato de amilo (platano), Acetato de octilo (naranja), butirato de etilo (piña), butirato de amilo (albaricoque) y formiato de isobutilo (frambruesa). (IECIUDADDEASIS, 2012)
Algunos ésteres se utilizan como aromas y esencias artificiales. Por ejemplo, el formiato de etilo (ron, aguardiente de arroz), acetato de isobutilo (plátano), butirato de metilo (manzana), butirato de etilo (piña), y butirato de isopentilo (pera).

Resultado de imagen para aromatizantes

Lactonas

Las lactonas son ésteres cíclicos internos, hidroxiácidos principalmente gamma y delta. Estos compuestos son abundantes en los alimentos y aportan notas de aromas de durazno, coco, nuez y miel. Las lactonas saturadas e insaturadas se originan en la gama y delta hidroxilación de los ácidos grasos respectivos. La cumarina también es un éster cíclico (es decir, una lactona) que se aísla del haba tonka y otras plantas. W. H. Perkin sintetizó por primera vez la cumarina en el laboratorio y comercializó el compuesto como el primer perfume sintético, llamándolo Jockey Club y Aroma de heno recién segado.

Resultado de imagen para lactonas

Resultado de imagen para Haba Tonka y la sintetización de la cumerina

 Haba Tonka y la sintetización de la cumerina

Como Analgésicos

En la medicina encontramos algunos ésteres como el ácido acetilsalicílico (aspirina) utilizado para disminuir el dolor. La novocaína, otro éster, es un anestésico local. El compuesto acetilado del ácido salicilico es un antipirético y antineurálgico muy valioso, laaspirina (ácido acetilsalicílico) Que también ha adquirido importancia como antiinflamatorio no esteroide.

Resultado de imagen para aspirina

En la elaboración de fibras semisintéticas

Todas las fibras obtenidas de la celulosa, que se trabajan en la industria textil sin cortar, se denominan hoy rayón (antiguamente seda artifical). Su preparación se consigue disolviendo las sustancias celulósicas (o en su caso, los ésteres de celulosa) en disolventes adecuados y volviéndolas a precipitar por paso a través de finas hileras en baños en cascada (proceso de hilado húmedo) o por evaporación del correspondiente disolvente (proceso de hilado en seco).

Resultado de imagen para seda al acetato

Rayón al acetato (seda al acetato)

En las fibras al acetato se encuentran los ésteres acéticos de la celulosa. Por acción de anhídrido acético y pequeña cantidad de ácido sulfúrico sobre celulosa se produce la acetilación a triacetato de celulosa. Por medio de plastificantes (en general, ésteres del ácido ftálico) se puede transformar la acetilcelulosa en productos difícilmente combustibles (celon, ecaril), que se utilizan en lugar de celuloide, muy fácilmente inflamable.

Síntesis para fabricación de colorantes:

El éster acetoacético es un importante producto de partida en algunas síntesis, como la fabricación industrial de colorantes de pirazolona.

Imagen relacionada

En la industria alimenticia y producción de cosméticos

Los monoésteres del glicerol, como el monolaurato de glicerol. Son surfactantes no iónicos usados en fármacos, alimentos y producción de cosméticos.
En la obtención de jabones

Se realizan con una hidrólisis de esteres llamado saponificación, a partir de aceites vegetales o grasas animales los cuales son esteres con cadenas saturadas e insaturadas (Química Orgánica, 2013).

Resultado de imagen para jabones de acidos grasos

Resultado de imagen para jabon

Aplicaciones de las amidas

Por otra parte, podemos decir que las amidas sustituidas, en general, tienen propiedades disolventes muy importantes.

La dimetilformamida:
Se emplea como disolvente de resinas en la fabricación de cuero sintético, poliuretano y fibras acrílicas, como medio de reacción y disolvente en la extracción de productos farmacéuticos, en disolución de resinas, pigmentos y colorantes. Constituye un medio selectivo para la extracción de compuestos aromáticos a partir del petróleo crudo.

La dimetilacetamida
Se utiliza como disolvente de fibras acrílicas y en síntesis específicas de química fina y farmacia. Tanto la dimetilformamida como la dimetilacetamida son componentes de disolventes de pinturas.

POLIAMIDAS

Los nylons son unos de los polímeros más comunes usados como fibra. En todo momento encontramos nylon en nuestra ropa, pero también en otros lugares en forma de termoplástico. El verdadero éxito del nylon vino primeramente con su empleo para la confección de medias femeninas, alrededor de 1940. Pero antes de eso, el primer producto de nylon fue el cepillo de dientes con cerdas de nylon.

Resultado de imagen para nylon
Los nylons también se llaman poliamidas, debido a los característicos grupos amida en la cadena principal. Las proteínas, tales como la seda a la cual el nylon reemplazó, también son poliamidas. Estos grupos amida son muy polares y pueden unirse entre sí mediante enlaces por puente de hidrógeno. Debido a esto y a que la cadena de nylon es tan regular y simétrica, los nylons son a menudo cristalinos y forman excelentes fibras. (Helena, 2011)

[O=C(CH2)4-C=O-NH-(CH2)6-NH]n

Bibliografía

Resultado de imagen para quimica gif

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Presencia de las aminas en los alimentos

Lucía Jaramillo Cando. [1]

Lesly Espinoza Buitrón. [1]

Alejandro Aguirre F. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

Las Aminas

Definición: Se pueden considerar compuestos derivados del amoníaco (NH3) al sustituir uno, dos o tres de sus hidrógenos por radicales alquílicos o aromáticos. Según el número de hidrógenos que se sustituyan se denominan aminas primarias, secundarias o terciarias así lo afirma (Fernández, 2015) además menciona que suelen presentar las siguientes estructuras tomando como base el amoniaco; mismas que pueden ser primarias, secundarias o terciarias según el número de sus sustituyentes:

Ilustración 1 aminas primarias, secundarias y terciarias.

Resultado de imagen para aminas primarias, secundarias y terciarias.

Ilustración 2 Ejemplos de aminas

Resultado de imagen para aminas

Como podemos apreciar el número de sustituyentes determinan el tipo de amina, adicionalmente las aminas adoptan su nombre según sus sustituyentes; normalmente se nombran añadiendo al nombre del radical hidrocarbonado el sufijo “-amina“. (Alonso, 2017); En las aminas secundarias y terciarias, si un radical se repite se utilizan los prefijos “di-” o “tri-“, aunque, frecuentemente, y para evitar confusiones, se escoge el radical mayor y los demás se nombran anteponiendo una N para indicar que están unidos al átomo de nitrógeno. Cuando las aminas primarias no forman parte de la cadena principal se nombran como sustituyentes de la cadena carbonada con su correspondiente número localizador y el prefijo “amino-“. Adicionalmente Cuando varios N formen parte de la cadena principal se nombran con el vocablo aza; a continuación algunos ejemplos:

Si deseas conocer un poco mas a profundidad sobre su estructuración comparto aquí un tutorial muy bueno en especial si estas iniciando en este tema:

AMINAS | Formulación Orgánica

Presencia de las aminas en los alimentos

Resultado de imagen para Algunas aminas presentes en los alimentos

Ilustración 3 Algunas aminas presentes en los alimentos.

Normalmente en la industria alimenticia como en los alimentos orgánicos, la presencia de aminas puede ser un indicador positivo o negativo dependiendo de la aplicación que se dé a estos tipos de compuestos; sin embargo de forma general la presencia de ellas pueden determinar la calidad del alimento y si es viable su consumo. Por ejemplo: diversos estudios han demostrado la incidencia de cáncer en personas que consumieron alimentos que contenían aminas heterocíclicas en especial en alimentos cocinados, dichas aminas son compuestos mutágenos cuyos orígenes pueden ser naturales como artificiales así lo afirma (Galceran, 2002), además menciona que la mayor parte de las aminas presentes en los alimentos son de tipo biogénicas, es decir, producidas o sintetizadas desde otro ser vivo; finalmente señala a las nitrosaminas y nitrosamidas, como genotóxicos altamente cancerígenos a continuación presentamos las estructuras a las que el estudio citado hace referencia como las más importantes presentes en alimentos:

Por otro lado, las aminas heterocíclicas no son las únicas presentes en los alimentos; existen también aminas de estructuras menos complejas pero que cumplen un papel fundamental en la naturaleza del alimento, como por ejemplo un indicador de que una carne o un pescado ya no son aptos para el consumo humano es cuando éstos comienzan a emanar olores desagradables, mismos que indican un estado de descomposición del alimento como es la presencia de la putrecina y la cadaverina en los alimentos cárnicos principalmente.

Aminas biogénicas en alimentos

Imagen relacionada

Ilustración 4 Los quesos son alimentos con importante presencia de aminas indicadoras de su estado dado el olor que son capaces de generar.

Definición: Las aminas biogénicas, también conocidas como aminas biológicamente activas, son compuestos orgánicos de bajo peso molecular, que contienen nitrógeno, y que están presentes de manera natural en los productos alimentarios tales como queso, vino, cerveza, alimentos vegetales, pescado y carnes rojas. Estas substancias son descritas como biogénicas porque son formadas por la acción de organismos vivos. En los alimentos, son percibidas como indeseables factores antinutricionales de preocupación en salud pública dado que han sido asociadas con envenenamiento por alimentos, particularmente cuando son ingeridas en grandes cantidades o en donde hay una inhibición de su degradación en los humanos. Ejemplos de aminas biogénicas son las catecolaminas y la indolaminas. Las prominentes incluyen acetilcolina (Ach), histamina, tiramina, dopamina, serotonina, norepinefrina (NE, también conocida como noradrenalina o NA) y epinefrina (también conocida como adrenalina) así lo manifiesta (NUTRICIÓN ESPECIALIZADA, 2012).

Sin embargo y desde una visión más crítica al respecto se meciona que las aminas biógenas son un tipo de contaminación química, sustancias que forman parte de la composición de determinados alimentos, aunque también se desarrollan como consecuencia de algún posible fallo en el procesado o por una mala praxis higiénica durante la elaboración o la conservación. Constituyen un peligro para la calidad y la seguridad de los alimentos y su presencia en estos, a menudo, es indicador de deterioro (GIMFERRER MORATÓ, 2012).

Funcionalidad y alcance

La principal función de las aminas es formar parte de importantes reacciones fisiológicas celulares. También están implicadas en una gran cantidad de procesos metabólicos de animales y vegetales. Por esta razón, se encuentran en una gran variedad de alimentos, tanto de origen animal como de origen vegetal, y en cantidades más o menos importantes. El consumo en pequeñas porciones de estas sustancias no supone un efecto nocivo para la salud. Según los expertos, su consumo moderado puede incluso ser beneficioso, gracias a un efecto antioxidante. Pero la ingesta de alimentos que contienen un elevado nivel de aminas biógenas puede causar reacciones tóxicas como cefalea, hipertensión, náuseas, aceleración del pulso o vómitos (GIMFERRER MORATÓ, 2012).

Acetilcolina (2-acetoxi-N,N,N-trimetiletanaminio)

Resultado de imagen para acetilcolina

Resultado de imagen para acetilcolina

Ilustración 5 Acetilcolina

Es un neuromodulador encontrado tanto en el sistema nervioso central (CNS, por sus siglas en inglés) como en el periférico (PNS, por sus siglas en inglés). El compuesto tiene una fórmula química CH3COOCH2CH2N+(CH3)3 y está formado por la esterificación de colina con ácido acético en una reacción catalizada por la enzima colina-acetil-transferasa. En el PNS, Ach actúa para activar los músculos, mientras que en el CNS realiza acciones excitadoras. (NUTRICIÓN ESPECIALIZADA, 2012)

Ilustración 7 Mecanismo de acción de la acetilcolina.

Histamina (2-(1H-imidazol-4-il)etanamina

Resultado de imagen para histamina molecula

Ilustración 8 HISTAMINA

Es un neurotransmisor producido por basófilos y mastocitos, funcionando en la respuesta inmune y la regulación de funciones fisiológicas en el intestino. La histamina aumenta la permeabilidad de los capilares a los leucocitos y anticuerpos proteicos, los cuales son necesarios para destruir substancias y nulificar sus efectos dañinos. También actúa en la respuesta proinflamatoria al daño celular o reacciones alérgicas además de mejorar la secreción de ácido clorhídrico gástrico a través de los receptores de histamina. (NUTRICIÓN ESPECIALIZADA, 2012)

Tiramina (4-(2-aminoetil)fenol)

Es formada a partir del aminoácido tirosina por descarboxilación y aparece en muchos alimentos comunes que los humanos ingieren. Fuentes alimentarias bien conocidas de tiramina incluyen alimentos fermentados, encurtidos y añejados, alimentos marinados, alimentos ahumados, chocolate, bebidas alcohólicas y alimentos en descomposición. Su producción y acumulación en el cuerpo ha sido asociada a una elevación en la presión arterial y cefaleas.

Resultado de imagen para tiramina

Ilustración 9 Reacción de formación de la tiramina a partir de tirosina.

Serotonina (5-hidroxitriptamina)

Resultado de imagen para serotonina

Ilustración 10 SEROTONINA

La serotonina es un neurotransmisor encontrado sobre todo en el tracto gastrointestinal (GIT, por sus siglas en inglés), el CNS y en las plaquetas de animales, incluyendo los humanos. En el GIT, la serotonina actúa para regular los movimientos intestinales; en el CNS, la serotonina realiza varias funciones, incluyendo la regulación del apetito, el estado de ánimo y el sueño, así como la contracción muscular y algunas funciones cognitivas. La serotonina asociada a las plaquetas está involucrada en le hemostasia y la regeneración hepática. En las plantas, se cree que la serotonina es producida por un mecanismo para evitar la acumulación de amoniaco tóxico. (NUTRICIÓN ESPECIALIZADA, 2012)

Las fuentes vegetales de serotonina incluyen champiñón, jitomate, plátano, ciruela, kiwi, nuez de nogal y nuez de pacana. Los niveles excesivos de serotonina pueden ser tóxicos para los humanos y se manifiestan por efectos cognitivos, autónomos y somáticos específicos, que pueden ir de lo indetectable a lo fatal.

Resultado de imagen para alimentos con serotonina

Resultado de imagen para alimentos con serotonina

(Epinefrina o adrenalina, (R)-4-[1-hidroxi-2 (metilamino)]etilbenceno-1,2-diol)

Resultado de imagen para adrenalina

Ilustración 11 Adrenalina

Funciona tanto como una hormona y como neurotransmisor y realiza funciones múltiples en el cuerpo. Por ejemplo, incrementa el ritmo cardíaco, modula la dilatación de los vasos sanguíneos y las vías aéreas y participa en la respuesta luchar/huir del sistema nervioso simpático. También participa en la contracción de los músculos lisos; inhibe la secreción de insulina mientras que aumenta la secreción de glucagón en la páncreas; y también estimula la glicólisis en el hígado y el músculo.(NUTRICIÓN ESPECIALIZADA, 2012)

Ocurrencia en los productos alimenticios

Fuentes de alimentos fermentados

Resultado de imagen para alimentos fermentados

Ilustración 12 alimentos fermentados con microorganismos.

La fermentación es un método biológico para procesar alimentos a fin de conservar su calidad o para transformar alimentos en formas estables y útiles. El proceso de fermentación invariablemente forma productos finales con propiedades de sabor y textura características. Varios microorganismos, incluyendo Lactococcus spp, Lactobacillus spp, Leuconostoc spp, Streptococcus spp y Pediococcus spp participan en varias fermentaciones de alimentos. (NUTRICIÓN ESPECIALIZADA, 2012)

Estos microorganismos pueden estar naturalmente presentes en el material alimenticio o ser adicionados a los alimentos como cultivo iniciador, y secretan sus enzimas (incluyendo varias descarboxilasas e hidrolasas) en los alimentos para su transformación. Como resultado, ciertos alimentos fermentados pueden acumular grandes cantidades de aminas biogénicas a través de la descarboxilación de aminoácidos por las descarboxilasas microbianas o vía proteólisis por proteasas para generar intermediarios (aminoácidos libres) que pueden condensarse con creatinina para formar aminas biogénicas heterocíclicas. (Galceran, 2002)

Por ejemplo, se ha demostrado que productos como el cangrejo de Shanghai (Eriocheir sinensis), la cerveza, el queso y otros alimentos fermentados acumulan altos niveles de histamina durante el almacenamiento. Aunque la presencia de aminas biogénicas pueden no siempre indicar deterioro, su presencia en los productos alimenticios no es deseable debido a sus efectos potenciales a la salud.

Resultado de imagen para Eriocheir sinensis

Resultado de imagen para queso fermentado

Ilustración 13 Shanghai (Eriocheir sinensis). Queso viejo fermentado.

QUESOS

Algunos de los aminoácidos libres producidos se convierten en sustratos para las descarboxilasas de los microorganismos asociados con los quesos para formar aminas biogénicas (principalmente putrescina, cadaverina, histamina y tiramina) en los productos. De igual forma, los aminoácidos libres de la proteólisis pueden formar aminas biogénicas heterocíclicas con creatinina.

Resultado de imagen para quesos fermentados

Ilustración 14 Los quesos fermentados presentan putrescina en la composición de sus malos olores.

Se sabe que Lactobacillus buchneri produce vastas cantidades de histamina en los quesos, lo que puede potencialmente causar envenenamiento por histamina en los consumidores, mientras que L. brevis y Enterococcus faecalis también han sido implicados en la formación de tiramina en ciertos productos de queso. (NUTRICIÓN ESPECIALIZADA, 2012)

BEBIDAS ALCOHÓLICAS

Imagen relacionada

Ilustración 15 Mosto de Vino tinto para fermentación.

Las bebidas alcohólicas, incluyendo cervezas y vinos, son producidas a partir de materiales vegetales por un proceso de fermentación microbiana (por ejemplo, el vino tinto es producido por fermentación del mosto de uva) y son fuentes comunes de aminas biogénicas. La cerveza y los vinos tintos han sido implicados en brotes de envenenamiento por histamina y tiramina. Las aminas biogénicas en el alcohol actúan sinérgicamente para provocar varios síntomas adversos a la salud tales como náusea, problemas respiratorios, palpitaciones, cefaleas, erupciones y problemas de presión arterial.

En el proceso, los microorganismos de fermentación tales como Saccharomyces cerevisiae y S. ellipsoideus hidrolizan carbohidratos en azúcares más simples que son luego degradados en etanol y una variedad de compuestos que aportan sabores y aromas.

Resultado de imagen para Saccharomyces cerevisiae

Ilustración 16 Saccharomyces cerevisiae

PRODUCTOS CÁRNICOS Y DE PESCADO

Las aminas biogénicas histamina, tiramina, triptamina, cadaverina, putrescina, 2-feniletilamina, espermidina y espermina han sido encontradas en las salchichas secas. Sin embargo, sus niveles y distribución varían dependiendo de factores tales como calidad de la materia prima y la disponibilidad de moléculas precursoras que sirvan como sustratos. carnes fermentadas incluyen jamón y las salchichas y salchichones como salami, pepperoni, chorizo, carne de Thuringer y carne de Cervelat, entre otros. (NUTRICIÓN ESPECIALIZADA, 2012)

Resultado de imagen para aminas presentes en carnes

Ilustración 17 Aminas presentes en cárnicos en mal estado.

PRODUCTOS VEGETALES

Resultado de imagen para macerados de verduras

Ilustración 18 Macerados de verduras.

Las verduras y las frutas pueden ser también fermentadas para conservarlas o formar productos moldeados con sabores y texturas característicos. Los productos fermentados de verduras incluyen encurtidos, aceitunas maduras, sauerkraut, doen-jang, shoyu, tofu oloroso, miso, tempeh, injera, kimchi, koji, natto, salsa de soya, brandy, cidra, sake y vinagre; estos son producidos de fuentes tales como frijoles, granos, pepinos, lechuga, aceitunas, col, nabo, frutas y arroz. (NUTRICIÓN ESPECIALIZADA, 2012) Los productos vegetales fermentados también acumulan aminas biogénicas durante el almacenamiento. Por ejemplo, los niveles de tiramina y putrescina en el sauerkraut se incrementan durante el almacenamiento y mientras más largo sea éste, mayor será la acumulación de aminas biogénicas.

Importancia para la industria alimentaria

Las aminas biogénicas son de interés particular para la industria alimentaria debido a su toxicidad y a su uso como indicadores de la calidad del alimento o su descomposición. Por ejemplo, el envenenamiento por histamina ocurre luego de la ingestión de alimentos con alto contenido de histamina. Los peces escombroides que no son manejados apropiadamente pueden acumular altas cantidades de histamina y dichos productos pueden significar un riesgo a la salud cuando son consumidos. Otros alimentos fermentados, como queso, vino, salchichas

Resultado de imagen para β-feniletilamina

Ilustración 19 β-feniletilamina

secas, sauerkraut, miso y salsa de soya también han sido asociados con envenenamiento por aminas biogénicas. La toxicidad por histamina y tiramina han sido ampliamente investigadas y las aminas biogénicas como β-feniletilamina y tiramina han sido asociadas a crisis de hipertensión y migrañas. Otras aminas biogénicas como las HCA también han sido implicadas en la formación de nitrosaminas mutagénicas o carcinogénicas y los potenciales riesgos a la salud de estos compuestos son área de investigación activa para comprender mejor el grado de riesgos a la salud que implican estos compuestos en los productos alimenticios. (Fernández, 2015)

Indicadores de calidad

Las aminas biogénicas son de interés y uso para los científicos y tecnólogos en alimentos debido a sus usos como indicadores de la calidad alimentaria. Las soluciones acuosas de putrescina y cadaverina impartes olores discernibles y rechazables a niveles de 22 ppm y 190 ppm, respectivamente. La contribución relativa del sabor de las aminas biogénicas a la calidad general del alimento no está bien establecida; el principal enfoque ha sido en su posible uso como indicadores químicos de la calidad del alimento. La relación entre las cantidades de aminas biogénicas particulares en un producto alimenticio y el grado de descomposición del mismo ha sido empleado para estimar un parámetro conocido como índice de calidad química (CQI, por sus siglas en inglés) o índice de aminas biogénicas (BAI, por sus siglas en inglés) para el pescado y este toma en cuenta las concentraciones de putrescina, cadaverina, histamina, espermina y espermidina en la muestra de pescado. En base a esto, el CQI es calculado como el producto de la suma de histamina, putrescina y cadaverina, dividida entre la suma de 1 más espermina y espermidina. Un valor de CQI por debajo de 1 denota un producto de buena calidad, un valor entre 1 y 10 es considerado mediocre, mientras que un valor mayor a 10 denota descomposición.

El concepto de CQI o BAI se ha extendido hacia un BAI de la cerveza, tomando en consideración las concentraciones de otras aminas biogénicas, tiramina, β-feniletilamina y agmatina, que aparecen en productos como la cerveza. El BAI de la cerveza se calcula como el producto de la suma de cadaverina, histamina, tiramina, putrescina, β-feniletilamina y tiramina, dividida entre 1 más agmatina. Un valor de BAI por debajo de 1 indica un producto de buena calidad, un valor entre 1 y 10 se considera mediocre y un valor mayor a 10 denota descomposición.

Resultado de imagen para Agmatina

Ilustración 20 Agmatina usada como proteína tonificante de deportistas.

Para las carnes, el contenido total de putrescina, cadaverina, histamina y tiramina puede ser utilizado para determinar la frescura, con niveles ≤ 5.0 μg/g indicando productos cárnicos de alta calidad.

Efectos del procesamiento y almacenamiento de los alimentos

El procesamiento alimentario es un mecanismo esencial para controlar los niveles de aminas biogénicas en los alimentos. Debido a su alta estabilidad térmica, una vez que las aminas son formadas sus concentraciones no disminuirán significativamente durante los procesos térmicos. Las técnicas de procesamiento tales como evisceración, manejo postcosecha o postcaptura, congelado o refrigerado, salteado y ahumado pueden afectar el contenido de aminas biogénicas y la calidad del producto final.

Control de temperatura

Los niveles de aminas biogénicas en los productos alimenticios son influenciados en gran medida por la temperatura de almacenamiento. Técnicas de manejo postcaptura o postcosecha como la colocación inmediata en hielo son importantes para controla el contenido de aminas biogénicas en el pescado debido a que a temperaturas menores las actividades enzimáticas y microbianas son reducidas considerablemente, de manera que las tasas de formación de aminas biogénicas y su acumulación en los productos se reducen en consecuencia.

Salado

El salado puede inhibir de manera efectiva la formación de aminas biogénicas, particularmente a niveles elevados. En general, un contenido más alto de sal resulta en una formación reducida de aminas biogénicas. Esto se debe a que el alto contenido de sal disminuye la actividad acuosa del medio y esto puede inhibir tanto las actividades microbianas como las enzimáticas que son requeridas para la formación de aminas biogénicas.

Ahumado

El ahumado es un método tradicional utilizado para conservar pescado. Este alimento es ahumado, luego congelado y transportado. El contenido de histamina se incrementa durante el proceso de ahumado y continúa acumulándose durante el congelamiento. Aún cuando el ahumado puede inducir la producción de histamina y la formación de nitrosaminas, la alta temperatura aplicada en el ahumado puede también disminuir el crecimiento y proliferación de microorganismos dañinos y/o productores de descomposición del alimento.

Regulaciones

Dado que el nivel alto de aminas biogénicas, por ejemplo, histamina y tiramina, está asociado con el envenenamiento alimentario, su consumo debe ser limitado. Aún cuando no todas las aminas son igualmente tóxicas, y los niveles toxicológicos son difíciles de valorar debido a efectos sinérgicos entre las aminas, se han propuesto límites permisibles.

Así, los productos fermentados que son preparados utilizando buenas prácticas de manufactura (GMP, por sus siglas en inglés) pueden contener histamina, tiramina y β-feniletilamina en concentraciones de 50-100 mg/Kg, 100-800 mg/Kg y 30 mg/Kg, respectivamente, y aún ser considerados seguros y aceptables para el consumo humano. Los niveles de histamina, cadaverina, putrescina, tiramina y β-feniletilamina en sauerkraut no deben exceder los 10 mg/Kg, 25 mg/Kg, 50 mg/Kg, 20 mg/Kg y 5 mg/Kg, respectivamente y la cantidad total de aminas biogénicas en pescado, queso y sauerkraut debe ser menor a 300 mg/Kg. Adicionalmente, una ingestión de aminas biogénicas mayor a 40 mg en una comida se considera como potencialmente tóxica. (NUTRICIÓN ESPECIALIZADA, 2012)

Como las aminas biogénicas no son extremadamente tóxicas o se han asociado con muchos incidentes fatales, existen pocas regulaciones generales que controlan su concentración. Histamina, sin embargo, es una preocupación común y varios países han establecido sus propios estándares para estos compuestos en los alimentos. Por ejemplo, un nivel de 10 mg de histamina por cada litro de vino es considerado como aceptable en Suiza. En Estados Unidos, 20 mg de histamina por 100 g de pescado enlatado se considera no seguro para el consumo humano y 50 mg de histamina por 100 g de pescado enlatado se considera como un riesgo para la salud por la Administración de Alimentos y Medicamentos (FDA, por sus siglas en inglés); la Comunidad Económica Europea (ECC, por sus siglas en inglés) ha fijado el nivel aceptable de contenido de histamina en pescado como 10-20 mg/100 g; la Agencia Canadiense de Inspección Alimentaria (CFIA, por sus siglas en inglés) ha fijado el nivel de acción de la histamina como 20 mg/100 g en productos fermentados y 10 mg/100 g en productos de peces escombroides. (NUTRICIÓN ESPECIALIZADA, 2012)

Las aminas biogénicas son importantes componentes alimentarios, encontrados en la producción de muchos alimentos fermentados y no fermentados. Están presentes como subproductos de la actividad microbiana en los alimentos. Los microorganismos están presentes de manera natural, adicionados con propósito de fermentación o son introducidos a través de contaminaciones. Es deseable minimizar la formación de aminas biogénicas debido a sus efectos adversos en la salud humana y a su contribución al deterioro del alimento y pérdidas de los mismos. En particular, los niveles de tiramina e histamina deben estar por debajo de ciertos niveles umbral a fin de prevenir respuestas tóxicas. (Fernández, 2015) El estudio de las aminas biogénicas es un campo de investigación activo, con varios enfoques. Constantemente se están desarrollando y/o mejorando métodos analíticos a fin de cuantificar su presencia de manera más rápida y precisa. Se requieren estudios adicionales para generar el conocimiento básico sobre los efectos de la ingestión, los límites tóxicos y las interacciones con otras moléculas biológicas, para facilitar la racionalización y formulación de recomendaciones y regulaciones más útiles en relación a sus niveles seguros en los productos alimenticios. (GIMFERRER MORATÓ, 2012)

Bibliografía

Alonso. (29 de 11 de 2017). Alonsoformula. Obtenido de Aminas: http://www.alonsoformula.com/organica/aminas.htm

Fernández, G. (2015). http://www.quimicaorganica.com. Obtenido de Aminas: https://www.quimicaorganica.org/aminas.html

Galceran, M. T. (marzo de 2002). http://revista.nutricion.org. Obtenido de AMINAS HETEROCÍCLICAS: http://revista.nutricion.org/hemeroteca/revista_marzo_02/VCongreso_publicaciones/Conferencias/Aminas.pdf

GIMFERRER MORATÓ, N. (31 de 12 de 2012). Consumer eroski. Obtenido de Aminas biógenas y alimentos:La detección de aminas biógenas indica, a menudo, un deterioro de alimentos como carne, pescado, alimentos fermentados o vegetales: http://www.consumer.es/seguridad-alimentaria/ciencia-y-tecnologia/2012/12/31/215142.php

NUTRICIÓN ESPECIALIZADA. (13 de 07 de 2012). NUTRICIÓN ESPECIALIZADA: conocimiento avanzado transformando vidas. Obtenido de Aminas biogénicas en alimentos: https://nutricionpersonalizada.wordpress.com/2012/07/13/aminas_biogenicas_alimentos/

Resultado de imagen para alimentos quimica gif

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Usos y Aplicaciones de Aldehídos y Cetonas en la Industria de Alimentos

Lucía Jaramillo Cando. [1]

Lesly Espinoza Buitrón. [1]

Alejandro Aguirre F. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

INTRODUCCIÓN

     Los aldehídos y cetonas son compuestos caracterizados por la presencia del grupo carbonilo (C=O) también conocidas como funciones de segundo grado de oxidación según asegura (Cornejo, SN). Los aldehídos presentan el grupo carbonilo en posición terminal mientras que las cetonas lo presentan en posición intermedia como muestra siguiente. El primer miembro de la familia química de los aldehídos es el metanal o formaldehído (aldehído fórmico), mientras que el primer miembro de la familia de las cetonas es la propanona o acetona (dimetil acetona).

Resultado de imagen para aldehidos
Grupos carbonilo aldehído y cetona.

Los aldehídos y cetonas se comportan como ácidos debido a la presencia del grupo carbonilo, esto hace que presenten reacciones típicas de adición nucleofílica así lo afirma (Klein, 2013). Una de las diferencias que presentan entre los aldehídos y cetonas es que los aldehídos se oxidan con facilidad frente a oxidantes débiles produciendo ácidos, mientras que las cetonas sólo se oxidan ante oxidantes muy enérgicos que puedan romper sus cadenas carbonadas. Es así que las reacciones de oxidación permiten diferenciar los aldehídos de las cetonas en el laboratorio de análisis químico. Después de lo dicho antes se puede decir, que muchos aldehídos y cetonas forman parte de los aromas naturales de flores y frutas, por lo cual se emplean en la perfumería para la elaboración de aromas así como también pueden ser empleados como elementos aromatizantes y saborizantes dentro de la industria de alimentos, extraídos de la misma naturaleza, por otro lado, múltiples compuestos de este tipo son empleados en la síntesis de fármacos y productos de cosmética, por esta razón la presente investigación se centra en el sector de las industrias alimentarias y agroindustriales.

Resultado de imagen para aldehidos en industrias

DESARROLLO DE LA INVESTIGACIÓN

Usos y aplicaciones de los aldehídos

Son intermediarios en la síntesis de ácido, fabricación de plásticos, resinas y productos acrílicos como la baquelita, resinas de melamina o melamínico, etc. Industria fotográfica; explosiva y colorante; como antiséptico y preservador; herbicida, fungicida y pesticida. Acelerador en la vulcanización. Industria de alimentación y perfumería; industria textil y farmacéutica.

Se ha aislado una gran variedad de aldehídos y cetonas a partir de plantas y animales; muchos de ellos, en particular los de peso molecular elevado, tienen olores fragantes o penetrantes. Por lo general, se les conoce por sus nombres comunes, que indican su fuente de origen o cierta propiedad característica. A veces los aldehídos aromáticos sirven como agentes saborizantes (Porras., 2013), estas aplicaciones se podrán analizar en una selecta lista de utilidades que se ha investigado y se detalla a continuación para su análisis.

El Benzaldehído en la industria alimenticia

El benzaldehído es un componente de la almendra; es un líquido incoloro con agradable olor a almendra. Según norma técnica para esta sustancia se menciona que dentro de las percepciones sensoriales el benzaldehído posee un olor semejante al de aceite quemado de almendras con un sabor quemante, adicionalmente menciona que su solubilidad depende del solvente siendo alcohol isopropílicos su disolvente más usual y a su vez presenta una reducida solubilidad en agua por otra parte el benzaldehído es miscible en aceites fijados o volátiles y éter (NMX-F-369-S-1980., 1980).

Los aromas son parte esencial de la memoria olfativa de los seres humanos, dicha memoria olfativa se localiza como una función indexada del bulbo olfatorio y es parte de la memoria racional e incluso se asocia a factores emocionales así lo afirma (Veron García & Gaviria Vallejo, 2015), gracias a ello el sistema límbico es capaz de asociar aromas o fragancias a un determinado recuerdo, el estudio que los autores mencionan es que por ejemplo el olor de los dulces es una característica de la memoria olfativa de los niños y se ve estrechamente relacionada a la existencia de benzaldehído en los mismos, esta relación es un estudio realizado por una ciencia algo desconocida llamada aromacología, puesto que todos los olores en el fondo no son más que propiedades organolépticas de las materias es decir son propiedades intrínsecas de las mismas.

Imagen relacionada
PIRULETAS DE CARAMELO

El estudio señala que las piruletas son dulces de alto consumo a nivel mundial principalmente por infantes de entre los 5 a los 12 años edad en la que su memoria olfativa está en pleno desarrollo, dichas piruletas contienen en su composición benzaldehído (C6H5CHO) que dentro de la industria alimenticia en concentraciones adecuadas pertenece al grupo de los aromatizantes; su número CAS es 100-52-7, su número EINECS, 202-860-4; y su fórmula molecular es C7H6O.

Resultado de imagen para benzaldehido
  Estructura y peso molecular del benzaldehído. Fuente: https://www.dyeq.co/fichas/benzaldehido/

Algunos estudios organolépticos menciona al olor del benzaldehído como un olor análogo no sólo a las almendras si no a las cerezas y por esta razón es que es un aditivo aromatizante muy empleado en este tipo de dulces por su correspondencia con los sabores de las piruletas que normalmente el consumidor asume como cereza por la tonalidad rojiza de la mayoría de piruletas y su olor procedente del aditivo antes mencionado, la desventaja y riesgo es el origen del aditivo puesto que normalmente suele ser sintetizado a partir de tolueno que es un compuesto tóxico que eventualmente puede dejar rachas del mismo en el aditivo por esta razón es importante que las industrias alimenticias tengan un control minucioso de esta sustancia (Verón García & Gaviria Vallejo, 2015).

Resultado de imagen para cerezas benzaldehido

De forma natural el benzaldehído es extraído de semillas y frutas como son las almendras, cerezas, albaricoques, ciruelas y melocotones; aunque los estudios fotoquímicos a futuro podrían arrojar especies vegetales que contengan en sus frutos cantidades significativas de benzaldehído, los autores mencionan que las frutas antes mencionadas, contienen cantidades significativas de amigdalinas [glucósido, molécula formada por una parte glucídica y una parte no glucídica (C20H27NO11)]. Cuando las amigdalinas se rompen por catálisis enzimática o por hidrólisis, se obtienen dos azúcares, un cianuro y un benzaldehído.

Resultado de imagen para amigdalina

Resultado de imagen para amigdalina

En la industria alimenticia, el benzaldehído se usa como aditivo alimentario, entendiendo un aditivo como toda sustancia o mezcla que no aporta valor nutricional y que es agregada en la mínima cantidad posible, para crear, modificar mantener o intensificar las propiedades organolépticas y sus condiciones de conservación (Verón García & Gaviria Vallejo, 2015).Uno de los organismos encargados de esta regulación es la FEMA (Flavors and Extract Manufacturing Association), la cual clasifica el benzaldehído con el número FEMA 2127. Según esta asociación, el aldehído puede ser empleado para dar aroma a almendras amargas, azúcar quemado, cereza, pimientos asados y malta. Para asegurarse que el consumo del benzaldehído no es peligroso para la salud humana, han establecido unos límites de ppm que los productos alimentarios finales no pueden sobrepasar. Estos límites son:

Límites permitidos de benzaldehído en alimentos según la FEMA 2127 en ppm.

Fuente: (Verón García & Gaviria Vallejo, 2015).
TIPOLOGÍA DE PRODUCTO PPM MÁXIMO AUTORIZADO
Bebidas no alcohólicas 36 ppm
Helados 42 ppm
Caramelos 120 ppm
Productos horneados 110 ppm
Gelatinas y pasteles 160 ppm
Chicles 840 ppm
Bebidas alcohólicas 60 ppm

 

El Aldehído Vanílico y la vainillina en la industria alimenticia.

El aldehído vanílico tiene diferentes grupos funcionales: unos grupos aldehídos y un anillo aromático, por lo que es un aldehído aromático (Meislich, 1998). La vainilla que produce el popular sabor a vainilla durante un tiempo se obtuvo sólo a partir de las cápsulas con formas de vainas de ciertas orquídeas trepadoras. Hoy día, la mayor parte de la vainilla se produce sintéticamente

Resultado de imagen para aldehído vanílico
Ácido vanílico

La vainillina es una sustancia presente en todas las 110 especies de orquídeas del género Vanilla, su origen está asociado a una especie de orquídea del género antes mencionado nativa de México y que se caracteriza por ser hermafrodita y única capaz de formar una vaina como fruto del cual hoy se extrae la vainilla tal y como se la conoce.

 

Resultado de imagen para orquidea de la vainilla

Dicha denominación fue otorgada por los españoles, quienes decidieron llamarla así por la forma tan especial del fruto de la flor. Sin embargo, ya era conocida por los antiguos tonacas (pueblo ancestral mexicano) con el nombre de Xahanat o flor negra, y por los aztecas con el nombre de Tlixotlil. En estos pueblos, la vainilla era utilizada como aromatizante, a modo de ofrenda y como medicina, dado que cuenta con propiedades antisépticas que la hacen especialmente útil para tratar ciertas infecciones bacterianas, así lo afirma (Departamento de Redacción OV, 2018)

Imagen relacionada
El aldehído vanílico a su vez es un ácido dihidroxibenzoico cuyo nombre IUPAC corresponde al de (4-hidroxi-3- ácido metoxibenzoico) y se trata de una forma oxidativa de la vainillina. Curiosamente en la actualidad la mayor parte de ácido vanílico procede de la raíz de origen chino perteneciente a la planta: Angelica sinensis, conocida en China como dong quai, dang gui o ginseng.

El aldehído vanílico tiene importante presencia en productos para uso de farmacias y cosméticas como son el aceite de azaí y con respecto al aceite de argán, el ácido vanílico es uno de sus principales fenoles visto desde el punto de vista de un grupo funcional alcohol y al poseer dos da ciertas características a este aceite que es comestible con un ligero sabor a nuez y que se obtiene de las semillas sometidas a presión del árbol Argania spinosa, y su valor es relativamente costoso por tener gran cantidad de grasas insaturadas; a su vez tiene presencia en vino y vinagre. Ácido vanílico es uno de los principales catequinas metabolitos que se encuentran en los seres humanos después del consumo de infusiones de té verde (Wikipedia.(s.f.), 2008).

Resultado de imagen para aceite de argan
Aceite de Argán

Por tanto y como se ha dicho anteriormente el ácido vanílico es empleado como agente saborizante y aromatizante en la industria alimenticia, su implicación dentro del campo de los alimentos es el de la repostería, dulces, galletas, aceites y bebidas.

 

La vainillina por su lado es otro compuesto derivado del ácido vanílico; también conocido como vanilina, metil vanilina o 4-hidroxi-3-metoxibenzaldehído; cuya fórmula molecular es (CH3O)(OH)C6H3CHO es un compuesto especial que comprende tres grupos funcionales en su estructura: aldehído, éter y fenol; característica que otorga diversas propiedades a este compuesto.

Resultado de imagen para vainillina molecula
Vainillina

El metil vainillina junto con el etil vainillina con dos compuestos de este tipo de alta incidencia en la industria de los alimentos ya que son compuestos primarios de la vaina de la vainilla siendo el etil el más costoso puesto que confiere notas olfativas más potentes procedentes de su grupo etoxi en comparación del grupo metoxi; estos compuestos son empleados como saborizantes y aromatizantes en alimentos. Por otro lado se emplean también en la síntesis de fragancias artificiales así como en otras industrias como la farmacéutica.

Según afirman (Esposito, y otros, 1997) la primera vez que se sintetizó comercialmente la vanillina comenzó su proceso con un compuesto natural denominado eugenol. En la actualidad la vainillina artificial está elaborada de guaiacol petroquímico, o procedente de lignina, un constituyente natural de la madera lo que le convierte en un subproducto de la industria papelera. La vainillina artificial basada en la lignina se dice que suele tener un perfil de sabores más rico que aquellos procedentes de aceites esenciales. La diferencia es debida a la presencia de acetovanillona en la versión de lignina del producto, una impureza no encontrada en la vainillina sintetizada del guaiacol.

El Glutaraldehído en la industria alimenticia.

El glutaraldehído se usa como desinfectante en frío y en el curtido de pieles (Solomons, 1985). Este compuesto familia del grupo de los aldehídos también conocido 1,5-pentanodial según IUPAC, posee en el mercado varios nombres distintivos como son: glutaral, aldehído glutárico. Los nombres comerciales incluyen Alkacide®, Cidex®, Sonacide®, Sporicidin®, Hospex®, Omnicide®, Metricide®, Surgibac G® Gy Wavicide® Fenomix-Gt®, respondiendo a todos con la fórmula molecular siguiente: OHC(CH2)3CHO o C5H8O2 (siguiendo la fórmula semidesarrollada) su estructura se muestra a continuación:

Resultado de imagen para glutaraldehido

La naturaleza de este compuesto es ser un líquido oleaginoso sin color o en ocasiones con un ligero tono amarillento con un potente olor a acre, es un compuesto estable no polimerizable utilizado también en equipos de laboratorio, médicos y odontológicos como desinfectante e incluso con la misma aplicación en las industrias de alimentos y farmacia así lo afirma (Agency for Toxic Substances and Disease Registry, 2016) menciona también que la razón de su uso radica en que es uno de los poco medios conocidos para la esterilización de instrumentos y superficies que no se pueden o no se deben someter al calor, a lo que se acota adicionalmente que el glutaraldehído es un desinfectante muy potente y en su forma alcalina, en disolución mezclado con agua en concentraciones del 0.1% al 1.0% se utiliza habitualmente como desinfectante en frío, es un importante aliado del sector agroindustrial y zootecnia puesto que permite ser empleado como esterilizante en gallineros, establos y otros animales

Resultado de imagen para esterilizacion de gallineros y establos con glutaraldehido

Otro importante uso está en la investigación de tejidos para el estudio toxicológico, histológico y patológico siendo el glutaraldehído un importante fijador de muestras en ramas como la microbiología, esta rama se relaciona directamente con el sector de los alimentos puesto que éstas técnicas de microscopía son muy utilizados en ramas como la microbiología de alimentos o toxicología de alimentos. Finalmente el glutaraldehído es empleado también por los químicos e ingenieros de alimentos para el tratamiento de aguas o como preservante químico que inhibe y combate el crecimiento de algas en las aguas tratadas y normalmente se suministra como pastillas en tanques de agua. (Agency for Toxic Substances and Disease Registry, 2016).

Resultado de imagen para tratamiento de aguas

 

El Aldehído Cinámico (Bencilidenacetaldehído) en la industria alimenticia.

El cinamaldehído es un compuesto orgánico responsable del sabor y olor característico de la canela, la naturaleza física de este compuesto es ser viscosos con un ligero tono amarillento pálido y se encuentra de manera natural en la corteza del árbol de la canela así como otras especies del género Cinnamomum y de forma general se puede decir que el 90% de la composición del aceite esencial de canela es cinamaldehído, siendo éste su principal elemento, de allí la relación con la industria alimenticia, puesto que es empleado como saborizante y aromatizante a su vez es ampliamente empleado en la fabricación de especias para distintos tipos de alimentos así lo menciona (DIEQ, 2018).

Resultado de imagen para cinamaldehido

El cinamaldehído fue aislado del aceite esencial de canela en 1834 por Dumas and Péligot, y fue sintetizado en laboratorio veinte años más tarde por Chiozza. De forma natural, existe en forma de trans-cinamaldehído. La molécula se compone de un grupo fenilo enlazado a un aldehído insaturado. Como tal, el cinamaldehído puede considerarse un derivado de la acroleína.

Uso Agrícola: para aplicación al follaje, como solución fiable en equivalentes en gramos de ingrediente activo (I.A./kg o L) de: 306. Para agregar aromas orientales en jabón, perfumes y artículos para el hogar. También se utiliza en compuestos aromatizantes para importar un sabor a canela, en el aceite de casia y aceite de corteza de canela. Se utiliza en jabones, detergentes, lociones, perfumes y a concentraciones comprendidas entre 0,01 y 0,8%4 Piperonal (1,3-Benzodioxol-5-carbaldehido): tiene su uso como sinergista de insecticidas y como ingrediente de perfumes y fragancias. Está clasificado entre los insecticidas repelentes como un pesticida. Un repelente para piojos que contiene piperonal está disponible en el mercado (Merck Millipore, 2017).

El cinamaldehído empleado como agente antimicrobiano natural en la conservación de frutas y hortalizas

Según menciona (Rodriguez Sauceda, 2011) en su publicación El aldehído cinámico (3- fenil-2 propenal) es el principal componente antimicrobiano en la canela., éste Exhibe actividad antibacterial y también inhibe el crecimiento de mohos y la producción de micotoxinas, Hitokoto et al., (1978).

Imagen relacionada

Reportan que la canela tiene un fuerte efecto inhibitorio en mohos, incluyendo Aspergillus parasiticus, Bullerman (1974) también observa un efecto inhibitorio de la canela en Aspergillus parasiticus, reporta que de 1 a 2% de concentración de canela puede permitir algún crecimiento de Aspergillus parasiticus, pero también puede disminuir la producción de aflatoxinas en un 99%.

Resultado de imagen para Aspergillus parasiticus

Resultado de imagen para Aspergillus parasiticus
Aspergillus parasiticus

Los japoneses reportaron el uso de aldehído cinámico como un agente antimicrobiano en pasta de pescado. Estudios hechos por Lock y Borrad, en la universidad de Bath en el Reino Unido sobre las propiedades antimicrobianas del ácido cinámico en el laboratorio, han demostrado que el aldehído cinámico es particularmente efectivo contra mohos y levaduras a pH ácidos.

Resultado de imagen para  Pasta de pescado
Pasta de pescado japonés empleado en platillos de consumo inmediato como el Sushi Tempura, entre otros.

El aldehído cinámico es usado para sumergir o rociar, extiende la vida de anaquel de duraznos, peras, manzanas, chabacanos y nectarinas enteras, así como rebanadas de tomate, mango, melón, manzana, sandía, limón y kiwi. Sin embargo el tratamiento de algunas frutas con altas concentraciones de ácido cinámico causaron oscurecimiento en nectarinas, limas y peras (Roller, 1995). Se ha reportado según la cita de la autora del artículo (Rodriguez Sauceda, 2011) que el aldehído cinámico contiene un antimicótico natural, inhibiendo la producción de aflatoxinas (Hitokoto, 1978), el ácido cinámico y los derivados del aldehído cinámico provienen de plantas y frutas, y son formados como una protección natural contra infecciones y microorganismos patógenos (Mazza, et. al., 1993; Davidson, 1997).

Por otro lado el aldehído cinámico fue muy efectivo para prolongar la vida de anaquel de algunos productos de frutos importantes. Por ejemplo menciona la autora (Rodriguez Sauceda, 2011) que la vida de anaquel de rebanadas de tomate fresco almacenado a 4ºC fue extendida de 42 a 70 días mientras que las rebanadas almacenadas a 25 ºC tuvieron el doble de vida de anaquel de 21 a 42 días (Roller, 1995).

Imagen relacionada

Uso del aldehído anísico en la industria alimenticia

El 4-anisaldehido es un compuesto orgánico correspondiente a la formula molecular C8H8O2, usado comúnmente en fragancias naturales y sintéticas, consta de un anillo de benceno sustituido con un aldehído y un grupo metoxi. Es un líquido transparente con un fuerte aroma y posee dos isómeros afines. Está estructuralmente relacionada con la vainillina, anisaldehído es ampliamente utilizado en la industria de la fragancia y el sabor.
Es usado en la síntesis de otros compuestos orgánicos incluidos los farmacéuticos (especialmente antihistamínicos), agroquímicos, solventes y aditivos para plásticos. Es un importante intermediario de la fabricación de perfumes y saborizantes (COSMOS MX., 2010).

Resultado de imagen para aldehído anísico

 

Otros aldehídos importantes empleados en industrias varias

Formaldehído:

Se usa en fabricación de plásticos y resinas, industria fotográfica, explosivo y colorantes, como antiséptico y preservador (conservación de animales muertos).
El aldehído más simple, el formaldehído, es un gas incoloro de olor irritante. Desde el punto de vista industrial es muy importante, pero difícil de manipular en estado gaseoso; suele hallarse como una solución acuosa al 40 % llamada formalina; o en forma de un polímero sólido de color blanco denominado para-formaldehído (Porras., 2013).
Si se caliente suavemente, el para-formaldehido se descompone y libera formaldehído:

Resultado de imagen para formaldehido estructura
La formalina

Se usa para conservar especímenes biológicos. El formaldehído en solución se combina con la proteína de los tejidos y los endurece, haciéndolos insolubles en agua. Esto evita la descomposición del espécimen. La formalina también se puede utilizar como antiséptico de uso general. El empleo más importante del formaldehído es en la fabricación de resinas sintéticas. Cuando se polimeriza con fenol, se forma una resina de fenol formaldehído, conocida como baquelita. La baquelita es un excelente aislante eléctrico; durante algún tiempo se utilizó para fabricar bolas de billar (COSMOS MX, 2014).

Resultado de imagen para formalina

Acetaldehído:

El acetaldehído es un líquido volátil e incoloro, de olor irritante. Es una materia prima muy versátil que se utiliza en la fabricación de muchos compuestos. Si el acetaldehído se calienta con un catalizador ácido, se polimeriza para dar un líquido llamado paraldehído.

Resultado de imagen para Acetaldehído
Paraldehído

El paraldehído se utilizó como sedante e hipnótico; su uso decayó debido a su olor desagradable y al descubrimiento de sustitutos más eficaces.

Resultado de imagen para Paraldehído

Usos y aplicaciones de las Cetonas

Las cetonas se encuentran ampliamente distribuidas en la naturaleza. El importante carbohidrato fructuosa, las hormonas cortisona, testosterona (hormona masculina) y progesterona (hormona femenina) son también cetonas, así como el conocido alcanfor usado como medicamento tópico. Constituyen importantes fuentes medicinales y biológicas; son utilizadas como disolventes orgánicos, removedor de barniz de uñas (acetona). Obtención de resinas sintéticas, antiséptico, embalsamamiento, desodorante, fungicidas; obtención de Exógeno o Ciclonita (explosivos), preparación de pólvoras sin humo. Son aprovechadas para la obtención de Cloroformo y Yodoformo (Meislich, 1998). Algunas cetonas naturales y otras artificiales se emplean en cosmetología como aromatizantes y perfumes. Entre las cetonas más importantes tenemos:
Metil-etil-cetona:
El principal uso de la metiletilcetona (MEK) es en la aplicación de adhesivos y revestimientos protectores, lo que refleja sus excelentes características como disolvente. Se utiliza también como disolvente en la producción de cintas magnéticas, el desparafinado de aceites lubricantes y el procesamiento de alimentos. Es un componente habitual de barnices y colas, así como de muchas mezclas de disolventes orgánicos (Profesionseg, 2014).
La acetona:
Utilizado para la fabricación de metil metacrilato de metilo, ácido metacrílico, metacrilatos, bisfenol A, entre otros. Distribución del acetileno en cilindros y la nitroglicerina. Limpieza de microcircuitos, partes electrónicas, etc. Limpieza de prendas de lana y pieles. Cristalización y lavado de fármacos. Como base para diluyentes de lacas, pinturas, tintas, etc. En la vida doméstica, es el disolvente por excelencia para las pinturas de uñas y una mezcla de ambas se usa como disolvente-cemento de los tubos de PVC (Profesionseg, 2014).

Ciclopentanona

Se utilizan como disolvente y en gran medida para la obtención de la caprolactama, un monómero en la fabricación del Nylon 6 y también por oxidación del ácido adípico que se emplea para fabricar el Nylon 66.

Resultado de imagen para Ciclopentanona
La butano-2,3-diona:

Imagen relacionada
Es un ingrediente fundamental del aroma de la margarina.

Metadona

Este psicofármaco empezó a utilizarse como sedante y como remedio contra la tos, sin mucho éxito. Actualmente se emplea en los programas de desintoxicación y mantenimiento de los farmacodependientes de opiáceos, tales como la heroína.

Alcanfor

Es una cetona que se encuentra en forma natural y se obtiene de la corteza del árbol del mismo nombre. Tiene un olor fragante y penetrante; conocido desde hace mucho tiempo por sus propiedades medicinales, es un analgésico muy usado en linimentos. Otras dos cetonas naturales, beta-ionona y muscona, se utilizan en perfumería. La beta ionona es la esencia de violetas.

Resultado de imagen para Alcanfor

Muscona

Es obtenida de las de las glándulas odoríferas del venado almizclero macho, posee una estructura de anillo con 15 carbonos.
Muscona y la civetona: que son utilizados como fijadores porque evitan la evaporación de los aromas además de potenciarlos por lo cual se utilizan en la industria de la perfumería.
Es importante mencionar que las cetonas son fuente de energía que casi todas las células del cuerpo humano pueden utilizar, las cetonas son en realidad un subproducto de la oxidación de las grasas y lípidos de nuestro organismo, es decir que al quemar grasa haciendo actividad física inmediatamente las cetonas son producidas para proporcionar energía a las células que las van oxidando hasta convertirlas en CO2 y agua y aunque los alimentos NO poseen cetonas, los alimentos que poseen altos contenidos grasos que posteriormente se convierten en adipocitos quedarán a la espera de ser degradados y dichos alimentos pueden promover un mecanismo denominado cetosis que implica la utilización de las mismas en diferentes funciones biológicas así lo afirma (Delgado Mendoza, 2016).

DISCUSIONES Y CONCLUSIONES

Como se ha demostrado los compuestos del tipo aldehídos y cetonas son de importante uso industrial, sin embargo en la industria alimenticia las cetonas no tienen un papel fundamental ya que no se encuentran en los alimentos a lo que se puede acotar lo mencionado por (Delgado Mendoza, 2016), las cetonas no se encuentran en los alimentos a su vez se producen al interior de los organismos vivos, en los seres humanos las cetonas se producen en cantidades bajas cuando el individuo posee una dieta baja en carbohidratos, lo que sí se debe tener en cuenta es que la presencia de cetonas en un alimento según el autor es signo negativo en el control de calidad del mismo y el objetivo del profesional de Alimentos es la pronta eliminación de los mismos por métodos instrumentales, sin embargo los aldehídos son sustancias importantísimas en sector agroindustrial por sus implicaciones esterilizantes y de control de calidad en galpones y granjas, a su vez en torno a la producción de alimentos, los aldehídos son empleados principalmente como agentes saborizantes y aromatizantes, mejorando así las propiedades organolépticas de un determinado producto alimenticio, por esta razón es importante saber identificar ambos grupos para su posterior aplicación en distintos campos industriales de la química.

Bibliografía

Agency for Toxic Substances and Disease Registry. (06 de mayo de 2016). Agency for Toxic Substances and Disease Registry-Division of Toxicology and Human Health Sciences. Obtenido de Resúmenes de Salud Pública – Glutaraldehído (Glutaraldehyde): https://www.atsdr.cdc.gov/es/phs/es_phs208.html
Cornejo, P. M. (SN). UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO. Obtenido de Cetonas y aldehídos: https://www.uaeh.edu.mx/scige/boletin/prepa3/n8/m8.html#refe1
COSMOS MX. (2010). Usos del Aldehido Anisico. . Obtenido de http://www.cosmos.com.mx/producto/ddpy/aldehido-anisico 6 Profesionseg. (2014).
Delgado Mendoza, P. (03 de 11 de 2016). Las Cetonas No Se Encuentran en Los Alimentos. Obtenido de SCRIBD: https://es.scribd.com/document/329915386/Las-Cetonas-No-Se-Encuentran-en-Los-Alimentos
Departamento de Redacción OV. (27 de 07 de 2018). EL ORIGEN DE LA VAINILLA Y SU HISTORIA. Obtenido de https://www.vainilla.info/origen-historia/
DIEQ. (2018). Aldehído Cinámico. Obtenido de DIEQ: https://www.dyeq.co/fichas/aldehido-cinamico/
Esposito, L., Fromanek, K., Kientz, G., Mauger, F., Maureaux, V., Robert , G., & Truchet, F. (1997). Vanillin. En Kirk-Othmer Encyclopedia of Chemical Technology, 4th edition (págs. 812-825). New York: John Wiley & Sons.
Klein, D. (2013). Química Orgánica. Cuarta edición. Buenos Aires: Panamericana .
Meislich, H. ,. (1998). Química Orgánica. Tercera Edición. Bogotá Colombia.: Mc Graw Hill.
Merck Millipore. (2017). Aldehído cinámico. Obtenido de http://www.merckmillipore.com/INTL/en/product/Cinnamic-acid,MDA_CHEM-800235?ReferrerURL=https%3A%2F%2Fwww.google.com.ec%2F
NMX-F-369-S-1980. (1980). NMX-F-369-S-1980. BENZALDEHÍDO (GRADO ALIMENTARIO). Obtenido de https://www.colpos.mx/bancodenormas/nmexicanas/NMX-F-369-S-1980.PDF
Porras., S. (2013). Aldehídos y Cetonas. Obtenido de http://sergioporras12.blogspot.com/2013/08/utilidades-en-laindustria-de-aldehidos.ht
Profesionseg. (2014). El principal uso de la metilcetona. Obtenido de http://profesionseg.blogspot.com/2014/01/el-principal-uso-de-la-metiletilcetona.html
Rodriguez Sauceda, E. N. (2011). USO DE AGENTES ANTIMICROBIANOS NATURALES EN LA CONSERVACIÓN DE FRUTAS Y HORTALIZAS. Ra Ximhai enero-abril Vol. 7 Número 1. Universidad Autónoma de México , 153-170.
Solomons, T. G. (1985). Química orgánica. . México, D.F.: Limusa.
Veron García, A., & Gaviria Vallejo, J. M. (23 de 12 de 2015). Triple enlace. Obtenido de EL BENZALDEHIDO EN LA INDUSTRIA ALIMENTARIA: https://triplenlace.com/2015/12/23/usos-industriales-del-benzaldehido/
Wikipedia.(s.f.). (2008). Benzaldehido. Obtenido de https://es.wikipedia.org/wiki/Benzaldeh%C3%ADdo 4 Dyeq.(s.f.).

Resultado de imagen para gif quimico

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Usos y Aplicaciones de Aldehídos y Cetonas

Resultado de imagen para aldehidos y cetonas

Alejandro Alfredo Aguirre Flores. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

Definición: son compuestos caracterizados por la presencia del grupo carbonilo (C=O). Los aldehídos presentan el grupo carbonilo en posición terminal mientras que las cetonas lo presentan en posición intermedia. El primer miembro de la familia química de los aldehídos es el metanal o formaldehído (aldehído fórmico), mientras que el primer miembro de la familia de las cetonas es la propanona o acetona (dimetil acetona). Los aldehídos y cetonas se comportan como ácidos debido a la presencia del grupo carbonilo, esto hace que presenten reacciones típicas de adición nucleofílica. Una de las diferencias que presentan entre los aldehídos y cetonas es que los aldehídos se oxidan con facilidad frente a oxidantes débiles produciendo ácidos. Mientras que las cetonas sólo se oxidan ante oxidantes muy enérgicos que puedan romper sus cadenas carbonadas. Es así que las reacciones de oxidación permiten diferenciar los aldehídos de las cetonas en el Laboratorio. Después de lo dicho antes se puede decir, que muchos aldehídos y cetonas forman parte de los aromas naturales de flores y frutas, por lo cual se emplean en la perfumería para la elaboración de aromas.

Usos y Aplicaciones de Aldehídos

Resultado de imagen para aldehidos

Son intermediarios en la síntesis de ácido, fabricación de plásticos, resinas y productos acrílicos como la baquelita, resinas de melamina o melamínico, etc. Industria fotográfica; explosiva y colorante; como antiséptico y preservador; herbicida, fungicida y pesticida. Acelerador en la vulcanización. Industria de alimentación y perfumería; industria textil y farmacéutica.

Se ha aislado una gran variedad de aldehídos y cetonas a partir de plantas y animales; muchos de ellos, en particular los de peso molecular elevado, tienen olores fragantes o penetrantes. Por lo general, se les conoce por sus nombres comunes, que indican su fuente de origen o cierta propiedad característica. A veces los aldehídos aromáticos sirven como agentes saborizantes (Porras., 2013).

El benzaldehído (también llamado “aceite de almendra amargas”) es un componente de la almendra; es un líquido incoloro con agradable olor a almendra. El cinaldehído da el olor característico a la esencia de canela (Wikipedia.(s.f.), 2008).

Resultado de imagen para benzaldehído

Imagen relacionada

Aldehído vanílico (vainilla): tiene diferentes grupos funcionales: unos grupos aldehídos y un anillo aromático, por lo que es un aldehído aromático (Meislich, 1998). La vainilla que produce el popular sabor a vainilla durante un tiempo se obtuvo solo a partir de las cápsulas con formas de vainas de ciertas orquídeas trepadoras. Hoy día, la mayor parte de la vainilla se produce sintéticamente

Resultado de imagen para Aldehído vanílico (vainilla)

Imagen relacionada

Glutaraldehido: se usa como desinfectante en frío y en el curtido de pieles (Solomons, 1985).

Resultado de imagen para Glutaraldehido

Acetaldehído: se usa en la industria química en una inmensa cantidad de procesos, siendo un producto muy inflamable tanto en líquido o sus vapores (Meislich, 1998).

Resultado de imagen para Acetaldehído:

Metanal o aldehído fórmico: es el aldehído con mayor uso en la industria, se utiliza fundamentalmente para la obtención de resinas fenólicas y en la elaboración de explosivos (pentaeritrol y el tetranitrato de pentaeritrol, TNPE) así como en la elaboración de resinas alquídicas y poliuretano expandido. También se utiliza en la elaboración de uno de los llamados plásticos técnicos que se utilizan fundamentalmente en la sustitución de piezas metálicas en automóviles y maquinaria, así como para cubiertas resistentes a los choques en la manufactura de aparatos eléctricos. Estos plásticos reciben el nombre de POM (polioximetileno) (COSMOS MX, 2014).

Resultado de imagen para Metanal gif

Resultado de imagen para Metanal gif

Benzaldehído: Aunque se emplea comúnmente como un saborizante alimentario comercial (sabor de almendras) o solvente industrial, el benzaldehído se usa principalmente en la síntesis de otros compuestos orgánicos, que van desde fármacos hasta aditivos de plásticos. Es también un intermediario importante para el procesamiento de perfume y compuestos saborizantes, y en la preparación de ciertos colorantes de anilina (Wikipedia.(s.f.), 2008).

Resultado de imagen para Benzaldehído

Aldehído cinámico (Bencilidenacetaldehído): Agrícola: para aplicación al follaje, como solución fiable en equivalentes en gramos de ingrediente activo (I.A./kg o L) de: 306. Para agregar aromas orientales en jabón, perfumes y artículos para el hogar. También se utiliza en compuestos aromatizantes para importar un sabor a canela, en el aceite de casia y aceite de corteza de canela. Se utiliza en jabones, detergentes, lociones, perfumes y a concentraciones comprendidas entre 0,01 y 0,8%4 Piperonal (1,3-Benzodioxol-5-carbaldehido): tiene su uso como sinergista de insecticidas y como ingrediente de perfumes y fragancias. Está clasificado entre los insecticidas repelentes como un pesticida. Un repelente para piojos que contiene piperonal está disponible en el mercado (Merck Millipore, 2017).

Resultado de imagen para Aldehido cinámico

Resultado de imagen para Aldehido cinámico

Aldehído anísico: Es usado en la síntesis de otros compuestos orgánicos incluidos los farmacéuticos (especialmente antihistamínicos), agroquímicos, solventes y aditivos para plásticos. Es un importante intermediario de la fabricación de perfumes y saborizantes (COSMOS MX., 2010).

Resultado de imagen para Aldehído anísico

Formaldehído: se usa en fabricación de plásticos y resinas, industria fotográfica, explosivo y colorantes, como antiséptico y preservador (conservación de animales muertos).
El aldehído más simple, el formaldehído, es un gas incoloro de olor irritante. Desde el punto de vista industrial es muy importante, pero difícil de manipular en estado gaseoso; suele hallarse como una solución acuosa al 40 % llamada formalina; o en forma de un polímero sólido de color blanco denominado para-formaldehído (Porras., 2013).

Si se caliente suavemente, el para-formaldehido se descompone y libera formaldehído:

Resultado de imagen para Formaldehído

La formalina: se usa para conservar especímenes biológicos. El formaldehído en solución se combina con la proteína de los tejidos y los endurece, haciéndolos insolubles en agua. Esto evita la descomposición del espécimen. La formalina también se puede utilizar como antiséptico de uso general. El empleo más importante del formaldehído es en la fabricación de resinas sintéticas. Cuando se polimeriza con fenol, se forma una resina de fenol formaldehído, conocida como baquelita. La baquelita es un excelente aislante eléctrico; durante algún tiempo se utilizó para fabricar bolas de billar (COSMOS MX, 2014).

Resultado de imagen para formalina

El acetaldehído es un líquido volátil e incoloro, de olor irritante. Es una materia prima muy versátil que se utiliza en la fabricación de muchos compuestos. Si el acetaldehído se calienta con un catalizador ácido, se polimeriza para dar un líquido llamado paraldehído.

El paraldehído se utilizó como sedante e hipnótico; su uso decayó debido a su olor desagradable y al descubrimiento de sustitutos más eficaces.

Usos y Aplicaciones de Cetonas

Las cetonas se encuentran ampliamente distribuidas en la naturaleza. El importante carbohidrato fructuosa, las hormonas cortisona, testosterona (hormona masculina) y progesterona (hormona femenina) son también cetonas, así como el conocido alcanfor usado como medicamento tópico. Constituyen importantes fuentes medicinales y biológicas; son utilizadas como disolventes orgánicos, removedor de barniz de uñas (acetona). Obtención de resinas sintéticas, antiséptico, embalsamamiento, desodorante, fungicidas; obtención de Exógeno o Ciclonita (explosivos), preparación de pólvoras sin humo. Son aprovechadas para la obtención de Cloroformo y Yodoformo (Meislich, 1998). Algunas cetonas naturales y otras artificiales se emplean en cosmetología como aromatizantes y perfumes. Entre las cetonas más importantes tenemos:

Metil-etil-cetona: El principal uso de la metiletilcetona (MEK) es en la aplicación de adhesivos y revestimientos protectores, lo que refleja sus excelentes características como disolvente. Se utiliza también como disolvente en la producción de cintas magnéticas, el desparafinado de aceites lubricantes y el procesamiento de alimentos. Es un componente habitual de barnices y colas, así como de muchas mezclas de disolventes orgánicos (Profesionseg, 2014).

Imagen relacionada

La acetona: Utilizado para la fabricación de metil metacrilato de metilo, ácido metacrílico, metacrilatos, bisfenol A, entre otros. Distribución del acetileno en cilindros y la nitroglicerina. Limpieza de microcircuitos, partes electrónicas, etc. Limpieza de prendas de lana y pieles. Cristalización y lavado de fármacos. Como base para diluyentes de lacas, pinturas, tintas, etc. En la vida doméstica, es el disolvente por excelencia para las pinturas de uñas y una mezcla de ambas se usa como disolvente-cemento de los tubos de PVC (Profesionseg, 2014).

Resultado de imagen para acetona

Ciclopentanona: se utilizan como disolvente y en gran medida para la obtención de la caprolactama, un monómero en la fabricación del Nylon 6 y también por oxidación del ácido adípico que se emplea para fabricar el Nylon 66.

Resultado de imagen para Ciclopentanona

La butano-2,3-diona: es un ingrediente fundamental del aroma de la margarina.

Resultado de imagen para margarina

Metadona: Este psicofármaco empezó a utilizarse como sedante y como remedio contra la tos, sin mucho éxito. Actualmente se emplea en los programas de desintoxicación y mantenimiento de los farmacodependientes de opiáceos, tales como la heroína.

Resultado de imagen para Metadona

Alcanfor: es una cetona que se encuentra en forma natural y se obtiene de la corteza del árbol del mismo nombre. Tiene un olor fragante y penetrante; conocido desde hace mucho tiempo por sus propiedades medicinales, es un analgésico muy usado en linimentos. Otras dos cetonas naturales, beta-ionona y muscona, se utilizan en perfumería. La beta ionona es la esencia de violetas.

Resultado de imagen para Alcanfor

La muscona, obtenida de las de las glándulas odoríferas del venado almizclero macho, posee una estructura de anillo con 15 carbonos.

Resultado de imagen para muscona

Resultado de imagen para muscona

Muscona y la civetona: que son utilizados como fijadores porque evitan la evaporación de los aromas además de potenciarlos por lo cual se utilizan en la industria de la perfumería.

Bibliografía

COSMOS MX. (2014). ONLINE COSMOS. Obtenido de Información Técnica y Comercial del Aldehido formico (formaldehído, formol, metanal, formalina): https://www.cosmos.com.mx/wiki/aldehido-formico-formaldehido-formol-metanal-formalina-cx3y.html

COSMOS MX. (2010). Usos del Aldehido Anisico. . Obtenido de http://www.cosmos.com.mx/producto/ddpy/aldehido-anisico 6 Profesionseg. (2014).

Meislich, H. ,. (1998). Química Orgánica. Tercera Edición. Bogotá Colombia.: Mc Graw Hill.

Merck Millipore. (2017). Aldehído cinámico. Obtenido de http://www.merckmillipore.com/INTL/en/product/Cinnamic-acid,MDA_CHEM-800235?ReferrerURL=https%3A%2F%2Fwww.google.com.ec%2F

Porras., S. (2013). Aldehídos y Cetonas. Obtenido de http://sergioporras12.blogspot.com/2013/08/utilidades-en-laindustria-de-aldehidos.ht

Profesionseg. (2014). El principal uso de la metilcetona. Obtenido de http://profesionseg.blogspot.com/2014/01/el-principal-uso-de-la-metiletilcetona.html

Requena, L. (2001). Química Orgánica. Ediciones ENEVA. Obtenido de http://www.salonhogar.net/quimica/nomenclatura_quimica/Propiedades_aldehidos_ceto nas.htm

Solomons, T. G. (1985). Química orgánica. . México, D.F.: Limusa.

Wikipedia.(s.f.). (2008). Benzaldehido. Obtenido de https://es.wikipedia.org/wiki/Benzaldeh%C3%ADdo 4 Dyeq.(s.f.).

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Resultado de imagen para quimico gif

Usos y Aplicaciones de los Compuestos Aromáticos en la industria de Alimentos

Lucía Jaramillo Cando. [1]

Lesly Espinoza Buitrón. [1]

Alejandro Aguirre F. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

INTRODUCCIÓN

Los hidrocarburos aromáticos son parte de la gran familia del Benceno, puesto que tienen por núcleo uno o más anillos bencénicos, al presentar una estructura cíclica insaturada por esta razón se les denomina también arenos así lo menciona (Claramount, y otros, 2013); y son precisamente dicha característica que confiere aromaticidad a este tipo de compuestos debido a un traslape efectivo entre sus electrones π (pi) puesto que la presencia del anillo bencénico hace que su molécula presente tres pares de electrones deslocalizados en un ciclo plano adicionalmente el cumplimiento de los principios de Hückel. En definitiva estas características confieren cierta reactividad a este tipo de compuestos en los que reside una gran estabilidad proveniente de la deslocalización electrónica existente que en muchos casos incita a la resonancia, dando lugar a que las nubes electrónicas se encuentre en una relativa mayor “comodidad” como resultado de sus repulsiones débiles que si estuvieran localizadas en tres enlaces π.

Entorno a la investigación se han tomado en cuenta múltiples compuestos aromáticos derivados del Benceno así como compuestos heterocíclicos aromáticos que se relacionan con la industria de alimentos y derivados; tomando como factor común la “degeneración” de orbitales (con la misma energía) que tiene lugar en el núcleo del anillo bencénico, a su vez la presente investigación relaciona los aspectos negativos que pueden tener respecto a la industria alimentaria en efecto, su relación con la salud humana.

DESARROLLO DE LA INVESTIGACIÓN

 

Aplicaciones del benceno

El benceno desde su descubrimiento por parte de Michael Faraday en 1825, tras lograr aislarlo desde una sustancia oleosa extraída de una lámpara común de queroseno y su posterior formulación (C6H6) demostrando que posee seis átomos de carbono equidistantes y equivalentes, propuesta por Eilhard Mitscherlich en 1834; el benceno es por sí mismo el principal representante de los compuestos orgánicos aromáticos (Wade, 2011).

Tiempo después fueron múltiples los estudios realizados entorno a su síntesis y presencia en la naturaleza, así Hoffman en 1845 lo aísla a partir de la hulla, levantando así un indicio de su presencia en el petróleo. Pero no fue hasta que el Nobel de Química Linus Pauling consiguiera encontrar el verdadero origen de su comportamiento, la resonancia o mesomería en la cual ambas estructuras de Kekulé se sobreponen.

Resultado de imagen para anillo bencenico
Ilustración 1 Comportamiento del anillo bencénico.

De manera general el benceno es utilizado en la fabricación de tintas, detergentes, explosivos, caucho, plásticos y fármacos. Sin embargo y a pesar de presentar riesgos para la salud ya que normalmente según la FDA posee en sus etiquetas frases tales como la R45 que menciona riesgo para la salud y causa de aparecimiento de cáncer y sus respectivas R48/23/24/25 que lo consideran como un compuesto del tipo tóxico capaz de representar riesgo de efectos graves para la salud en caso de exposición prolongada por inhalación, contacto con la piel e ingestión (Documentacion Ideam, 2003). Las industrias alimenticias en algunos países lo siguen utilizando como solvente para la extracción de esencias y concentrados a continuación algunos ejemplos.

Especias y condimentos-determinación de humedad en pimienta gorda. Método de prueba.

 

Según la publicación mexicana cuyo título original fue publicado como: Spices and condiments-determination of moisture content of all spice method of test (1988). Menciona al benceno como solvente indicado para la determinación de la humedad en pimienta gorda, lo importante del artículo radica en que no atenta contra la salud de los consumidores puesto que el método propuesto es únicamente para el análisis laboratorial de la pimienta mas no para su consumo inmediato.

Resultado de imagen para pimienta negra
Ilustración 2 Pimienta Negra (gorda)

El método desarrollado por Secretaría de Agricultura y Recursos Hidráulicos de México menciona que el benceno por su punto de ebullición e insolubilidad en agua permite una adecuada destilación continua del agua presente en una muestra de 30 a 35 g de semillas de pimienta gorda en 75 a 100 cm3 de benceno, la investigación sugiere la ecuación siguiente para el cálculo de la humedad (Secretaría de Agricultura y Recursos Hidráulicos, 1988):

Donde:                                                   Humedad %=(A* ρ)/M*100

A= Volumen de agua (cm3)

ρ = Densidad del agua (g/cm3)

M= Peso de la muestra (g)

 

Benceno como contaminante de los alimentos, fuentes hídricas y agua potable

 

Por otra parte el benceno ha sido uno de los principales contaminantes del agua potable en comparación con otros compuestos según menciona (Echeverry, 2016), alimentos como café, pan comercial, agua potable y envasada, frutas, verduras, bebidas isotónicas, chicles, derivados cárnicos, alimentos con saborizantes, helados, yogurt e incluso cosméticos en todo el mundo han presentado trazas de benceno, que como se mencionó anteriormente es altamente tóxico, el origen de dicho mal puede deberse a malas prácticas de manufactura en las industrias no alimenticias, mismas que desechan sus aguar residuales sin un adecuado control de sustancias contaminando de esta manera los recursos hídricos, la norma técnica internacional establecida por la FDA menciona que no se excederá la cantidad de 1μg/l de agua caso contrario se considera como muestra contaminada y requiere tratamiento emergente, a su vez la OMS (Organización Mundial de la Salud) y la Agencia para la Protección del Medio Ambiente (EPA), clasifica al benceno como parte de la lista de compuestos emergentes en el tratamiento de aguas por su persistencia y sus efectos negativos para la salud humana así lo afirma (Barceló & López de Alda, 2010).

Benceno como producto residual en la síntesis de benzoatos presentes en alimentos

Alimentos tales como las salsas de tomate (Kétchup), sodas y aquellos que presenten benzoato de sodio o potasio en general pueden tener mayor incidencia de trazas de benceno, y aunque el benzoato puede parecer inofensivo las industrias alimenticias y químicas en general sintetizan este compuesto a partir del benceno, a su vez y al no existir un proceso ciento por ciento efectivo, nada puede frenar el aparecimiento de rachas de reactivo en los productos finales así lo afirma (Echeverry, 2016). A continuación la síntesis comúnmente utilizada para la formulación del benzoato sódico:

Resultado de imagen para sintesis del benzoato de sodio
Ilustración 3 Síntesis del Tolueno, Benzoato sódico y ácido benzoico. Fuente: https://es.wikipedia.org/wiki/%C3%81cido_benzoico

En relación al tema la Administración de Alimentos y Drogas de los Estados Unidos (FDA) por sus siglas en inglés, menciona que las sales de benzoato al ser expuestas a la luz y al calor en presencia de vitamina C (común en ciertos alimentos tales como gaseosas y fármacos) al reaccionar pueden causar cantidades residuales de benceno, este factor entorno a la industria de bebidas ha sido muy criticado por que normalmente las bebidas gaseosas son transportadas en vehículos con exposición directa a la luz solar creando el factor adecuado para su transformación y en consecuencia convertirse en un factor nocivo para la salud de los consumidores (Echeverry, 2016).

Imagen relacionada
Ilustración 4 Las gaseosas carbonatadas, por factores de estabilidad presentan benzoatos de sodio y potasio que al reaccionar con la luz y el calor pueden formar rachas de benceno.

 

Aplicaciones de otros compuestos aromáticos

 

Uso de las Quinolinas e Isoquinolinas en la industria alimenticia

Las quinolinas e isoquinolinas con compuestos cíclicos en los que un anillo bencénico y uno de piridina se hallan fusionados y eso aplica también para su correspondiente catión quinazolinio; aunque el criterio de carácter aromático de Hückel predice aromaticidad en compuestos mono cíclicos se conoce que este tipo de compuestos conservan sus propiedades aromáticas así lo considera (Dep. Fquím. UNAM, 2015); es así como muchos de sus derivados son utilizados en múltiples sectores industriales tales como el actinoquinol utilizado en la fabricación de pantallas UV, benzoquinolina utilizada en la fabricación de desinfectantes, lotrifen que es un derivado de las quinolinas ampliamente usado como abortivo o el dimetisoquin potente anestésico y finalmente la papaverina en la fabricación de relajantes musculares.

 

Amarillo de quinoleína (E E104) o amarillo de quinolina

 

El amarillo de quinolina es un importante ingrediente sintético para la industria de alimentos como agente colorante entre sus aplicaciones más destacadas están:

 

  • Dulces de azúcar y golosinas.
  • Repostería de naranja, vainilla y chocolate.
  • Panadería.
  • Bebidas alcohólicas y no alcohólicas hidratantes, energizantes, bebidas electrolíticas.
  • Heladería.
  • Snacks y botanas.
  • Salsas y condimentos.
  • Bebidas Carbonatadas.
  • Quesos en polvo.
  • Frituras y otros.

Según afirma (Badui, 2013), el color de los alimentos es muy importante para el consumidor a razón de ser el primer contacto e impresión que tiene un potencial comprador en respuesta de lo que visualmente aprecia del producto, lo que es determinante para la aceptación o rechazo del mismo.

Resultado de imagen para Alimentos que contienen colorante E E104 (Amarillo de quinolina)

Ilustración 5 Alimentos que contienen colorante E E104 (Amarillo de quinolina) Fuente: http://hablemosclaro.org/ingrepedia/amarillo-de-quinolina/#1502293691178-e5ac3059-a00b

La síntesis del compuesto parte del sulfonato 2-(2-quinolil)-1,3-indadiona, consiste principalmente de las sales sódicas de mezclas de sulfonatos, monosulfonatos, tiosulfonatos como agentes colorantes con la presencia de cloruro de sodio y/o sulfato de sodio como sustancias no colorantes.

Resultado de imagen para Alimentos que contienen colorante E E104 (Amarillo de quinolina)
Ilustración 6 Estructura Química del Amarillo de Quinolina. Fuente: http://hablemosclaro.org/ingrepedia/amarillo-de-quinolina/

El amarillo de quinolina es empleado en la industria de alimentos como agente colorante, lastimosamente estudios han demostrado riesgos para la salud ante este aditamento alimenticio, a tal punto que según menciona (Pliskin, 2017) ha sido prohibido en muchos países tales como: Estados Unidos, Australia, Finlandia, Noruega y Austria; y en muchos se ha sugerido evitar su consumo. Esta sustancia es soluble en agua y dentro de las industrias de mayor tendencia a su utilización son las de fabricación de fideos y pastas; así como también en marcas como HARIBO que fabrican dulces y gomas del tipo masticable (gomitas) y con respecto a las bebidas lácteas en diversas cremas y postres, de las bebidas más populares en las que se puede ubicar dicho colorante está la gaseosa FANTA de Coca Cola Spring Company. Entre los daños para salud más notables están la hipersensibilidad a la sustancia o su intolerancia (Pliskin, 2017).

 

Aplicaciones de las pirazinas en los alimentos

 

La pirazina es un compuesto orgánico aromático heterocíclico. Su molécula presenta una simetría con grupo puntual D2h. Es un sólido de apariencia cerosa o cristalina. Presenta un fuerte olor similar al de la piridina. Es volátil con vapor de agua (UDEA, 2010).

Imagen relacionada
Ilustración 7 Estructura de la Pirazina.

Las pirazinas normalmente son factores de control en la industria vinícola y su síntesis ha evolucionado de la siguiente manera:

  • Síntesis de Staedel-Rugheimer (1876): Reacción de 2-cloroacetofenona con amoniaco para obtener la 2- aminocetona, la cual se condensa para formar la dihidropirazidina, y se forma la aromaticidad por oxidación posterior.
  • Síntesis de Gutknecht (1879): Ciclización de α-aminocetonas, producidas por reducción de isonitroso cetonas, para obtenerse las dihidropirazinas. Estas son posteriormente deshidrogenadas con óxido de mercurio (I) o sulfato de cobre (II), e inclusive con oxígeno atmosférico: 34
  • Síntesis de Gastaldi (1921): Se requiere de (4-N-sulfonilamino)cianometil cetonas.
Imagen relacionada
Ilustración 8 Pirazinas en Alimentos Fuente: https://lanocheenvino.com/2017/03/28/que-son-las-pirazinas/

Las pirazinas actúan como descriptores aromáticos en ciertos alimentos como el pimiento verde, las mismas se distribuyen en diferentes alimentos y verduras (espárragos y arvejas), por otro lado, las pirazinas forman parte de las uvas blancas y tintas mismas que confieren notas olfativas al vino así lo afirma (Cabeller, 2018).

Resultado de imagen para vino blanco
Ilustración 9 Uvas Blancas (verdes) para la elaboración de vino blanco. Fuente: https://lanocheenvino.com/2017/03/28/que-son-las-pirazinas/

Según la autora la concentración de pirazinas disminuye a medida que madura la uva por lo que en ocasiones los niveles altos de esta molécula en el vino es asociado con la falta de maduración de las uvas; a su vez de encontrarse en este estado (muy concentrado) es indicador negativo en la calidad del vino.

Resultado de imagen para pirazinas
Ilustración 10 Pirazinas comunes en las uvas para vinos. Fuente: http://vinospasini.blogspot.com/2012/07/aromas-verdes-del-vino.html

Por esta razón la necesidad de exhaustivos controles en el viñedo antes y después de la cosecha en este proceso entra en juego el profesionalismo y experiencia del enólogo por encima del mismo agricultor, la dificultad radica en el momento de la cosecha, puesto que la madurez de la uva es un fenómeno asincrónico puesto que maduran en diferentes tiempos los racimos de una misma cepa, cada unidad (granos) del racimo madura de forma independiente y la pulpa, piel y semilla de los granos también es asincrónica razón por la cual es dificultoso determinar el momento óptimo de la cosecha.

Por los motivos expuestos en el párrafo anterior el momento de la cosecha es crucial para condicionar las características sensoriales del vino; factores externos como el clima, la temperatura ambiental durante el periodo de la maduración, agentes químicos presentes en insecticidas son principalmente los influencian de forma directa la concentración de pirazinas en las uvas. Por ejemplo entorno a la temperatura tenemos la siguiente relación: Las temperaturas bajas durante la maduración inducen a producir uvas con nieles mayores de pirazinas (maduración rápida incompleta, no natural o acelerada), las temperaturas cálidas a su vez generan uvas con menores niveles de pirazinas acompañado de tiempos óptimos de maduración.

Resultado de imagen para grados brix

Ilustración 11 El uso de polarímetros es indispensable para la obtención de índices de refracción que permitan identificar la presencia de compuestos como la pirazina. Fuente: http://agriculturers.com/que-son-los-grados-brix/

Finalmente las técnicas de vinificación, menciona la autora, impactan también con la concentración de pirazinas en el producto final y entorno a su detección se considera bajo siempre y cuando existan de 2 a 8 ng/l para vinos blancos y de 2 a 16 ng/l en los tintos.

Presencia de la piridina en industria alimenticia

La piridina fue descubierta por Thomas Anderson en 1849 y su nombre proviene del vocablo griego Pyros que significa fuego, en efecto este líquido incoloro presenta una alta inflamabilidad y de forma natural puede identificarse como un aceite (incoloro) de olor desagradable al calentar huesos de animales, la forma natural más común de este compuesto es el NAD, vitaminas B3, B6, B12, etc; es allí donde radica su importancia en la industria alimenticia.

Resultado de imagen para piridina
Ilustración 12 Piridina, azabenceno o azina. Fuente: https://www.ecured.cu/Piridina

Su síntesis parte del alquitrán crudo y es utilizada como solvente en la producción de muchos productos, los más comunes en el sector alimenticio es la producción de condimentos y vitaminas utilizadas en suplementos alimenticios, así lo afirma (Seco, 2014), es importante mencionar que la forma pura de la piridina es mortal, cancerígena, capaz de producir infertilidad se la puede encontrar en especies vegetales como la Belladona (Atropa belladona).

Resultado de imagen para Atropa belladona
Ilustración 13 Ilustración Naturalista de la Belladona. 

De manera general la formación de piridina en los procesos industriales de los alimentos se asocia a toxicidad salvo los casos en los que se contribuya con el aroma y el sabor cuyos derivados no son tóxicos así lo afirma (Seco, 2014).

Muchos de los alimentos de consumo diario contienen aromatizantes como resultado de la adición de compuestos que contienen piridina y de forma análoga por la adición de productos naturales en el medio ambiente. Una de las formas más conocidas de esta sustancia como derivado es la PIRIDOXINA, esta sustancia es conocida comúnmente como Vitamina B6, nutriente esencial con propiedades beneficiosas para el metabolismo y sistema nervioso del cuerpo humano, estudios han demostrado que es capaz de estimular energéticamente a un individuo motivo por el cual es ingrediente principal en muchas suspensiones orales y jarabes para niños y demás suplementos alimenticios (B. Pavlov, 1970).

Resultado de imagen para PIRIDOXINA

Resultado de imagen para PIRIDOXINA

Ilustración 14 Piridoxina (Vitamina B6)

Entre los valores más importantes en (mg/100g de muestra) de esta importante vitamina en alimentos podemos mencionar la siguiente lista:

  • Pistachos: 1.7mg.
  • Hígado de pavo: 1.0mg.
  • Atún: 0.9mg.
  • Semillas de girasol: 0.8mg.
  • Sésamo: 0.8mg.
  • Salmón: 0.6mg.
  • Maíz: 0.6mg.
  • Avellanas: 0.6mg.
  • Carne roja: 0.5mg.
  • Lentejas: 0.5mg.
  • Duraznos: 0.5mg.
  • Plátanos: 0.3mg.

 

Incidencia del ácido benzoico en industria alimenticia

El ácido benzoico pertenece al extenso grupo de los compuestos aromáticos y es por sí mismo uno de los compuestos orgánicos más utilizados en la industria alimenticia. Su uso más común es como conservante alimenticio, de forma natural el ácido benzoico puede obtenerse de arándanos, ciruelas, canela, frambuesas, clavos de olor entre otros.

Resultado de imagen para acido benzoico
Ilustración 15 Estructura molecular del ácido benzoico.

Este compuestos tiene especial eficacia en alimentos del tipo ácido, la razón de su popularidad en la industria radica en su costo, puesto que no es elevado y resulta muy útil para controlar y frenar el aparecimiento y propagación de levaduras, bacterias (en casos muy específicos) y mohos (MILKSCI, 2003).

 

Sin embargo no todo es beneficio, uno de los principales problemas de este compuesto es su sabor astringente y de cierta forma desagradable, por otra parte presenta ciertos niveles de toxicidad, que aunque es relativamente baja pero mayor en comparación con otros conservantes, puede producir intolerancia a algunas personas, y por este motivo es que su control es muy importante.

Resultado de imagen para acido benzoico
Ilustración 16 El ácido benzoico en la industria de alimentos es identificado como aditivo-conservante E210.

El Conservante E210 (Ácido Benzoico) es utilizado principalmente en el continente europeo como conservante en bebidas refrescantes (gaseosas carbonatadas) como sucede en España así lo afirma (MILKSCI, 2003); entorno a la misma industria de bebidas es utilizado en la fabricación de zumos; productos lácteos utilizados en repostería y galletería así mismo en la elaboración de conservas de vegetales tales como tomates (Cherrys especialmente), pepinillos o pimiento envasados en grandes recipientes para uso de grandes cadenas de restaurantes de consumo masivo; crustáceos frescos o congelados y derivados de pescado; margarinas, salsas (especialmente en su forma de benzoato de sodio o potasio (E211 y E212 respectivamente) como es el caso de la salsa de tomate (MILKSCI, 2003).

Resultado de imagen para acido benzoico en alimentos
Ilustración 17 Ácido benzoico en los alimentos.

El mencionado conservante industrial se obtiene de al menos 3 formas diferentes en la industrial según menciona (Aditivos Alimentarios, 2016)

  • Oxidación de Naftaleno de anhídrido ftálico con óxido de Vanadio.
  • Oxidación de la mezcla de Tolueno y ácido nítrico.
  • Hidrólisis del clorobenceno.

De forma adicional este conservante está siendo empleado en la fabricación de gelatinas, humus, champiñones, miel, aceitunas, caviar, mermeladas, bebidas de malta y energizantes polos de helado, tortillas de trigo y patatas, frutas en almíbar, alimentos pre cocidos, licores y salsas picantes.

La OMS considera como aceptable una ingestión de hasta 5 mg por Kg de peso corporal y día. Con la actual legislación española esté límite se puede superar, especialmente en el caso de los niños. Otras legislaciones europeas son más restrictivas. En Francia sólo se autoriza su uso en derivados de pescado, mientras que en Italia y Portugal está prohibido su uso en refrescos. La tendencia actual es no obstante a utilizarlo cada vez menos sustituyéndolo por otros conservantes de sabor neutro y menos tóxico, como los sorbatos. El ácido benzoico no tiene efectos acumulativos, ni es mutágeno o carcinógeno (MILKSCI, 2003).

 

Incidencia del benzaldehído (C6H5CHO) en industria alimenticia

El benzaldehído (C6H5CHO), figura como un compuesto orgánico aromático perteneciente a los aldehídos y cetonas, y aunque el presente documento no tiene por finalidad centrarse en aldehídos y cetonas puesto que se abordará en la siguiente unidad de estudio, se considera al benzaldehído un compuesto aromático de alta importancia en la industria de alimentos. El benzaldehído es un compuesto químico que pertenece al extenso grupo de aldehídos aromatizantes, que consiste en un anillo de benceno con un sustituyente aldehído así lo afirma (Gavira Vallejo, 2015). A nivel organoléptico es un líquido incoloro con variaciones hasta tonalidades amarillas (dependerá de su pureza), se identifica por un olor frutal potente a cerezas y almendras amargas.

Resultado de imagen para Benzaldehído,
Ilustración 18 Benzaldehído, bencenal, fenilmetanal o aldehído benzoico.

En torno a sus propiedades químicas, el benzaldehído es ligeramente soluble en agua, miscible en alcohol y éter; se recomienda su almacenaje en envases cerrados en lugares frescos, ventilados y protegidos de la luz solar puesto que tiende a oxidarse rápidamente en presencia de aire por tanto es recomendable también su almacenaje en frascos ámbar.

Imagen relacionada
Ilustración 19  Semillas que contienen Benzaldehído de forma natural.

El método de obtención natural es desde las semillas de almendras, ciruelas, cerezas, duraznos, melocotones entre otros; estas semillas poseen cantidades significativas de amigdalinas [glucósido, molécula formada por una parte glucídica y una parte no glucídica (C20H27NO11)], cuando las amigdalinas se rompen por catálisis enzimática o por hidrólisis se obtienen dos tipos de azucares, un cianuro y un benzaldehído formando así benzaldehído de forma natural (Gavira Vallejo, 2015).

Según el autor a nivel industrial, el benzaldehído también puede obtenerse, entre otros métodos, a través de la oxidación del tolueno [hidrocarburo aromático (C6H5CH3)]

En la industria alimenticia, el benzaldehído se usa como aditivo alimentario, entendiendo un aditivo como toda sustancia o mezcla que no aporta valor nutricional y que es agregada en la mínima cantidad posible, para crear, modificar mantener o intensificar las propiedades organolépticas y sus condiciones de conservación.

Todos los productos empleados como aditivos alimentarios están altamente regulados para que su consumo no sea perjudicial para el ser humano.

Sea cual sea su origen, el benzaldehído, es un producto considerado peligroso por el CLP (clasificación, etiqueta y envasado de productos químicos), con la siguiente clasificación, ya que puede provocar reacciones alérgicas en la piel y reacciones en el hígado (no llega a categoría de mortal, mutagénico o cancerígeno), en la industria de alimentos se identifican las siguientes 4 especies numeradas:

  • H302: Nocivo en caso de ingestión
  • H319: Lesiones oculares graves o irritación ocular
  • H332: Nocivo en caso de inhalación
  • H335: Toxicidad específica en determinados órganos.

Y a pesar de ser considero peligroso, forma parte de determinado alimentos, como las piruletas.

Imagen relacionada
Ilustración 20 Piruletas de caramelo.

Uno de los organismos encargados de esta regulación es la FEMA (Flavors and Extract Manufacturing Assosiation), la cual clasifica el benzaldehído con el número FEMA 2127. Según esta asociación, el aldehído puede ser empleado para dar aroma a almendras amargas, azúcar quemado, cereza, pimientos asados y malta.

Para asegurarse que el consumo del benzaldehído no es peligroso para la salud humana, han establecido unos límites de ppm que los productos alimentarios finales no pueden sobrepasar A continuación la tabla de concentraciones límites en ppm para alimentos que contengan benzaldehído con la finalidad de asegurarse que el consumo del benzaldehído no es peligroso para la salud humana (Gavira Vallejo, 2015).

TIPOLOGÍA DE PRODUCTO PPM MÁXIMO AUTORIZADO
Bebidas no alcohólicas 36 ppm
Helados 42 ppm
Caramelos 120 ppm
Productos horneados 110 ppm
Gelatinas y pasteles 160 ppm
Chicles 840 ppm
Bebidas alcohólicas 60 ppm

 

Aplicación del estireno y poliestireno en el envasado de los alimentos

 

El poliestireno es un plástico versátil usado para fabricar una amplia variedad de productos de consumo. Se sabe que cerca del 50-60% de estireno producido a nivel industrial está destinado a la fabricación de envases de poliestireno para comestibles (Roque Marroquín, 2016).

Dado que es un plástico duro y sólido, se usa frecuentemente en productos que requieren transparencia, tales como envases de alimentos y equipos de laboratorio.

Cuando se combina con varios colorantes, aditivos y otros plásticos, el poliestireno se usa para hacer electrodomésticos, electrónicos, repuestos automotrices, juguetes, macetas y equipamiento para jardines, entre otros a su vez el poliestireno en espuma puede tener más de 95 % de aire.

(Roque Marroquín, 2016) Menciona en su artículo que dados los efectos nocivos para la salud del estireno reportados por el Programa Nacional de Toxicología y su reciente clasificación como “agente carcinógeno racionalmente anticipado” y conocido la factibilidad de la migración de monómeros de estireno a partir de los envases de alimentos hacia su contenido, se considera importante la determinación de esta sustancia como advertencia y prevención de futuros perjuicios contra la salud humana.

Imagen relacionada
Ilustración 21 Bandejillas fabricadas con poliestireno para el envasado de alimentos.

El envasado para el servicio de alimentos de poliestireno suele ser mejor aislante, mantiene los alimentos frescos por más tiempo y cuesta menos que las otras alternativas (Chemical Safety Facts, 2010).

Resultado de imagen para sintesis del poliestireno
Ilustración 22 Polimerización del estireno.

Existen 2 clases de poliestirenos utilizados en industrias varias estos son:

  • poliestireno expandido (EPS)
  • poliestireno extruido (XPS)

Con respecto al estireno se puede decir que es la molécula de partida del polímero antes mencionado, el estireno (C8H8) también conocido como VINILBENCENO etenilbenceno, cinameno o feniletileno. Se utiliza en la fabricación de una amplia gama de polímeros (como el poliestireno) y elastómeros copolímeros, como el caucho de butadieno-estireno o el acrilonitrilo butadieno-estireno (ABS), que se obtienen mediante la copolimerización del estireno con 1,3-butadieno y acrilonitrilo.

El estireno se utiliza ampliamente en la producción de plásticos transparentes y se ve relacionado con la industria alimenticia porque se considera como contaminante de diferentes alimentos, como frutas, hortalizas, nueces, bebidas y carnes. (Chemical Safety Facts, 2010)

DISCUSIONES Y CONCLUSIONES

Como se ha demostrado los compuestos aromáticos tienen una amplia incidencia en la industria alimenticia, sea por estar presentes en la fabricación de múltiples alimentos así como en los procesos de envasado; la identificación de los mismos permite tener una mayor prevención entorno al consumo de alimentos que pueden estar relacionados a compuestos aromáticos tóxicos o persistentes y en lo que respecta a la formación académica del profesional químico de alimentos permite conocer de forma efectiva las múltiples fuentes de contaminación de alimentos lo que en definitiva aporta en el mejoramiento y aseguramiento de la calidad dentro de la industria garantizando alimentos inocuos para el consumo humano, por otra parte es recomendable la socialización tanto de la presencia, utilidad, beneficios y riesgos de los diversos compuestos aromáticos y derivados del benceno con la sociedad misma que se relaciona directamente con el patrón de consumo de los alimentos mencionados en el presente informe investigativo.

Bibliografía

Aditivos Alimentarios. (01 de 2016). Aditivos Alimentarios . Obtenido de Ácido Benzoico E210: https://www.aditivos-alimentarios.com/2016/01/E210.html

Pavlov, A. T. (1970). Curso de Química Orgánica. En A. T. B. Pavlov, Traducido por Victoria Valdéz Mendoza. (pág. 589). Moscú: Editorial MIR. . Obtenido de Curso de Química Orgánica. Traducido por Victoria Valdéz Mendoza. Editorial MIR. Moscú. 1970 – Pág. 589

Badui, S. (2013). Hablemos Claro: Amarillo de Quinolina. Obtenido de Química de los Alimentos: http://hablemosclaro.org/ingrepedia/amarillo-de-quinolina/#1502293691178-e5ac3059-a00b

Barceló, L., & López de Alda, M. J. (2010). El Agua Potable.com. Obtenido de Contaminación y calidad química del agua: El problema de los contaminantes emergentes : http://elaguapotable.com/Contaminaci%C3%B3n%20y%20calidad%20qu%C3%ADm%20del%20agua-los%20contaminantes%20emergentes.pdf

Cabeller, C. (28 de Marzo de 2018). La Noche en Vino. Obtenido de ¿Qué son las Pirazinas?: https://lanocheenvino.com/2017/03/28/que-son-las-pirazinas/

Chemical Safety Facts. (2010). Chemical Safety Facts. Obtenido de Poliestireno. : https://www.chemicalsafetyfacts.org/es/poliestireno/

Claramount, R. M., Cornago, M., Esteban Santos, S., Farrán Morales, M., Pérez Torralba , M., & Sanz del Castillo, D. (2013). Principales Compuestos Químicos. Madrid: Universidad Nacional de Educación a Distancia.

Dep. Fquím. UNAM. (14 de 03 de 2015). depa.fquim.unam.mx. Obtenido de Quinolinas e isoquinolinas: http://depa.fquim.unam.mx/amyd/archivero/06QuinolinaseIsoquinolinas_24315.pdf

Documentacion Ideam. (2003). Documentacion Ideam. Obtenido de FICHA TÉCNICA DEL BENCENO: http://documentacion.ideam.gov.co/openbiblio/bvirtual/018903/Links/Guia7.pdf

Echeverry, N. (5 de Agosto de 2016). BENCENO EN LOS ALIMENTOS. Obtenido de Prezi: https://prezi.com/8lehb7sm4cgh/benceno-en-los-alimentos/

Gavira Vallejo, J. M. (23 de Diciembre de 2015). TRIPLENLACE. Obtenido de EL BENZALDEHIDO EN LA INDUSTRIA ALIMENTARIA: https://triplenlace.com/2015/12/23/usos-industriales-del-benzaldehido/

MILKSCI. (2003). MILKSCI. Obtenido de UNIZAR: http://milksci.unizar.es/adit/conser.html

Pliskin. (11 de 06 de 2017). ImparaTudos. Obtenido de E104 Quinolina amarilla : http://imparatudos.com/article/e104-quinolina-amarilla

Roque Marroquín, M. S. (2016). ALICIA. Obtenido de El estireno en envases de alimentos: http://alicia.concytec.gob.pe/vufind/Record/UNIJ_522fb2a0e25c7cf78d3b95d03f8ef4d1

Seco, M. G. (6 de Octubre de 2014). UNAM. Obtenido de Piridinas en Alimentos: http://depa.fquim.unam.mx/amyd/archivero/PIRIDINAS_28867.pdf

Secretaría de Agricultura y Recursos Hidráulicos. (1988). COLPOS. Obtenido de ESPECIAS Y CONDIMENTOS-DETERMINACIÓN DE: http://www.colpos.mx/bancodenormas/nmexicanas/NMX-FF-064-1988.PDF

UDEA. (2010). QuimicaOrganica III. Obtenido de Aromaticidad: http://docencia.udea.edu.co/cen/QuimicaOrganicaIII/paginas/aromaticidad/sesion18/heteroaromaticidad.html

Wade, L. G. (2011). Química Orgánica: Capítulo 16 Compuestos Aromáticos. México : Mc. Grow Hill.

Si te ha gustado este artículo o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Usos y Aplicaciones de los Éteres, Epóxidos y sulfuros en la industria alimenticia

Autores:

Espinoza B. Lesly M. (1)

Jaramillo C. Ana L. (1)

Aguirre F. Alejandro A. (1)

(1) Facultad de Ciencias Químicas-Universidad Central del Ecuador- Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

INTRODUCCIÓN

     Los éteres, epóxidos y sulfuros son tres grandes grupos de compuestos que pueden estudiarse como si se tratara de una  sola familia por sus características físicas  y químicas en común. La característica más notable entre ellos es que sus grupos sustituyentes (R o Ar), se encuentran unidos por un heteroátomo; que en el caso de los éteres y epóxidos se trata del oxígeno, estos últimos los epóxidos, son éteres cíclicos diferenciándose así de los éteres comunes que se presentan como moléculas abiertas, por otro lado los sulfuros del tipo tioéteres presentan como heteroátomo al azufre que une los sustituyentes (R o Ar) entre sí; los sustituyentes R representan radicales alquilo mientras que los Ar representan radicales aromático o arilo (Carey F. , 1997). El presente trabajo de investigación pretende recopilar los usos y aplicaciones de éteres, epóxidos y sulfuros, entorno a la industria alimenticia y agroindustrial con la finalidad de fortalecer el estudio de los éteres, epóxidos y sulfuros temas comprendidos dentro de la primera unidad de la cátedra de Química Orgánica II de la carrera de Química de Alimentos.

DESARROLLO DE LA INVESTIGACIÓN

Aplicaciones de los éteres

     Los éteres no forman puentes de hidrógeno por lo tanto sus puntos de ebullición son bajos así lo manifiesta  (Armendaris, 2009), ésta característica permite que los éteres sean utilizados como disolventes de grasas y aceites; adicionalmente los éteres poseen una muy baja reactividad y uno de los usos más populares que se dio a uno de sus representantes más comunes, el éter dietílico , fue dentro de la medicina como anestésico sin embargo en la actualidad se ha determinado que la exposición prolongada puede ser tóxica para el ser humano conllevando a una toxicomanía denominada eteromanía (adicción al consumo de éter). A continuación, presentamos algunas investigaciones recientes para el potencial uso de los éteres en el campo alimenticio.

 

Diseño de emulsiones con éteres de celulosa para reemplazar la grasa en alimentos: estabilidad, estructura y digestión in vitro.

 

     En marzo del 2017 la tesista Berta Pons Vidal para la obtención de su título de Ciencia y tecnología de alimentos de la Universidad Politécnica de Valencia propone como opción para reducir la ingesta calórica que en consecuencia se relaciona directamente con el sobrepeso la reformulación de alimentos en base al diseño de emulsiones capaces de reemplazar la grasa convencional de alimentos de baja digestibilidad lipídica reduciendo así la cantidad de grasas absorbibles por organismo como por ejemplo cremas y mantecas de relleno de galletas entre otros.

Las pruebas desarrollaron emulsiones aceite/agua (O/W) utilizando como emulsionantes  los éteres de celulosa, metilcelulosa e hidroxipropil celulosa, la tesis manifiesta que se analizaron factores como la estabilidad, estructura y digestibilidad in vitro de las soluciones dando como resultado una baja digestibilidad lipídica de las emulsiones diseñadas aperturando la posibilidad de sustituir de esta manera parte de las grasas presentes en diversos alimentos manufacturados así lo menciona (Pons Vidal, 2017 ), para soportar esta información presentamos la reacción de esterificación para la formación de éteres de celulosa véase la ilustración 1.

Ilustración 1 Esterificación de la celulosa en éteres de celulosa, Tomado de: http://www.quimicoshalter.com/eteres-de-celulosa

 

Un estudio experimental de ácidos grasos poliinsaturados, provenientes de R. fruticosus, por éter etílico

 

     Por las mismas propiedades nombradas anteriormente los éteres actúan y son ampliamente utilizados como disolventes para la extracción de aceites, sea por sus puntos de ebullición bajos o por su capacidad baja reactividad; cualquiera sea la razón los éteres se relacionan con la industria alimenticia como medios ideales para la extracción de aceites alimenticios.

(Ortiz, García, & Chávez, 2018) mencionan al estado de Michoacán- México como potencial productor de zarzamora (mora), la producción de este fruto de forma normal no es tan eficiente debido a que es un fruto muy delicado por ende en el proceso de aseguramiento de la calidad se descartan muchos frutos que no cumplen las especificaciones causando pérdidas económicas al sector agroindustrial y de igual forma un desperdicio de alimento. Estos jóvenes proponen recuperar aceites esenciales de la zarzamora mediante extracción de estos por arrastre de vapor usando solventes conocidos como éter etílico y pentano.

Resultado de imagen para zarzamoras

Ilustración 2 Zarzamoras (moras) (Rubus fruticosus). Fuente: http://mamiverse.com/es/10-recetas-con-zarzamora-2-63942/

La propuesta pretende aprovechar los residuos de la fruta sometiéndolas a un proceso previo de secado, esta propuesta pretende reducir perdidas económicas en los aspectos de producción de la semilla ya que de esta forma se busca aprovechar la totalidad del fruto incluido aquel que se encuentre en malas condiciones para ser vendido fresco del cual se pretende recuperar aceites esenciales que pueden ser utilizados no solo en el campo alimenticio si no también en la cosmética.

Las semillas se sometieron a extracción lipídica mediante Soxhlet recuperando de esta manera el aceite, se determinó por tanto que la zarzamora es fuente de ácidos grasos presentes en sus semillas del tipo C:18 poliinsaturados como son el ácido linoleico y linolénico, sin embargo considerando la cantidad de agua que presenta el fruto el rendimiento de extracción con éter etílico fue del 15.18% y con pentano del 12.40%; el estudio propone mayor investigación para la determinación de mejores solventes o métodos como el microonda, sin embargo de manera general es una propuesta que busca frenar el desperdicio de recursos en producción que puede acogerse en Ecuador puesto que también es ampliamente un gran productor de moras principalmente en la provincia de Tungurahua que en la actualidad presenta aproximadamente 840 Ha del cultivo, le siguen Cotopaxi con 430 Ha, Pichincha 220 Ha y Azuay con 50 Ha de producción del cotizado fruto de distintas variedades según lo afirma (EL COMERCIO, 2011) de las cuales se podría recuperar los ácidos antes mencionados reduciendo así las perdidas innecesarias de materia prima.

 

Aplicación de la Monensina sódica en la industria alimenticia

Resultado de imagen para Charles Pedersen

Ilustración 3 Charles Pedersen 1967.

ssssdsdf

Ilustración 4 monensina sódica, en amarillo el ión Na+.  (Carey & Giuliano, 2006)

     La Monensina sódica está clasificada dentro del grupo de los éteres corona, aunque en su estructura tienda a parecerse más a un epóxido. Algunos autores clasifican a este compuesto como un complejo de coordinación cuando ha pasado de Monensina a Monensina sódica. En el campo de los éteres corona se clasifica como un podando así lo menciona (Grupo de polímeros (Polymer Research Group), 2011).

Su descubrimiento se remonta a 1967 de la mano del Nobel de Química, Charles Pedersen, quien entonces siendo empleado de DuPont descubre un método sencillo para sintetizar un éter corona con la esperanza de desarrollar un agente quelante de cationes divalentes como puede ser el Ca2+, sin embargo y tras la experimentación quedó sorprendido al aislar un complejo como subproducto fuertemente complejado con iones potasio (K+) en 16-corona-4.

Posteriormente y con la finalidad de no trabajar con un elemento tan reactivo en agua como los es el potasio realiza la misma experimentación para la obtención de un derivado con sodio (Na+) obteniendo así la monensina de sodio; misma que dispone sus grupos alquilo hacia el exterior de complejo y los oxígenos polares se encuentran hacia el interior en estructura se asemeja a los hidrocarburos, esta estructura le permite llevar al ion sodio a través de la membrana celular para fines médicos veterinarios en la agro industria (Carey & Giuliano, 2006). A continuación, se puede observar en la ilustración 4 la estructura molecular monensina antes y después de formar el complejo.

Mecanismo de acción de la monensina

     La monensina posee un carácter ionóforo poliéter y es producto natural de la fermentación de la bacteria Streptomyces cinnamonensis. Los ionóforos pueden alterar el potencial de membrana mediante la conducción de iones a través de una membrana lipídica en ausencia de un poro proteínico, y por lo tanto tienen propiedades citotóxicas (Pisa Agropecuaria, 2015).

Resultado de imagen para Streptomyces cinnamonensis

Ilustración 5 Streptomyces cinnamonensis. Fuente: https://es.wikipedia.org/wiki/Streptomyces

Es una molécula indicada para utilizarse en ganado bovino cárnico y lechero, en caprinos y aves de corral, concretamente pollo de engorda y pavos donde se ha utilizado como coccidiostato. El mecanismo de acción puede describirse en la ilustración 6.

Dicho mecanismo favorece en 2 sentidos según la fuente mencionada:

  1. Interfiriendo con procesos celulares en la respiración celular, liquidando de esa manera a microorganismos patógenos.
  2.  Fijando los mismos iones que aportan a la nutrición del animal en cuestión.

mecanismo

Ilustración 6 Mecanismo de acción de la Monensina de a través de la membrana plasmática. (Pisa Agropecuaria, 2015)

De esta manera la monensina sódica es empleada como antiparasitario, antibiótico y adicionalmente como medio de fijación de iones alcalinos en la industria ganadera puesto que es un potente aliado para la modificación y manejo de la flora bacteriana rumiante y en el caso de aves de corral actúa como bactericida para el control de coccidiosis.

Ilustración 7 Uso de la monensina sódica como moléculas desarrolladas para combatir la coccidiosis en aves de corral (Pisa Agropecuaria, 2015)

Aplicaciones de los Epóxidos

 

     Los epóxidos al tener una estructura cíclica presentan en su forma cavidades que pueden ser aplicadas en la fabricación de espumas aislantes, la industria alimenticia emplea este tipo de materiales en diversas áreas que van desde el control microbiano hasta el recubrimiento del suelo como se realiza en la industria del pavimento.

 

Adhesivos y recubrimientos con resinas epóxicas

 

     Las resinas epóxicas son unidades polimerizadas de moléculas de epóxidos sintetizadas a partir de la epiclorhidrina y di o polihidroxifenoles, véase la ilustración 8; en la industria y no solo alimenticia suelen ser empleados como adhesivos y recubrimientos del tipo aislante así lo menciona (Blancas M., 2014). Según su aplicación estas sustancias pueden ser abrasivas, materiales de fricción, textil, fundición, filtros, lacas y adherentes.

res.jpg

reac.png

Ilustración 8 SUP. Presentación de 0.63 y 0.31 Kg de Resina epóxica comercial. INF. Reacción entre la epiclorhidrina y Bisfenol A, para la obtención de la masa epóxica bis fenólica.

Su naturaleza inerte similar a los policarbonatos lo hace un gran aliado de la industria alimenticia puesto que garantiza inocuidad, es empleada como aislante en zonas frigoríficas optimizando de esta manera las temperaturas y la compartición de calor con el medio ambiente, aunque su uso es más difundido en la industria de la construcción se emplea para el recubrimiento de pavimentos esta opción también es aprovechada en las fabricas de alimentos porque su presencia mejora los ambientes de manufacturación ya que inhibe el aparecimiento humedad desde el suelo sin embargo su principal beneficio radica en la fuerza que es capaz de soportar igual o aproximadamente de 65 N por esta razón es que se emplea en el recubrimiento de los suelos industriales debido al constante desgaste ocasionado por efecto humano y maquinaria de transporte interno.

Epóxido de etileno (ETO) como agente esterilizador en la agroindustria.

     Como se expresó anteriormente otro de los potenciales usos de los epóxidos es como bactericida por su capacidad oxidativa. El epóxido de etileno (ETO) dentro de la industria alimenticia tiene como función la esterilización puesto que tiene la capacidad de lisar casi a la mayoría de microorganismos incluyendo esporas y virus; estos esterilizantes se pueden presentar como gases comprimidos en cilindros o cámaras que mediante sofisticados sistemas de difusión son conducidos por cañerías hasta verdaderas estancias cerradas en donde se esterilizan diversos materiales empleados en el sector agroindustrial, como por ejemplo gavetas y canastillas usadas en el sector avícola para el transporte de pollos, en estas puede proliferar una gran cantidad de microorganismos por estar al contacto de sangre, heces fecales y demás restos biológicos (Puello Cabarca, 2016).

Resultado de imagen para camara de esterilizacion

Ilustración 9 Cámara de esterilización.

Mecanismo de acción del ETO.

     Phillips, en 1977, sugirió que la actividad microbicida de ETO se debe a la capacidad de alquilación de grupos sulfhídricos, amino, carboxílicos, fenoles e hidroxilos de las esporas o células vegetativas. La alquilación es el reemplazo de un átomo de hidrógeno por uno de un grupo alquilo. En la ilustración 10 se puede observar la alquilación de una célula viva con óxido de etileno, esta sustitución puede causar lesión y/o muerte en una bacteria o espora así lo menciona (ESTÉRICAL, SN).

ceñl.png

salmo.png

Ilustración 10 SUP. Alquilación de una célula viva mediante ETO. INF. Salmonella senftenberg

Existe evidencia experimental que indica que la reacción de ETO con ácidos nucleicos es la principal causa de su actividad bactericida y esporicida. La alquilación del trifosfato de guanosina de ADN en Salmonella senftenberg realizada por Michael y Stumbo en 1970 causó que las células perdieran el poder de reproducción (ESTÉRICAL, SN).

Estudios acerca de la resistencia de bacterias y esporas a la actividad bactericida y esporicida del óxido de etileno muestran que la espora de Bacillus subtilis var. niger presenta una resistencia más alta la exposición de ETO que las esporas de Clostridium sporogenes, Bacillus stearothermophilus o B. Pumilus.

 

Producción de epóxido de soya con ácido peracético generado in situ mediante catálisis homogénea.

 

     En la actualidad en relación con los epóxidos existen diversos estudios que proponen extraer epóxidos de ciertas semillas que contienen estas sustancias para el uso industrial, no precisamente en el campo alimenticio, pero sí a partir de él. Por ejemplo, la producción de epóxidos provenientes de la soya común con ácido peracético generado in situ mediante procesos de catálisis homogénea (Boyacá, 2010).

Los epóxidos obtenidos a partir de estos aceites se utilizan ampliamente como plastificantes y estabilizantes del PVC y como materia prima en la síntesis de polioles para la industria del poliuretano.

81128

Ilustración 11 Reacción de epoxidación de aceite de soya.

Heptacloro y Epóxido de heptacloro en alimentos

 

     El heptacloro es una sustancia química manufacturada usada en el pasado para matar insectos en el hogar, en edificios y en cosechas de alimentos. Desde el año 1988 no se usa para estos propósitos. No existen fuentes naturales de heptacloro o de epóxido de heptacloro. Algunas marcas registradas del heptacloro son: Heptagran®, Heptamul®, Heptagranox®, Hepatmak®, Basaklor®, Drinox®, Soleptax®, Gold Crest H-60®, Termide® y Velsicol 104®.

El epóxido de heptacloro también es un polvo blanco que no se inflama fácilmente. No es una sustancia manufacturada y, a diferencia del heptacloro, no se usó como plaguicida. Las bacterias y los animales degradan al heptacloro a epóxido de heptacloro. Este resumen describe a los dos compuestos simultáneamente ya que aproximadamente un 20% del heptacloro es transformado a epóxido de heptacloro en el ambiente y en el cuerpo en unas horas.

Usted puede encontrar heptacloro o epóxido de heptacloro en el suelo o en el aire de viviendas tratadas para controlar termitas, disuelto en agua de superficie o subterránea o en el aire cerca de sitios de desechos peligrosos. También se puede encontrar heptacloro o epóxido de heptacloro en plantas y animales cerca de sitios de desechos peligrosos. El heptacloro ya no puede ser usado para matar insectos en cosechas o en viviendas y edificios. Sin embargo, la EPA aun permite el uso del heptacloro para matar hormigas en transformadores bajo tierra, aunque no está claro si aún se usa con este propósito en Estados Unidos.

Son por tanto sustancias altamente peligrosas para el ser humano catalogados así según la Agencia de Protección del Medio Ambiente de EE. UU., misma que ha identificado a industrias manufactureras florícolas, agroindustriales y agrícolas como principales sitios de exposición a los mismos. Sostiene que la exposición prolongada, inhalación y consumo en alimentos y bebidas, así como el contacto con la piel puede provocar enfermedades como cáncer, daños en el sistema nervioso factor tumorante entre otras.

De forma adicional se ha determinado que estas sustancias pueden afectar al sector ganadero por las mismas causas expuestas debido a que los animales pueden desarrollar diversas enfermedades ocasionando enormes pérdidas al sector.

Lastimosamente no hay ninguna información acerca de los niveles de heptacloro y epóxido de heptacloro que ocurren comúnmente en el aire. En un estudio, los niveles de heptacloro en el agua potable y el agua subterránea en Estados Unidos oscilaron entre 20 y 800 partes de heptacloro en un trillón de partes de agua (ppt) así lo manifiesta (Agency for Toxic Substances and Disease Registry, 2016). También se han determinado contaminaciones en lechos y riveras de ríos y arroyos de uso agrario y de consumo humano.

eppp.gif

Ilustración 12 Heptacloro y Epóxido de heptacloro.

Aplicaciones de compuestos sulfurados (Tioéteres)

Compuestos azufrados volátiles en vino

 

     El vino es una de las bebidas alcohólicas de mayor distribución en el mundo, el mismo suele presentarse como vino tinto y blanco. Los compuestos sulfurados tienen un papel sumamente importante en las industrias vinícolas siempre y cuando sean ligeros y no se trate del DMS (dimetil sulfuro) ya que éste último es un indicador de mal sabor, es un compuesto tóxico y eliminarlo es el propósito de las vinícolas (Armas, Bolaños , & et all, 2015).

Como factor organoléptico puede entenderse como un vector de defecto que al superar el umbral de la detección olfativa confieren notas olfativas agradables al ser humano, hasta la fecha se ha determinado más de 100 compuestos sulfurados de los cuales los tioles y mercaptanos son los más apestosos.

En torno al costo que ciertos vinos pueden alcanzarse puede decir que el factor costo se ve claramente relacionado con el tipo de tratamiento que se dé a los sulfuros provenientes del viñedo y en especial con respecto al origen del sulfuro de hidrógeno en los mismos.

El origen puede ser natural o tradicional cuando procede de cepas de levaduras que pueden ser del tipo Advantage, Platinum Distinction o de origen laboratorial que abarata costos a la industria vinícola, pero puede afectar al producto por poseer trazas e impurezas generadas en la síntesis. Estos tratamientos pueden hacer que un vino tenga costos elevadísimos por su calidad artesanal, las levaduras forman dicho compuesto a través de procesos metabólicos que transforman compuestos inorgánicos como sulfatos y sulfitos e incluso orgánicos como la cisteína y el glutatión de la uva así lo manifiesta (Armas, Bolaños , & et all, 2015).

Imagen relacionada

Ilustración 13 Sulfuros como el DMS pueden afectar el sabor del vino.

Mercaptanos y dimetil sulfuro como indicadores de GLP (gas licuado de petróleo)

 

     El dimetil sulfuro (70%) y el tercburtilmercaptano (30%), son industrialmente utilizados como odorizantes del Gas Licuado de Petróleo o GLP, que no es más que el gas de uso doméstico el mismo que al carecer de olor de forma natural debido a su peligrosidad requiere ser olorizado con estas sustancias para alcanzar un olor fuerte como indicador de fuga. Las industrias alimenticias de forma indirecta en ciertos procesos de cocción aún utilizan el GLP como combustible puesto que diversos detectores de fugas de gas responden a estímulos de vectores organolépticos de olor producido por el VIGILEAK 7030 que es el nombrecomercial de la mezcla antes mencionada (Esteves, 2015).

Resultado de imagen para dimetil sulfuro

Resultado de imagen para GAS LICUADO DE PETROLEO

Ilustración 14 GPL odorizado con mercaptanos y sulfuros. (vigileak 7030). (Esteves, 2015)

Con respecto a los mercaptanos se puede decir que sus potentes olores se encuentran presentes como bases de olores desagradables tales como la carne podrida, heces fecales, la orina de animales como el zorrillo, este último factor requiere ser eliminado en la industria de la perfumería, también pueden ser los causantes del mal olor en la boca (halitosis), también se encuentran en productos naturales como ajo, cebolla o semillas de mostaza.

Sulfuros de origen fitoquímico y sus fuentes

 

     Algunos compuestos sulfurados se pueden encontrar de forma natural en ciertos alimentos que presentan olores fuertes, a este tipo de compuestos se les denomina organo sulfurandos y su principal representante es el alilsulfuro por su potente olor así lo afirma (Palencia Mendoza, SN) quien menciona que vegetales del superorden Liliflorae dentro de la familia Alliaceaes que contienen al género Allium cuyos principales representantes son el ajo, cebollas, puerro y cebollín, cabe mencionar que de ellos el ajo y las crucíferas presentan grandes cantidades de sulfuros.

La autora menciona que la incidencia e importancia de estos compuestos tienen la acción de bloquear y suprimir la carcinogénesis, alteran lípidos séricos y la agregación plaquetaria (cicatrizantes). En algunos estudios de puerro, ajo y cebollas o suplementos de ajo, no se observaron efectos sobre el cáncer de mama o pulmón en humanos. En otros se sugiere que el grupo de vegetales Allium puede inducir pemphigus (Palencia Mendoza, SN).

Muchos organosulfurados se han considerado como aditivos alimentarios reconocidos como seguros (GRAS, siglas en inglés), entre ellos: el alil isotiocianato, alil mercaptano, bencil disulfuro, bencil mercaptano, bencil sulfuro, butil sulfuro, dialil disulfuro, dialil sulfuro, dimetil mercaptano, furfuril mercaptano, metil mercaptano, metil 2- metiltiopropionato, propil disulfuro, 2-tienil mercaptano, 2- tieniltiol.

Resultado de imagen para Dialil disulfuro

Resultado de imagen para ajo

Ilustración 15 Dialil disulfuro presente en ajo y cebollas.

La autora afirma que se demostró la importancia de los grupos alilo en oposición a los grupos propil saturados para los efectos de los compuestos organosulfurados sobre la carcinogénesis en el consumo de alimentos que los contenían. Varios compuestos organosulfurados fueron examinados por su capacidad de inhibir la carcinogésis inducida por nitrosodietilamina, y el más potente fue el dialil-disulfuro el cual redujo los tumores de estómago hasta un 90%. El dialil disulfuro dietético también disminuyó el número de adenocarcinomas de colon inducidos por azoximetano en ratas. Parece ser que los compuestos que tienen el grupo alilo son más efectivos en la quimio-prevención del cáncer que los que no presentan este grupo (Palencia Mendoza, SN).

 

DISCUSIONES Y CONCLUSIONES

 

     El presente informe de investigación ha abarcado desde un eje aplicativo la importancia de la presencia de los éteres, epóxidos y sulfuros que se relacionan con la industria alimenticia y sus derivados. Se ha identificado que pueden estos compuestos relacionarse de forma directa al encontrarse intrínsecamente en los alimentos como es el caso de sulfuros en vinos y cebollas, o a su vez que pueden estar relacionados desde otros ámbitos industriales como lo es el uso de plaguicidas, como el caso del éter de heptacloro causante de múltiples enfermedades y de tipo carcinogénico; por otro lado, se ha mencionado el potencial uso del dialil disulfuro como agente anticancerígeno. Sin duda el conocimiento de este tipo de compuestos aperturan la comprensión de estos en el sector alimenticio y agroindustrial puesto que se encuentran en gran parte de los procesos de control y aseguramiento de la calidad

 

REFERENCIAS

Agency for Toxic Substances and Disease Registry. (2016, mayo 6). Resúmenes de Salud Pública – Heptacloro y epóxido de heptacloro (Heptachlor and Heptachlor Epoxide). Retrieved from Agency for Toxic Substances and Disease Registry: https://www.atsdr.cdc.gov/es/phs/es_phs12.html

Armas, C., Bolaños , A., & et all. (2015, 02 25). issuu.com. Retrieved from Éteres y compuestos azufrados aplicaciones industriales y reacciones de utilidad en la industria: https://issuu.com/azucena22060/docs/eteres_y_compuestos_azufrados

Armendaris, G. G. (2009). Éteres. In G. G. Armendaris, Química Orgánica 3 (pp. 125-126). Quito: Maya Ediciones C. LTDA.

Blancas M., P. S. (2014, Abril 22). El mundo de los polímeros. . Retrieved from es.slideshare.net: https://es.slideshare.net/LittleQuimicos/el-mundo-de-los-polmeros-33830219

Boyacá, L. A. (2010). Producción de epóxido de soya con ácido peracético generado in situmediante catálisis homogénea. INGENIERÍA E INVESTIGACIÓN VOL. 30, 136-140.

Carey , F. A., & Giuliano, R. M. (2006). Capítulo 16: Éteres, epóxidos y sulfuros. . In F. A. Carey, & R. M. Giuliano, Química Orgánica (p. 656). México: 9º Ed. Mc. GrawHill.

Carey, F. (1997). Epóxidos, éteres y sulfuros 6°edición. In F. Carey, Química orgánica. (p. 668). Madrid: Prince Hall Andersen.

EL COMERCIO. (2011, 12 31). El Comercio. Retrieved from Cuatro tipos de moras tiene el país: https://www.elcomercio.com/actualidad/negocios/cuatro-tipos-de-moras-pais.html

ESTÉRICAL. (SN, Santiago de Chile). ESTÉRICAL . Retrieved from https://www.esterical.cl/proceso.htm

Esteves, R. (2015). Aplicaciones comunes e industriales de tioles y sulfuro. Retrieved from prezi.com: https://prezi.com/gsmrpdzrgo7e/aplicaciones-comunes-e-industriales-de-tioles-y-sulfuros/

Grupo de polímeros (Polymer Research Group). (2011, Enero 28). Desarrollo histórico y aplicaciones de los compuestos corona (éteres corona – coronandos -,criptandos, podandos, entidades supramoleculares). . Retrieved from Univerdidad de Burgos (University of Burgos): https://es.slideshare.net/grupodepolimeros/compuestos-corona-6730199

Ortiz, R., García, M., & Chávez, R. (2018, Enero). Un estudioexperimentalde ácidos grasos poliinsaturados, provenientes de R. fruticosus, por tecnologías alternativas a los solventes orgánicos. REMAI,Revista Multidisciplinaria de Avances de Investigación ISSN: 2448-5772, vol. 3 núm. 3,septiembre-diciembre 2017, México. REMAI,Revista Multidisciplinaria de Avances de Investigación ISSN: 2448-5772, vol. 3 núm. 3,septiembre-diciembre 2017, Méxi 2018, 1-2. Retrieved from http://www.remai.ipn.mx/index.php/REMAI/article/view/36/35

Palencia Mendoza, Y. (SN). SUSTANCIAS BIOACTIVAS EN. Retrieved from http://www.unizar.es: http://www.unizar.es/med_naturista/bioactivos%20en%20alimentos.pdf

Pisa Agropecuaria. (2015). Efecto del uso de Ionóforosen Bovinos y alguna particularidades de la Adición de Monensina. . Retrieved from http://www.ganaderia.com: https://www.ganaderia.com/micrositio/Pisa-Agropecuaria/Efecto-del-uso-de-Ion%C3%B3forosen-Bovinos-y-alguna

Pons Vidal, B. (2017 , 03 10). Universidad Politécnica de Valencia. Retrieved from Diseño de emulsiones con éteres de celulosa para reemplazar la grasa en alimentos: estabilidad, estructura y digestión in vitro. : http://hdl.handle.net/10251/78622.

Puello Cabarca, V. (2016, Agosto 29). Epóxidos y sus aplicaciones Industriales. Retrieved from http://www.prezi.com: https://prezi.com/lboblu9t7r8y/epoxidos-y-sus-aplicaciones-industriales/

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Usos y Aplicaciones de los Éteres, Epóxidos y sulfuros.

ÉTERES Y EPÓXIDOS

Definición: Los éteres son el producto de la unión de dos radicales alquílicos o aromáticos a través de un puente de oxígeno -O-; es decir de manera general y según menciona (Ardila, 2013) los éteres son compuestos que tienen un átomo de oxígeno unidos a dos radicales hidrocarbonados. La mayoría de los éteres son líquidos volátiles, ligeros e inflamables, solubles en alcoholes debido a tener una gran similitud en su estructura; son compuestos inertes y estables desde el punto de vista químico. Por sus radicales pueden clasificarse como:

  • Alifáticos: R-O-R, siendo ambos R radicales alquílicos.
  • Aromáticos: Ar-O-Ar´, siendo Ar y Ar´ radicales arílicos.
  • Mixtos: R-O-Ar, posee en uno de sus extremos un radical alquílico y en otro un radical arílico.

Adicionalmente y dependiendo de sus radicales, el éter puede ser considerado simétrico si dichos radicales con iguales o asimétrico si sus radicales son distintos; en la Ilustración 1 podrá identificar algunos ejemplos de éteres.

Resultado de imagen para ejemplos de eteres
Ilustración 1 Ejemplos de éteres. Fuente: https://es.wikipedia.org/wiki/Nomenclatura_de_funciones_org%C3%A1nicas_con_ox%C3%ADgeno

 

Son múltiples las aplicaciones que pueden tener los éteres la más utilizada es como solventes orgánicos de aceites y grasas; así como analgésicos. El presente trabajo de investigación profundiza las diversas aplicaciones y usos de los Éteres.

Usos y Aplicaciones Industriales de los Éteres

  1. Disolventes industriales: (Armas, Bolaños , & et all, 2015) mencionan que los éteres son sustancias capaz de disolver gran cantidad de sustancias polares y no polares esto se debe a que poseen puntos de ebullición muy bajos lo que otorga
    Resultado de imagen para Etilen Glicol Etil (EGE) éter
    Ilustración 2 Etilen Glicol Etil (EGE) éter. Solvente de resinas. Fuente: (Produk Perusahaan Tender S.A., 2015)

    cierta facilidad la separación de productos mediante evaporación. Por las características que presenta tanto en sus propiedades químicas como físicas, es empleado principalmente como disolventes para la fabricación de polímeros de celulosa, sin embargo existe cierto nivel de peligrosidad principalmente con el dietil éter por ser inflamables, motivo que ha llevado a las industrias a buscar nuevos disolventes. Los éteres como disolventes son empleados en la síntesis de reactivos de Grignard. Adicionalmente en la industria de acabados y maderas los éteres son empleados como disolventes y catalizadores de resinas y ceras como muestra la lustración 2.

  2. Medio para condensar: uno de los usos más difundidos según (Ardila, 2013) es la utilización de éteres para concentrar ácido acético y otros ácidos, principalmente en procesos químicos que requieren ácido acético en altos niveles de pureza y no precisamente para consumo humano. La utilidad radica en que aumenta la concentración de cualquier sustancia ácida por condensación.
  3. Resultado de imagen para utilización de éteres para concentrar ácido acético y otros ácidos
    Ilustración 3 Condensación de sustancias (ácidos) en éter.
  • Medio de arrastre: para la deshidratación de alcoholes etílicos e isopropílicos. Ya que interactúa con el Hidrógeno del radical hidroxilo, permitiendo su deshidratación. Desde otra perspectiva de arrastres, los éteres son ampliamente usados como medios de arrastre para la extracción de principios activos de plantas y animales(Armas, Bolaños , & et all, 2015), debido a su fácil eliminación como muestra la ilustración 4.

    Resultado de imagen para soxhlet
    Ilustración 4. Equipo de extracción Soxhlet
  1. Hacia el año 1842, fueron usados como los primeros analgésicos principalmente el éter di etílico, aunque en la actualidad ha sido sustituido por hidrocarburos fluorados que presentan menos riesgos de exposición.(Armas, Bolaños , & et all, 2015)
  2. Polímeros diversos: los éteres presentan alta resistencia a altas temperaturas pese a que sus puntos de ebullición tienden a ser bajos (Wade, 2004). Esta característica permite que sean retardadores de llama, sin comprometer su fuerza que en términos generales permite que sea utilizado como un retardante de llama. Su estabilidad a la hidrólisis permite su uso en aplicaciones médicas que requieren autoclave así como en procesos que comprenden manipulación de microorganismos autoclavables o mecanismos que incluyan arrastre de vapor, lo que en definitiva los hace claves para la formación de polímeros.

Sus principales representantes son las poliétersulfonas o PES, representadas en la ilustración 5. Este tipo de polímeros son utilizados como termoplásticos donde el producto más popular es el Udel fabricado por la corporación Union Carbide, este se comporta como los policarbonatos siendo muy resistible y estable en altas temperaturas. El uso más frecuente de este tipo de polímeros es la fabricación de émbolos y filtros de jeringa. Según mencionan (Armas, Bolaños, & et all, 2015) este tipo de polímeros presentan una subunidad aril –SO2-arilo lo que identifica como tal una sulfona. Sin embargo su alto costo hace que tengan usos especializados normalmente para reemplazo superior de policarbonatos, recubrimientos e insumos médicos.

xqwscw.png

Ilustración 5 En la parte sup. Estructura del polímero poli éter sulfona. En la zona Inf. Se aprecia filtros de jeringa elaborados con dicho polímero. Fuente: (Interempresas, 2012)

Finalmente cabe mencionar con respecto a las poliétersulfonas que son capaces de formar en conjunto verdaderas membranas que industria son reproducibles y controlables con pequeños poros de hasta 40 nanómetros. Se usan para conducir flujos de sustancias en hemodiálisis, recuperación de aguas residuales, procesamiento de alimentos, bebidas y separación de gases; ya que soportan grandes presiones sin gran deformación en sus poros.

Resultado de imagen para Recubrimiento de un frente de camión con resina de poliester fenolico y fibra de vidrio.

Ilustración 6 Recubrimiento de un frente de camión con resina de poliéter fenólico y fibra de vidrio. Fuente: (Mariano N., 2011)

  • Poliéteres fenólicos: al igual que los anteriores, estos polioxifenólicos, familia de los éteres; son plásticos resistentes a altas temperaturas con la particularidad de ser muy buenos aislantes térmicos y eléctricos por lo que son muy utilizados en planchas de diversos electrodomésticos y automóviles como muestra la ilustración 6.
  1. Éter fenílico: este compuesto presenta alto punto de ebullición a diferencia de otros éteres y no deja de ser estable. Esta característica hace que sea usado como calefactor de fluidos o líquido calefactor en diversas industrias como sustituyente de vapor de agua a presión, principalmente en aquellas donde el vapor de agua puede presentar un riesgo si reacciona con otras sustancias como es el caso de la fabricación de ácidos a escala industrial; dicho de manera simple, cumple la función opuesta a la de un refrigerante, es decir, es un anticongelante. (Armas, Bolaños, & et all, 2015). Se recomienda su almacenamiento en frascos o contenedores plásticos  por evitar su deterioro por la fricción, vibraciones y golpes.

 

  1. Según (Vollhardt, 1994) el tetrahidrofurano o THF por sus siglas es un compuesto orgánico heterocíclico, se presenta como un líquido transparente de baja viscosidad, presenta un olor característico parecido al de dietil éter. Se clasifica como éter siendo uno de los más polares de su grupo. El THF es un solvente dipolar aprótico protofílico (capaz de aceptar protones, dados los pares de electrones no compartidos del átomo de oxígeno que le dan características de base de Lewis), con una constante dieléctrica de 7,6 (a 25 °C). El THF es el análogo completamente hidrogenado del compuesto aromático furano.

                   8.1 APLICACIONES Y USOS

  • Solvente de polaridad de carácter aprótico.
  • Sustituyente del dietil éter cuando se requiere incrementar puntos de ebullición.
  • Usado en procesos de hidroboración de alquenos.
Resultado de imagen para thf

Ilustración 7 INF. Una representación 3D del THF, SUP. Se muestra el THF comercial como pegamento de tubos PVC. Fuente: (Pérez, 2011)

Resultado de imagen para pegatuboResultado de imagen para thf

  • Disolvente para reactivos de Grignard.
  • Disolvente del caucho por lo cual es importante en la industria de polímeros.
  • Disolvente de resinas, plásticos en tintes, pinturas, barnices, pegamentos, recubrimientos.
  • En la industria de alimentos es utilizado en la fabricación de envases.
Imagen relacionada

Ilustración 8 Éter metil ter butílico en gasolinas producidas por Petropar (Paraguay). Fuente: (Grupo AJ Viersi, 2014)

  • Éter Metil terc Butílico: muy toxico para los seres humanos y otros seres vivos, sin embargo tiene un poderoso uso industrial mezclándose con isobutileno y metanol desde los años 80`s se ha usado como aditivo sintético para incrementar o mejorar el octanaje de la gasolina sin plomo(Grupo AJ Viersi, 2014).
  1. Éter Corona: Son los compuestos orgánicos que tienen varios éteres en su estructura y forman un ciclo. Los éteres corona imitan el comportamiento de las enzimas; estos reconocen los iones alcalinos dependiendo del tamaño de su cavidad oxigenada, que atrae la carga positiva del metal. Esto implica que funciona como un catalizador; hace posible algunas reacciones, e incrementa el rendimiento de otros. Son catalizadores de transferencia de fase. Se usan para transferir compuestos iónicos a una fase orgánica o de una fase orgánica a una fase acuosa, Este éter puede usarse para anestesiar garrapatas antes de eliminarlas de un cuerpo animal o humano. La anestesia relaja a la garrapata y evita que mantenga su boca debajo de la piel. (Daiza, 2016)

Resultado de imagen para calcimicina

Ilustración 9 CALCIMICINA usada para enfermedades parasitarias en ganado vacuno. Fuente: (Aguirre, 2018)

Uso de epóxidos en la industria de los alimentos

La mayoría de las sustancias antimicrobianas en los alimentos tienen un efecto más inhibidor que letal, hay excepciones con los óxidos de etileno y propileno. Los epóxidos son ésteres cíclicos reactivos que destruyen todas las formas de microorganismo, incluyendo esporas y virus, es decir, son esterilizantes químicos usados en alimentos de baja humedad y en los materiales de envasado aséptico, para lograr el contacto directo con los microorganismo son utilizados en estado de vapor; después de una exposición adecuada, el epóxido residual no reaccionante se elimina por medio de una corriente de aire (Puello Cabarca, 2016)

  1. Resinas epoxídicas; La polimerización de un epóxido con un dialcohol o difenol produce un poli éter. Las resinas epoxis utilizados en la industria se obtienen por polimerización de la epiclorhidrina en el bisfenol en medio básico. El grado de polimerización (n) depende de la relación epiclorhidrina /bisfenol (con un exceso de epiclorhidrina n aumenta). Con la reacción propuesta en la ilustración 10, se obtiene prepolímeros de PM no muy alto (líquidos viscosos o sólidos) que tienen grupos epoxi terminales y grupos OH en la cadena. Los polímeros se convierten en resinas duras mediante el “curado”. El curado consiste en la polimerización cruzada mediante reactivos bio trifuncionales, llamados endurecedores, que al reaccionar con los grupos epoxi terminales y con los grupos –OH interiores forman puentes entre las cadenas. De este modo se producen, al azar, redes macromoleculares tridimensionales muy resistentes. Los reactivos o endurecedores más utilizados son Dietilentriamina (DETA), Trietilentetraamina (TETA), Anhídrido ftálico.
Resultado de imagen para Reacciones de obtención de prepolímeros epóxidos.

Ilustración 10  polímeros epóxidos.

Las resinas epoxi tienen propiedades técnicas muy valiosas: resistencia química, térmica y mecánica y son buenos aislantes eléctricos. Se utilizan para lacas y esmaltes, para recubrimiento de metales y de pisos de laboratorio y fábricas químicas; por colada, se fabrican piezas eléctricas, y algunas compañías las utilizan, con rellenos de sílice, en sustitución de la porcelana para los aisladores de líneas eléctricas; también se usan para fabricar láminas para circuitos impresos y placas reforzadas con fibras de vidrio. Además, son el adhesivo más eficaz para cerámica, vidrio, metales,etc. (Araldit) y por ello se usan en la construcción y en pequeños dosificadores, en el hogar; en general, el prepolímero y el endurecedor se venden separados y se mezclan en el momento de su aplicación. Es un producto caro y su uso se limita a casos de especial exigencia. Algunas Industrias utilizan tetrabromo-bisfenol como copolímero para obtener resinas epoxi resistentes al fuego. (Yúfera, 1996)

  1. Los alcoholes alílicos se convierten en epóxidos por oxidación con hidroperóxido de terc butilo en presencia de ciertos metales de transición. El aspecto más importante de esta reacción, que se llama epoxidación de Sharpless, es su alta enantioselectividad cuando se hace usando una combinación de hidroperóxido de ter-butilo, isopropóxido de titanio(IV) y tartrato de dietilo. La epoxidación Sharpless se ha adaptado para la preparación, en gran escala, de la hormona sexual (+)-disparlure, que se usa para controlar infestaciones de polilla, y de (R)-glicidol, intermediario en la síntesis de fármacos con actividad cardiovascular, llamados beta-bloqueadores. (Carey, 1997)
  2. En la actualidad en relación con los epóxidos existen diversos estudios que proponen extraer epóxidos de ciertas semillas que contienen estas sustancias para el uso industrial, no precisamente en el campo alimenticio. Por ejemplo la producción de epóxidos provenientes de la soya común con ácido per acético generado in situ mediante procesos de catálisis homogénea. Esta investigación indexada publicada en 2010 propone el uso de aceites vegetales que se ha convertido en una excelente alternativa para la sustitución de productos de origen petroquímico. Los epóxidos obtenidos a partir de estos aceites se utilizan ampliamente como plastificantes y estabilizantes del PVC y como materia prima en la síntesis de polioles para la industria del poliuretano. Este trabajo presenta la obtención del epóxido de soya utilizando un catalizador homogéneo en un reactor agitado mecánicamente, a condiciones isotérmicas. Se obtiene como mejor resultado un contenido máximo de oxígeno oxirano de 6,4 %, usando concentraciones de peróxido de hidrógeno (25%de exceso molar), ácido acético (5% p/p) y ácido sulfúrico (2% p/p) a 80°C.(Boyacá & Beltrán, 2010)

81128.jpg

Ilustración 11 Epóxidos recuperados de la soya. Imagen tomada de (Boyacá & Beltrán, 2010)

Aplicaciones industriales de compuestos sulfurados (Tioéteres)

Resultado de imagen para Composición química del vino.

Ilustración 12 Composición química del vino. Fuente: (DeVinoenVino, 2016)
  • Adsorción de azufrados del petróleo utilizando nanopartículas de oro soportadas en fique: de manera general se sabe que el petróleo presenta rachas de azufre presentado en diversas estructuras dado su polimorfismo que representa un 0% a 2% de su composición total en peso, sin embargo su presencia causa verdaderos problemas en las refinerías por lo que se requiere sean retirados previamente a la refinación petrolera para cumplir con los estándares ambientales requeridos (Armas, Bolaños , & et all, 2015). Los Mercaptanos (H-SR), sulfuros (R-S-R) y polisulfuros (R-S-S-R) son capaces de eliminar rachas de azufre presentes en el petróleo, y su estabilidad permite extraerlos fácilmente por fraccionamiento he hidrotratamiento.
  1. Compuestos azufrados volátiles en vino: estos compuestos azufrados tienen un papel importante en la industria vinícola, debido a que son quienes le dan aroma característico a la sustancia, siempre y cuando sean ligeros por eso se exceptúa el DMS por su nivel tóxico, éstos son simplemente vectores de defectos organolépticos que al superar el umbral de la detección olfativa
Resultado de imagen para Oenococcus oeni

Ilustración 13 https://www.sciencedirect.com/science/article/pii/S0963996917308864

  • confieren notas olfativas agradables al ser humano. (Armas, Bolaños , & et all, 2015). En la ilustración 12 se puede apreciar la composición del vino donde efectivamente se demuestra la existencia de azufre en el vino cuya utilidad es dar su particular aroma, especial los tioles varietales ya que aportan al frescor del vino al contrario el DMS es indicador de mal sabor y reducirlo es el propósito de las vinícolas. Y entornos al costo elevado de vinos sofisticados puede deberse al tratamiento de H2S que se le dé, porque dicho sulfuro de hidrógeno puede tener dos orígenes uno sintetizado en laboratorio no recomendado para vinícolas por costos en comparación a una forma más tradicional de obtención de sulfuro de hidrógeno que es por medio de cepas de levaduras Advantage, Platinum Distinction; mismas que hacen del vino un producto más artesanal y fino; aunque no precisamente más barato; las levaduras forman dicho compuesto a través de procesos metabólicos que transforman compuestos inorgánicos como sulfatos y sulfitos e incluso orgánicos como la cisteína y el glutatión de la uva.(Armas, Bolaños , & et all, 2015)

Referencias Bibliográficas

Aguirre, A. (9 de 04 de 2018). MiSeptiembreRojo. Obtenido de Poliéteres, una historia detrás de los antibióticos: https://miseptiembrerojo.wordpress.com/2018/04/09/polieteres-una-historia-detras-de-los-antibioticos/

Ardila, J. S. (22 de 07 de 2013). quimicaguanenta.blogspot.com. Obtenido de Éteres: http://quimicaguanenta.blogspot.com/2013/07/trabajo-eteres.html

Armas, C., Bolaños , A., & et all. (25 de 02 de 2015). issuu.com. Obtenido de Éteres y compuestos azufrados aplicaciones industriales y reacciones de utilidad en la industria: https://issuu.com/azucena22060/docs/eteres_y_compuestos_azufrados

Boyacá, L. A., & Beltrán, Á. A. (2010). Producción de epóxido de soya con ácido peracético generado in situmediante catálisis homogénea. INGENIERÍA E INVESTIGACIÓN VOL. 30 No. , 136-140.

Carey, F. (1997). Epóxidos, éteres y sulfuros 6°edición. En F. Carey, Química orgánica. (pág. pág 668). Madrid: Prince Hall Andersen.

Copro.com. (2013). copro.com.ar. Obtenido de http://copro.com.ar/Extractor_Soxhlet.html

Daiza, M. (15 de 05 de 2016). ETERES. Obtenido de Usos de los Eteres en la vida Cotidiana: http://ihu8hyygh7yhh.blogspot.com/2016/05/usos-de-los-eteres-en-la-vida-cotidiana.html

DeVinoenVino. (29 de 08 de 2016). @devinoenvino. Obtenido de Bodegas Valdelana: https://twitter.com/devinoenvino

Grupo AJ Viersi. (10 de 03 de 2014). PARAGUAY.COM. Obtenido de Petropar compra combustible con alto potencial cancerígeno: http://www.paraguay.com/nacionales/petropar-compra-combustible-con-alto-potencial-cancerigeno-104082/pagina/2

Interempresas. (2012). http://www.interempresas.net. Obtenido de Filtros jeringa: realizados con membranas de poliestersulfona: https://www.interempresas.net/Laboratorios/FeriaVirtual/Producto-Filtros-jeringa-Serie-G-(Pes)-114321.html

Mariano N. (11 de 07 de 2011). tecnologiadelosplasticos.blogspot.com. Obtenido de Materiales compuestos: http://tecnologiadelosplasticos.blogspot.com/2011/07/materiales-compuestos.html

Pérez, Y. (2011). pe.melinterest.com. Obtenido de http://pe.melinterest.com/?r=site/search&seller_id=242469478&seller_nickname=YOVANAFELICES

Produk Perusahaan Tender S.A. (2015). http://www.indotrading.com. Obtenido de Etilen Glicol Etil Éter: https://www.indotrading.com/product/ethylene-glycol-monoethyl-p386734.aspx

Puello Cabarca, V. (29 de 08 de 2016). http://www.prezi.com. Obtenido de Epóxidos y sus aplicaciones Industriales: https://prezi.com/lboblu9t7r8y/epoxidos-y-sus-aplicaciones-industriales/

UrbinaVinos S.A. (7 de 3 de 2016). urbinavinos.blogspot.com. Obtenido de Técnicas de Control Microbiológico en Enología: http://urbinavinos.blogspot.com/2016/03/tecnicas-de-control-microbiologico-en.html

Vollhardt, P. K. (1994). Química Orgánica. Barcelona: Omega S.A.

Wade, L. G. (2004). Química Orgánica. Barcelona: McGrawHill.

Yúfera, E. (1996). Química orgánica básica y aplicada: de la molécula a la industria.Páginas 377-379. Obtenido de https://books.google.com.ec/books?id=4eX-mdTjyHcC&pg=PA367&dq=epoxidos+aplicaciones&hl=es&sa=X&ved=0ahUKEwiYkvGSl-jaAhWS0FMKHQU4AY0Q6AEINTAD#v=onepage&

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Generación de Hidrógeno a partir de residuos de Banano

Objetivo General.-

Generar fuentes ilimitadas de energía, dando valor agregado a nuestros recursos naturales, a partir de la biomasa proveniente de los residuos del banano.

Objetivos Específicos.-

-Evaluar la actividad del hidrógeno y sus efectos en la naturaleza.

-Caracterizar los residuos de banano evaluando su composición nutricional.

RESUMEN

Las bananas son una fuente importante de ingresos para más de cien países. Pero porResultado de imagen para platano cada tonelada que se cosecha, se producen diez toneladas de desperdicios. Una investigación de la Universidad de Cuenca en Ecuador busca crear hidrógeno a partir de los residuos de la fruta.

El proyecto consiste en optimizar la biomasa proveniente de los residuos de las plantas de banano sometiéndolos en agua a una temperatura súper crítica, es decir a temperaturas mayores a los 374 grados Celsius y a una presión mayor a los 22,1 mega pascales y luego estos residuos pasan a través de un catalizador que permitirá gasificar el hidrógeno. La importancia del hidrógeno radica en la versatilidad de este elemento como medio de almacenamiento y transporte de energía.

La obtención de hidrógeno significa la generación del producto energético del futuro, que reemplazará los combustibles provenientes del contaminante petróleo responsable del cambio climático y el calentamiento global. Generar fuentes ilimitadas de energía, dando valor agregado a los recursos naturales, es un gran aporte para el cambio de la matriz productiva de cualquier país.

No es la primera vez que investigadores desarrollan técnicas para obtener combustible a partir de los residuos de banano, por ejemplo investigadores ingleses proponen usarlo como sustituto de la madera. Un grupo de agricultores frutícolas de Australia busca convertir los residuos de banano en electricidad o combustible. Alex Livingstone, gerente de Growcom, entidad desarrolladora del proyecto, señala que “si el producto es ampliamente comercializado, éste podría reducir los costos de operación y beneficiar a los países productores de banano en vía de desarrollo.”

Estructura y características del hidrógeno:

El hidrógeno es la forma más simple de un átomo y se cree que el más abundante, ya Resultado de imagen para hidrógeno gifdesde los primeros momentos después del Big Bang. Descubierto en el año 1766, por el físico-químico británico Henry Cavendish, fue nombrado a partir del griego Hydro (agua) y Gen (generador), pues como todos sabemos, al combinarse con oxígeno forman agua. Se trata de un elemento químico incoloro, inodoro, de tipo gaseoso y no metálico, además, su masa atómica es tan ligera (1,00797) que no existe ningún otro elemento químico más liviano que el hidrógeno.

Además de representar las tres cuartas partes de la materia del universo, se estima que el hidrógeno reŕesenta más del 90% de los átomos de nuestro planeta. El hidrógeno juega un papel fundamental en la alimentación del universo, tanto a través de la reacción protón-protón como en el ciclo carbono-nitrógeno. En los procesos de fusión de hidrógeno estelar, se liberan cantidades masivas de energía a través de la combinación del hidrógeno para formar helio.

Júpiter, al igual que muchos otros planetas gaseosos de gran tamaño, están compuestos mayoritaria y especialmente por hidrógeno. A una profundidad determinada, en el interior del planeta, la presión es tan grande que el hidrógeno molecular sólido se convierte en hidrógeno metálico sólido. Aunque el hidrógeno en estado puro es un gas sumamente liviano, hay un poco de éste en la atmósfera, éste es tan ligero que si no se combina, alcanza en sus colisiones las velocidades suficientes como para ser expulsadas de la atmósfera fácilmente.

Las estrellas, al nacer, se componen de hidrógeno en forma de plasma , pero éste es muy escaso en nuestro planeta. Aquí en la Tierra, el hidrógeno es producido principalmente a partir de la combinación de oxígeno en el agua, aunque también puede estar presente en distintos tipos de materia orgánica, como en plantas, petróleo y carbón.

Otros datos:

  • Número atómico: 1
  • Peso atómico: 1,00794
  • Símbolo atómico: H
  • Punto de fusión:-259,34° C
  • Punto de ebullición: -252,87° C

Resultado de imagen para hidrógeno

Imagen relacionada

 

PROPIEDADES DEL PLÁTANO

  • El plátano contiene hidratos de carbono saludables, fáciles de digerir y es nulo el contenido de grasas.
  • Es muy energético y está lleno de nutrientes que calman y levantan el ánimo.
  • Los plátanos reducen la fatiga y el síndrome pre-mensual.
  • Alivian la irritabilidad, reduce la depresión y fomenta el sueño.
  • Protege contra la hipertensión arterial y la retención de líquido.
  • Ayuda en caso de diarrea en que se haya perdido potasio.
  • Tiene un alto contenido de triptófano, aminoácido que el organismo transforma en serotonina, neurotransmisor que mejora el estado de ánimo y estimula la relajación. (licata, 2012)

Resultado de imagen para platano

Resultado de imagen para componentes del platano

COMPONENTES DEL PLÁTANO

Como fuente nutricional el plátano aporta de la siguiente manera:

Resultado de imagen para componentes del platano

Resultado de imagen para componentes del platano

FUNCIÓN DEL HIDRÓGENO EN EL PLÁTANO

El hidrógeno es un elemento esencial para la fertilidad de suelos y nutrición mineral del cultivo de banano.

HIDRÓGENOComponente de carbohidratos, lípidos, proteínas y ácidos nucleicos.  El hidrógeno (H) principalmente forma parte de la composición del agua. El agua es un componente imprescindible en la reacción química de la fotosíntesis. Constituye también el medio necesario para que se puedan disolver los elementos químicos del suelo que  las plantas deben utilizar para construir sus tejidos.  El hidrógeno, a través de los llamados puentes de hidrógeno, sirve también para unir las distintas fibras (celulosa) de la pared celular.

La producción de un sistema agrícola, en este caso específico sobre el cultivo del banano, depende de la interacción intrínseca de tres componentes: suelo-planta-clima. En vista que el suelo es un factor importante en la producción del cultivo, merece toda la atención de nuestra parte para conocer a fondo y en forma detallada el estado de su fertilidad, es decir la disponibilidad promedio que presenta para cada uno de los nutrientes esenciales que el cultivo requiere

OBTENCIÓN DEL HIDRÓGENO A PARTIR DE BIOMASA DE LOS RESIDUOS DE PLÁTANO

El proceso consiste en tomar bananos dañados o sus tallos y romper los hidratos de carbono en ausencia de aire, produciendo una mezcla de metano y dióxido de carbono. El biogás obtenido del proceso, resultó ser un sustituto adecuado para el combustible diesel en motores de combustión, con 40% de metano y pequeñas cantidades de sulfuro de hidrógeno y otros contaminantes. Growcom se dio a la tarea de aplicar estos resultados en la granja de una manera práctica y funcional a través de un digestor, procurando el uso de materiales bastante fáciles de obtener, y sin ningún tipo de control científico en su funcionamiento.

Resulta importante que el sistema opere en un entorno agrícola, por lo que se construyó un digestor, se colocó materia prima en él, y se produjo metano; el metano a su vez es utilizado para alimentar un generador bastante considerable y también para alimentar algunos vehículos.

El producto era un digestor anaeróbico de 460.000 litros con la capacidad para procesar 2.500 toneladas de banano por año, produciendo 85.000 metros cúbicos de metano. Growcom estima que con este nivel de producción de biogás, se podría generar continuamente 35kw de poder o satisfacer las necesidades de combustible de 100 vehículos convertidos a gas.

Livngstone comenta que “los beneficios son altos para el desarrollo de las naciones, ya que la tecnología también reduce los gases de efecto invernadero, normalmente, la materia prima se lanza de nuevo en el campo y se deja descomponer, así que esto reduciría los gases de efecto invernadero y permitiría ahorro de energía. También se puede usar el agua del digestor para fertilizar, obteniendo los nutrientes de vuelta en el suelo, pero de una manera muy controlada”. Esta nueva técnica para el manejo de residuos, puede ser una idea de negocio para muchos empresarios productores y exportadores de banano. El disponer de opciones para la producción que relacionen la disminución de costos con manejo de residuos, sin duda contribuye con la percepción que puede tener la demanda internacional de los productos. Por lo anterior, el empresario debe estar siempre a la vanguardia de los procesos tecnológicos que contribuyen con las mejoras en sus procesos productivos y energéticos, más aún si estos son para la generación de combustibles amigables con al ambiente.

La industria bananera nacional produce un significativo volumen de biomasa como desecho, generada a partir del banano que no cumple los requerimientos internacionales para su exportación; este banano denominado de “rechazo”, se ha convertido en una problemática medioambiental de grandes proporciones. A pesar que una considerable parte de este banano se utiliza para suplir la demanda interna, la cantidad remanente es tal (6.5-10.8 ton/año*ha) que se ha recurrido a los procesos de compostaje para su disposición final.

En este banano de rechazo, rico en almidón, puede ser utilizado como sustrato para procesos fermentativos que permitan el máximo aprovechamiento energético, a través de la generación de etanol y/o metano. La transformación de residuos en sustratos reutilizables resulta ser una apropiada alternativa para el manejo medioambiental de desechos, favoreciendo así la producción masiva de energía, el mejoramiento de suelos y el aprovechamiento final de estos residuos, cerrando el ciclo productivo.

Resultado de imagen para biogas casero

Adicionalmente les comparto este video, que les explicará cómo aprovechar los residuos orgánicos con la finalidad de producción del biogás:

 

HIDRÓGENO COMO COMBUSTIBLE

¿Por qué?

Primero por prevención ante el posible agotamiento del petróleo, donde el hidrógeno destaca por sus propiedades específicas. Donde se observa que el hidrógeno posee tan solo un protón y un electrón, y son los más abundantes porque en el Universo se halla compuesto por cerca del 73.9% según Escalante, Carigi y Gasque (2011) en su artículo el origen de los elementos en tres actos. Además el hidrógeno no es una fuente de energía primaria, sino solo un vector energético (sustancias que almacenan energía para posteriormente liberar de manera controlada) y su principal ventaja es que al combustionar produce agua, lo que significa evitar la emisión de gases de efecto invernadero (CO2, CH4, Clorofluorocarbonos, N2O).

Una de sus propiedades importantes es la energía específica de su combustión. Su valor es de 120 mega julios por kg en comparación con 50 MJ/kg del gas natural o con 44,6 MJ/kg del petróleo. Esto se contrapone a la baja densidad que presenta tanto como gas como licuado y a las dificultades de almacenamiento para sus aplicaciones al transporte.

El hidrógeno es el primer elemento en la tabla periódica y posee el carácter de ser el elemento más liviano, es difícil encontrarlo en su forma pura de H2 y el principal carácter es el calor de la combustión que le permite al hidrógeno actuar como combustible.

Usos potenciales

Los motores de vehículos y hornos pueden adaptarse para utilizar hidrógeno como combustible.

Uso de celdas de combustible que tiene una eficiencia 2,5 veces mayor que si se quema hidrógeno en un motor térmico. Es un sistema electroquímico que convierte directamente la energía química del hidrógeno al reaccionar con oxígeno en electricidad. El modelo más sencillo de pila consta de dos electrodos, un ánodo, negativo, y un cátodo, positivo, ambos con platino como catalizador separados por un electrolito. El hidrógeno entra en la pila por el ánodo y allí se disocia en iones hidrógeno y electrones. Los iones hidrógeno pasan a través del electrolito hasta el cátodo. Los electrones del ánodo emigran por un circuito exterior hasta el cátodo donde reaccionan con los iones hidrógeno y el oxígeno para dar agua.

Resultado de imagen para biodigestor

Conclusiones y recomendaciones.-

La obtención de hidrógeno para el país significa la generación del producto energético del futuro, que reemplazará los combustibles provenientes de las reservas de petróleo. Con este método vamos a tener un mejor manejo económico es decir menos costos y el combustible va a estar en menor porcentaje de contaminación

No desechar por completo los residuos de banano, ni de ningún residuo orgánico sino guardarlos para posteriormente reutilizarlos para la elaboración de biogás y fertilizantes orgánicos.

Bibliografía

Licata, m. (25 de septiembre de 2012). zonadiet.com. Obtenido de http://www.zonadiet.com/comida/platano.htm

Américo, H. (s.f). Univesidad Nacional de la Plata. Obtenido de http://www.inifta.unlp.edu.ar/extension/Hidrogeno.pdf

Escalante, S., Carigi, L., & Gasque, L. (2011). Universidad Autonoma de Mexico. Obtenido de http://depa.fquim.unam.mx/amyd/archivero/Elorigendeloselementosentresactos_30104.pdf

Gutiérrez, L. (2005). EL HIDRÓGENO, COMBUSTIBLE DEL FUTURO. Real Academia de Ciencias Exactas, Físicas y Naturales, 49-67.

¿Sabe usted qué es el Betacaroteno?

Iniciemos definiéndolos, los betacarotenos son pigmentos vegetales de color amarillo o naranja, pertenecen al grupo de los carotenoides los cuales son un tipo de flavonoides. Estos pigmentos vegetales se encuentran en las verduras y las frutas. Tienen una función muy importante debido a que una vez ingeridos entran en el hígado, en el intestino delgado […]

a través de ¿Que sabes de los Betacarotenos? — EL OJO DEL GATO. Tu rincón de Ciencia.

Poliéteres, una historia detrás de los antibióticos

Imagen relacionadaUna de las técnicas más usadas en el campo farmacéutico para identificar sustancias que hagan reaccionar a los microorganismos, es haciendo proliferar bacterias en caldos de cultivo, como muestra la imagen de la izquierda; y antes de continuar con el tema de fondo, lo que usted observa es un homenaje que realizó el Museo de Ciencias Naturales de Carolina del Norte, Estados Unidos, para celebrar el cumpleaños de Charles Darwin, este cultivo consistió en tomar muestras con un algodón estéril del fondo de los ombligos de algunos voluntarios, al colocar la muestra sobre las cajas petri en medio de cultivo estéril y a una temperatura adecuada, diferentes microorganismos empezaron a crecer en ellas. Este pequeño experimento permitió que el público estuviera consciente de la microbiota que existe  y se encuentra albergada en cada individuo; lo que definitivamente nos muestra es que somos en sí mismos verdaderos caldos de cultivo para diferentes microorganismos  y  aveces zonas como el ombligo se constituyen en términos de diversidad biológica una zona que podría considerarse las Islas Galápagos de nuestro cuerpo humano.

Pues bien  las empresas  farmacéuticas realizan este proceso de forma planificada hasta determinar sustancias químicas que hacen que los microorganismos presenten una determinada actividad biológica. Éste método ha conseguido desarrollar un gran número de sustancias antibióticas, de las mismas muchisimas han conseguido convertirse en

Una corriente bacteriana de tejido vegetal recién cortado.
Una corriente bacteriana de tejido vegetal recién cortado

fármacos efectivos y no solo de uso humano o animal, dichas sustancias antibióticas han aportado significativamente en el campo de la industria alimenticia y en el agro frenando daños ocasionados por ciertas bacterias. Los antibióticos son por definición, tóxicos  (anti “contra” ; bios “vida”), la meta es una sola, encontrar sustancias que sean más tóxicas para los microorganismos infecciosos que para los  seres humanos, de esa manera hacer que el impacto en él, sea bajo o por lo menos médicamente tratable.

 

Resultado de imagen para monensina
MONENSINA

Ya en la década de los 50’s, se va descubriendo una  variedad de poliésteres antibióticos usando técnicas de fermentación se caracterizan por poseer varias unidades estructurales de eter ciclico como la monensina, esta junto con otros poliéteres en estado natural se parecen a los éteres corona ya que también tienen la capacidad de formar complejos metálicos estables como se muestra a continuación:

 

 

 

ssssdsdf
Sal de sodio de monensina

La sal representada anteriormente es la sal de sodio de monensina, como se puede observar, los cuatro oxígenos de éter y los dos procedentes de los hidroxilos rodean el ión sodio.

Los grupos alquilo se orientan hacia el exterior del complejo y los oxígenos polares y el ion metálico están en el interior. La superficie del complejo, semejante a los hidrocarburos, le permite llevar al ion sodio a través del interior de una membrana celular, semejante a los hidrocarburos. Francis A. Carey & Robert M. Giuliano (2006)

Lo que irrumpe un equilibrio normal entre los iones sodio de la célula, interfiriendo con procesos celulares en la respiración celular, liquidando de esa manera a microorganismos varios, esta sustancia se agrega en cantidades pequeñas en los alimentos de los animales ayudando de esta manera controlar problemas de parasitosis que normalmente prolifera en pollos, vacas, etc. Finalmente  a la monensina  como a múltiples éteres corona que interfieren con los equilibrios de iones metálicos transportandolos en las células se denominan ionóforos (portadores de iones).

Resultado de imagen para ionóforos

 

Imagen relacionada

BIBLIOGRAFÍA

Francis A. Carey & Robert M. Giuliano, (2006), Química Orgánica. Capítulo 16: Éteres, epóxidos y sulfuros. 9º Ed. Mc. GrawHill. pp. 656.

Vidaver, A.K. and P.A. Lambrecht 2004. Las Bacterias como Patógenos Vegetales. Trans. Ana María Romero. The Plant Health Instructor. DOI: 10.1094/PHI-I-2006-0601-01. Recuperado de: https://www.apsnet.org/edcenter/intropp/PathogenGroups/Pages/BacteriaEspanol.aspx

 

Hablemos de Drogas! (PARTE II) LOS ALCALOIDES: Opio, morfina y heroína.

     Después de conocer algo sobre algunos conceptos básicos de lo que tiene  que ver con drogas, es momento de hablar de los alcaloides, estos compuestos orgánicos de tipo nitrogenados, poseen una estructura química compleja. Tienen un comportamiento básico frente a los ácidos,  es decir son alcalinos (álcalis) de allí su nombre, Poseen propiedades fisiológicas  muy notables y tóxicas.

Resultado de imagen para alcaloides

     Los alcaloides están presentes en las plantas, específicamente en los órganos que presentan mayor actividad como hojas, raíces, frutos y semillas. Sin embargo en la actualidad existen alcaloides de origen sintético, lo que significa como tal, que son desarrollados en laboratorios por acción humana. Así lo menciona el Dr. Gerardo Armendaris, en su libro “Química Orgánica” (2009).

     Sus acciones fisiológicas y tóxicas actúan casi de forma exclusiva en el sistema nervioso. El uso o consumo frecuente genera un efecto de “acostumbramiento” que mas bien se traduce como una adicción; incluso a dosis bajas con efectos psicoactivos. Muchos de ellos por esta razón son utilizados dentro del algunas medicinas comunes para tratar migrañas, o hasta  gripe. Poseen estructuras muy variadas como se puede apreciar en la figura anterior, por definición un  alcaloide es un compuesto orgánico que posee un nitrógeno heterocíclico procedente del metabolismo de aminoácidos, si su fuente proviene  de otro modo (sintética) suele denominarse pseudoalcaloide como lo es la solanina.

Resultado de imagen para solanina

  • a) Alcaloides verdaderos: Metabolitos secundarios que poseen un nitrógeno heterocíclico, y su esqueleto de carbono proviene, parcial o totalmente, de un aminoácido proteico.
  • b) Pseudoalcaloides: Metabolitos secundarios que poseen un nitrógeno, pero que no han sido biosintetizados a partir de aminoácidos sino que se forman por transferencia de nitrógeno en forma de amoniaco a un compuesto de origen terpénico, esteroide, policétido, monosacárido o a un ácido graso.

EL OPIO

Imagen relacionada

    El opio es el jugo deseado de la cápsula de la adormidera, la que contribuyó en el símbolo de Morfeo, dios griego del sueño. Dentro de botánica sistemática esta planta es de la familia Papaver somniferum.

Fuente: http://www.tropicos.org/Image/100010998?langid=66

    El jugo es extraído por incisiones en las cápsulas no maduras de las que brotan pequeñas lágrimas blanquecinas (como muestra la imagen) que se oscurecen al reaccionar con el aire que lo hace oxidar brevemente. Se amasan en panes y que según menciona la literatura, desde la antigüedad este olor es verdaderamente repugnante.

Resultado de imagen para opio significado

    El opio en bruto contiene muchos alcaloides como: morfina, narcotina, papeverina, codina, protopina, laudamina; siendo la morfina quizás el mas abundante.

Resultado de imagen para opio en bruto
Refinado del Opio

MORFINA

Resultado de imagen para morfina

     El uso NO terapéutico de la morfina, induce a la morfinomanía, que en la actualidad puede resultar difícil adquirirlo; debido a que las farmacias o droguerías, solo es suministrable por prescripción médica. Derivado de la morfina es la heroína que químicamente es la Diacetilmorfina.

Resultado de imagen para heroina
Heroína

   Esta droga a su vez, fisiológicamente hablando, tiene  una acción tóxica más poderosa, en un rango de unas 5 veces superior a la morfina y produce la heroinomanía.

   Los derivados de la morfina ocurren regularmente en los grupos OH (hidroxilo), para generar éteres derivados acetilados. Nótese los núcleos del fenantreno y de la fenil piridina.

Resultado de imagen para fenantreno

     La morfina tiene acción hipo analgésica por lo cual interviene o bloquea la conducción de las sensopercepciones,. normalmente dolorosas, esto genera sueño específicamente y es utilizado como anlagésico por su capacidad de aliviar el dolor principalmente en personas que han sido sometidas a intervenciones quirúrgicas o en pacientes cancerosos así como en pacientes con enfermedades catastróficas que experimentan intensos dolores. La Heroína tiene  una acción más potente que la morfina, la razón puede deberse a la actividad química que se puede generar desde su estructura. El dato curioso es que el opio puede suministrarse en forma de pan (comida), como bebida o simplemente tomándolo; el opiómano experimenta exaltaciones de fantasía, se ve transportado a un mundo de mil maravillas, incluye visiones fantásticas por lo tanto y de forma general recrea en su mente un paraíso artificial o más bien dicho menta. El consumidor se queda quieto o contemplativo, lo que es una claro síntoma en personas dependientes.

Referencia Bibliográfica:

*Armendaris Gerardo. Química Orgánica. (2009). Los Alcaloides. Editorial Maya. Quito Ecuador. pp.243-244

ESPECTROSCOPIA UV-Visible (UV-VIS).

¿De qué se trata?

La espectroscopia UV-Vis está basada en el proceso de absorción de la radiación ultravioleta-visible (radiación con longitud de onda comprendida entre los 160 y 780 nm) por una molécula. La absorción de esta radiación causa la promoción de un electrón a un estado excitado. Los electrones que se excitan al absorber radiación de esta frecuencia son los electrones de enlace de las moléculas, por lo que los picos de absorción se pueden correlacionar con los distintos tipos de enlace presentes en el compuesto. Debido a ello, la espectroscopia UV-Vis se utiliza para la identificación de los grupos funcionales presentes en una molécula. Las bandas que aparecen en un espectro UV-Vis son anchas debido a la superposición de transiciones vibracionales y electrónicas.Imagen relacionada

La espectrometría ultravioleta-visible o espectrofotometría UV-Vis implica la espectroscopia de fotones en la región de radiación ultravioleta-visible. Utiliza la luz en los rangos visible y adyacentes (el ultravioleta (UV) cercano y el infrarrojo (IR) cercano.En esta región del espectro electromagnético, las moléculas se someten a transiciones electrónicas.

Esta técnica es complementaria de la espectrometría de fluorescencia, que trata con transiciones desde el estado excitado al estado basal, mientras que la espectrometría de absorción mide transiciones desde el estado basal al estado excitado.La espectrometría UV/Vis se utiliza habitualmente en la determinación cuantitativa de soluciones de iones metálicos de transición y compuestos orgánicos muy conjugados. (Anónimo, espetrometría.com, s.f.)Resultado de imagen para ? espectroscopia uv vis

Se investiga la distribución de electrones, en especial en moléculas que tienen sistemas de electrones π conjugados.La principal aplicación de la espectroscopia de UV-VIS, la cual depende de transiciones entre niveles de energía electrónica, es para identificar sistemas de electrones p conjugados.

 

¿Cómo se visualiza el registro de la alteración de los electrones?

Imagen relacionada

Imagen relacionada

Compuestos orgánicos

Los compuestos orgánicos, especialmente aquellos con un alto grado de conjugación, también absorben luz en las regiones del espectro electromagnético visible o ultravioleta. Los disolventes para estas determinaciones son a menudo el agua para los compuestos solubles en agua, o el etanol para compuestos orgánicos solubles. Los disolventes orgánicos pueden tener una significativa absorción de UV, por lo que no todos los disolventes son adecuados para su uso en espectrometría UV. El etanol absorbe muy débilmente en la mayoría de longitudes de onda. La polaridad y el pH del disolvente pueden afectar la absorción del espectro de un compuesto orgánico. La tirosina, por ejemplo, aumenta su máximo de absorción y su coeficiente de extinción molar cuando aumenta el pH de 6 a 13, o cuando disminuye la polaridad de los disolventes.

Resultado de imagen para espectros uv vis bandas

La ley de Beer-Lambert establece que la absorbancia de una solución es directamente proporcional a la concentración de la solución. Por tanto, la espectrometría UV/VIS puede usarse para determinar la concentración de una solución. Es necesario saber con qué rapidez cambia la absorbancia con la concentración. Esto puede ser obtenido a partir de referencias (las tablas de coeficientes de extinción molar) o, con más exactitud, determinándolo a partir de una curva de calibración.

Cada sustancia tiene un espectro de absorción característico que dependerá de la configuración electrónica de la molécula, átomo o ión y de los posibles tránsitos electrónicos que se puedan producir con la radiación que incide sobre ella. (Anónimo, ocw.uc3m.es, s.f.)

Resultado de imagen para espectros uv vis bandas

Resultado de imagen para espectros uv vis bandas

Ejemplo:

En la figura 13.37 se muestra el espectro de UV del dieno conjugado cis, trans-1,3-ciclooctadieno, medido en etanol como el disolvente. Como es típico en la mayoría de los espectros de UV, la absorción es bastante ancha y con frecuencia se habla de ella como 13.374.pnguna “banda” en lugar de como un “pico” o “señal”. La longitud de onda en un máximo de absorción se conoce como la lmáx de la banda. Para el 1,3-ciclooctadieno su lmáx es de 230 nm. Además de la lmáx, las bandas de UV-VIS se caracterizan por su absorbancia (A), la cual sirve para medir la radiación que es absorbida cuando pasa a través de la muestra. Para corregir los efectos de la concentración y la longitud de la trayectoria, la absorbancia se convierte en absortividad molar (P) dividiéndola entre la concentración c en moles por litro y la longitud de la trayectoria l en centímetros.

En la figura se ilustra la transición entre estados de energía electrónica responsables de la banda de UV de 230 nm del cis, trans-1,3-ciclooctadieno. La absorción de la radiación oct66.pngUV excita un electrón del orbital molecular más alto ocupado (HOMO) al orbital molecular de más bajo desocupado (LUMO). En alquenos y polienos, tanto el HOMO como el LUMO son orbitales tipo p (en lugar de s); el HOMO es el orbital p de mayor energía y el LUMO es el orbital p* de menor energía. La excitación de uno de los electrones p a partir de un orbital p de enlace a un orbital p* de antienlace se conoce como transición p → p*.

 Resultado de imagen para espectros uv vis bandas

Bibliografía:

 

 

Hablemos de Drogas! ¿Qué son? (PARTE I)

Los post acerca del tema son muchos verdaderamente, desde los que te ofrecen una cura,Resultado de imagen para heisenberg breaking bad hasta los que juran convertirte en un “cocinero” de cristales al muy puro estilo Walter White. Así que me dije a mi mismo, bueno un post acerca del tema no hace daño, sin embargo la cantidad de información puede ser abrumadora; así que de apoco mis queridos lectores, haré una serie de entradas sobre cada una de las drogas más letales existentes que están hoy por hoy matándonos como sociedad. Así quedan todos invitados a leer mis próximas entradas, mientras veamos el siguiente cortometraje: HOLA PAPÁ

Ahora bien, primero lo primero. ¿QUÉ SON LAS DROGAS?

Según menciona el Dr. Gerardo Armendaris G.; Dr. en Bioquímica y farmacia. Una droga se define como una sustancia química de carácter orgánico que causando o no dependencia, sujetas o no al síndrome de abstinencia, poseen una acción psicotóxica que se manifiesta por una profunda alteración del comportamiento y la conducta del individuo, provocando serios daños en el organismo, especialmente en el sistema nervioso. (2009)

Realicemos un pequeño análisis de aquella definición; esta menciona que debe existir una acción psicotóxica en el individuo, esto no quiere decir que el individuo sea capaz, de identificar esas alteraciones. Por ejemplo: En repetidas ocasiones se ha mencionado que el café se puede considerar como una droga “blanca”; la acción psicotóxica del café, en ciertos individuos es la alteración del sueño, sea en ocasiones para dormir mejor o en otras  para erradicarlo, sin embargo sus efectos no se hacen esperar a largo plazo, sabemos de antemano y esperando no entremos en controversia, los riegos de generar adicción a la cafeína son bajos, lo que el paciente no sabe es que sin notarlo, este pueda generar una cierta dependencia a esta sustancia, estudios han demostrado que ante un corte inesperado al consumo de café a una persona que habitúa esta sustancia, podría tener síntomas como: dolor de cabeza, debilidad, ansiedad, irritabilidad, somnolencia, disminución en la concentración, fatiga y hasta depresión. Si este corte se diera en forma gradual estos efectos no se hacen presentes. Entonces SI! evidentemente existe una notoria relación entre esta sustancia en relación con su sistema nervioso. Y quizàs el paciente no es capaz de notarlo y atribuye dichos comportamientos a efectos producidos como el estrés  o simplemente un mal día es el detonante y justificación perfecta que incluido este autor sea tentado en preparar una buena y confortante taza de café caliente.(Por si deseas profundizar sobre el café y sus efectos.)

Interesante ¿no? buscamos justificarnos incluso hasta para tomarnos una taza de café. Pero qué sucede cuando ya no es café, y nos vemos tentados a justificar heroina… Y es por eso que el tema es caliente! Así que prestemos atención a lo siguiente.

Todo ser humano que se ha vuelto adicto o simplemente ha desarrollado algún Resultado de imagen para clasificacion de las drogasgrado de dependencia a alguna sustancia presenta sintomatología. y es aquí cuando se habla de palabras como adicción. Se define como ADICCIÓN, a un estado de envenenamiento paulatino que se produce por el uso repetido de una droga y se caracteriza por lo siguiente:

  • Hay una necesidad irresistible  de suministrarse droga.
  • Hay tendencia a seguir aumentando la dosis en forma progresiva.
  • Hay dependencia psíquica y física a los efectos de la droga.

Pues bien, la adiccion es una enfermedad dado que como se ha dicho anteriormente es un envenenamiento progresivo, por ende posee y hace que se presenten síntomas, estos son los siguientes:

  • Delirio: caracterizada principalmente por excitacion nerviosa, confusion de la mente, el modo de hablar tiende a ser desordenado, habla solo y aveces sufre alucinaciones. (propio de lo los alucinógenos)

ALUCINÓGENOS: drogas que producen distorsión de la realidad. El drogadicto se transporta aun mundo irreal, hay alteraciones de la vista, del sonido, cree observar colores, sonidos imágenes irreales, esto es subjetivo, por ello puede ver y oír cosas fantasmagóricas y lo llevarán a la desesperación y hasta el suicidio.

  • Dependencia: es un estado que surge de la administración repetida de una droga en forma periódica o continua. Existe dependencia física o psíquica.
  • Depresores: son drogas que,  actuando sobre el sistema nervioso central provoca sueño. Hay abatimiento, tristeza o desesperación.
  • Estimulantes: drogas que producen excitación nerviosa y muscular. Tienen por lo tanto acción contraria a los anteriores.
  • Hipnótico: droga que produce sueño.
  • Narcótico: produce sueño, se semi-conciencia y alivia el dolor.
  • Narcolépsia: deseo irresistible de dormir.
  • Psicosis: es una alteración de la mente,  antiguamente llamada locura.
  • Sedante: droga que calma o disminuye la agitación o excitación y a la vez provoca sueño.

Clasificación de las drogas

Resultado de imagen para hongos alucinogenos
HONGOS ALUCINÓGENOS

Algunas clasificaciones de las drogas se han realizado, tomando en cuenta diferentes aspectos, por ejemplo el núcleo químico de su estructura, su origen, sus efectos tóxicos, etc. Por ejemplo:

Sedantes Hipnóticos: alcohol, barbitúrico, tranquilizantes, cannabis.

Narcóticos: opio y derivados, analgésicos y sintéticos.

Resultado de imagen para OPIO
OPIO

Estimulantes del sistema nervioso central: Nicotina, cafeína, cocaína, antidepresores, metanfetaminas.

Psicodélicas: otros autores clasifican en: narcóticos, depresivos, estimulantes, tranquilizantes, alucinógenos, solventes químicos.

Imagen relacionada

 

¿Sabe usted, qué es la rodopsina?

La Rodopsina, un pigmento de la visión que se encuentra en los ojos y que nos permite ver por la noche, posee un doble enlace que cambia de configuración y se convierte en isómero cis al isómero trans cuando la luz incide en el ojo. Como resultado un  impulso nervioso viaja hacia el cerebro y permite detectar la fuente de luz. El 11-cis-retinal se sitúa unido a una de las hélices alfa en el centro de la molécula y colocado perpendicularmente. Esta colocación hace que cuando llegue luz incida en el 11-cis-retinal y este se transforme produciendo reacciones que llevan a un impulso nervioso.

Conos y bastones de la retina

La rodopsina es una proteína transmembranal que, en humanos, se encuentra en los discos de los bastones de la retina. Consta de una parte proteica, opsina, y una no proteica que es un derivado de la vitamina A que es el 11-cis-retinal. Es inestable y se altera fácilmente con la energía lumínica, se decolora y descompone por exposición a la luz y se regenera con la oscuridad.

 

Una mayoría microorganismos marinos no fotosintéticos captan energía de la luz solar mediante rodopsina. La proteína permite a estos organismos utilizar la energía del sol para moverse, crecer y sobrevivir ante la falta de nutrientes. La rodopsina está altamente conservada y presente en los tres grandes dominios (arqueas, bacterias y eucariotas), lo que sugiere una aparición temprana y un papel fundamental en la evolución.

¿Sabía Ud. Qué… los radicales libres contribuyen al envejecimiento?

Los radicales libres pueden jugar un papel importante en las enfermedades y el aceleramiento del envejecimiento. pero ¿Qué son los radicales libres? Pues bien se denomina como radical o radical libre a una especie química, átomo propiamente dicha con electrones desapareados y su nombre se debe a que al electrón libre  o impar se le denomina electrón radical o electrón impar. En resumidas palabras un radical es una especie carente de electrones, porque no alcanza el octeto.

¿De qué manera se relacionan estos radicales libres con el envejecimiento?

Resultado de imagen para radicales libresEn el transcurso de la vida diaria, las especies de oxigeno reactivo que se encuentran en el medio ambiente y que se producen en el interior del cuerpo humano en el proceso de respiración (intercambio gaseoso); estas especie se descomponen, dando lugar a radicales hidroxilo de vida corta. El problema radica en que el R. Hidróxilo durante su corta estancia en el interior del ser humano puede reaccionar con diversas proteínas e incluso con el mismo ADN celular. El daño que producen es acumulativo y puede dar lugar a enfermedades cardíacas, cáncer y envejecimiento prematuro.


 

¿SABÍA UD. QUÉ SON LOS VOC’s?

Los compuestos orgánicos volátiles, a veces llamados VOC (por sus siglas en inglés), o COV (por sus siglas en español), se convierten fácilmente en vapores o gases. Junto con el carbono, contienen elementos como hidrógeno, oxígeno, flúor, cloro, bromo, azufre o nitrógeno.

La combustión incompleta de la gasolina y otros combustibles (Fósiles), de los motores de explosión, libera cantidades significativas de compuestos orgánicos volátiles (VOC, Volatile Organic Compounds) a la atmósfera. Los VOC estan formados por cadenas de alcanos cortas, alquenos, compuestos aromáticos y otros hidrocarburos. Los VOC son contribuyentes importantes a la contaminación del aire y originan enfermedades cardíacas y respiratorias.

Algunos ejemplos de compuestos orgánicos volátiles son:
Naturales: isopreno, pineno y limoneno
Artificiales: benceno, tolueno, nitrobenceno
Otros ejemplos son el formaldehído, clorobenceno, disolventes como tolueno, xileno, acetona, y tetracloroetileno (o percloroetileno), el principal disolvente usado en la industria de lavado en seco.
Muchos compuestos orgánicos volátiles se usan comúnmente en disolventes de pintura y de laca, repelentes de polillas, aromatizantes del aire, materiales empleados en maderas, sustancias en aerosol, disolventes de grasa, productos de uso automotor y disolventes para la industria de lavado en seco.

¿SABÍA UD. QUÉ… existen vitaminas que en sobre dosis podrían matarlo?

La mayoría de vitaminas tienen grupos cargados, esta característica hace que sean en solubles en agua.  Como por ejemplo la vitamina C que normalmente es consumida como solucion. Sin embargo y como consecuencia de dicha solubilidad en agua, se eliminan rápidamente y generalmente no son tóxicas. Sin embargo y al hablar de la vitamina A y D químicamente son moléculas NO polares y son almacenadas en el tejido adiposo (graso) que como sabemos, también es un no polar, por lo tanto, estas dos vitaminas son o podrian ser potencialmente tóxicas en grandes dosis.

All-trans-Retinol2.svg
RETINOL (VITAMINA A)

¿Sabía ud. Qué… Los estereoisómeros tienen propiedades terapéuticas diferentes?

Los estereoisómeros en la química orgánica son isómeros que se diferencian en la orientación de sus átomos en el espacio; manteniendo el mismo orden en el que sus átomos se enlazan. Por isómeros se entiende que son compuestos diferentes, sin embargo poseen la misma formula molecular. Normalmente se los diferencia, según la posición que tengan, como Cis (mismas direcciones de sus enlaces de referencia) o Trans (direcciones opuestas de sus enlaces referencia). Esto es muy importante porque difieren entre si sus propiedades físicas y químicas.

La Quinina y la Quinidina son un ejemplo muy claro sobre estereoisómeros.

Ambas comparten la misma fórmula química: C20H24N2O2 

Por lo tanto comparten la misma masa molecular: 324.42 g/mol

Estas dos características nos conllevarían a pensar que son el mismo compuesto sin embargo son totalmente diferentes, veamos:

Reconozcamos sus estructuras:

275
QUIDININA
Quinine structure.svg
QUININA

 

 

 

 

 

 

 

Como podemos notar existe una notoria diferencia en la diseccionan de sus enlaces que conectan el grupo OH- así como el que une al heteroátomo (N). por lo tanto habrá que suponer que sus propiedades terapéuticas no serán las mismas:

QUININA: esta sustancia se obtiene aislando la corteza del árbol de la quina (Cinchona Officinalis)  es un alcaloide natural, blanco y cristalino, es un alcaloide natural, blanco y cristalino, con propiedades antipiréticas, antipalúdicas y analgésicas. Utilizado para el tratamiento de la malaria y malaria resistente. También se intentó utilizar para tratar pacientes infectados con priones, pero con un éxito limitado.  Es un compuesto empleado frecuentemente en la adulteración de la heroína.

Sustitutos:  quinacrina, cloroquina y primaquina.

QUINIDINA: (2-etenil-4-azabiciclo[2.2.2]oct-5-il)- (6-metoxiquinolin-4-il)-metanol) es un medicamento que actúa a nivel del corazón como agente antiarrítmico clase I y, químicamente, es un estereoisómero de la quinina. Se indica en el tratamiento de la frecuencia cardíaca anormal y otros trastornos del ritmo cardíaco, haciendo que el corazón sea más resistente a la actividad eléctrica anormal.

Bacterias Metanótrofas, una solución para el calentamiento global.

Methylococcaceae

Las Bacterias metanótrofas crecen utilizando metano como su única fuente de metano. Podrían ser utilizadas por su capacidad de producir varias sustancias químicas como el metanol. a partir del metano o reducir los niveles de metano en la atmósfera. Se cree que los altos niveles de metano contribuyen con el calentamiento global de la atmósfera.

 

Por lo tanto su papel ecológico es crucial porque de forma general pueden degradar moléculas de compuestos orgánicos que contengan un átomo de carbono como lo es evidentemente el metano (CH4), el carbono que obtiene de estas moléculas le permiten generar energía y sustancias necesarias para subsistir. Se conoce que el gas metano es la principal sustancia que se produce como producto de la descomposición de la materia orgánica, en la mayoría de los ambientes anaeróbicos. Dichas sustancias producto de la sintesis del metano en este tipo de bacterias son: biomasa (células) y dióxido de carbono (CO2). Es así que la existencia de estas bacterias es muy importante para controlar la cantidad de gas metano en la atmósfera, que aumentan en un 1% anualmente y que a su vez es un potente precursor del efecto invernadero. El aspecto positivo es que estas bacterias existen tanto en ecosistemas acuáticos como terrestres, algunas de sus características mas relevantes son:

-Utilizan como donadores de electrones compuestos de un átomo de carbono.

-Su fuente de carbono son compuestos C1, como el metano.

-Habitan en zonas anoxigénicas principalmente

-Algunas bacterias metanótrofas viven en simbiosis con bacterias sulfatorreductoras en los tapetes microbianos que crecen como chimeneas y se forman alrededor de salidas de metano en  el fondo del mar.

Comprender más sobre estos seres, nos permite comprender mas a la sabia naturaleza, son una herramienta muy útil para campos como la biorremediación dentro de la biotecnología. La biotecnología utiliza organismos vivos para hacer o modificar productos, mejorar plantas o animales o desarrollar microorganismos para usos específicos. La biodegradación ocurre en la naturaleza, y la actuación humana transformo esos procesos naturales en biotecnologías para acelerar la tendencia natural.

Puedes leer un poco más sobre biorremediación mediante uso de bacterias en el siguiente blog: .http://equilibriodelciclodelcarbono.blogspot.com/2016/11/bacterias-metanotrofas-pseudomonas-y.html

Carbonato de litio, una solución antidepresiva.

El carbonato de litio (Li2CO3), es una sal de litio, es un antidepresivo utilizado para el tratamiento de problemas psicológicos como lo es la denominada manía, esta caracterizada por comportamientos como alteraciones en el humor, sentimientos de

Carbonato de litio (Li2CO3)

grandeza, obsesiones, dificultad para dormir, entre otras. lo curioso es que no se sabe como actúa el carbonato de litio cuando estabiliza el humor de estos pacientes, lo que sigue siendo un paradigma para la medicina moderna.(Wade, 2004).

El principal trastorno tratado con carbonato de litio, es el trastorno bipolar, y trastornos esquizofrénicos, se sabe de registros médicos donde se menciona que fue utilizado para tratamientos de alcoholismo. Sin embargo consumir ésta sal fuera de los parámetros de la dosis podría ser mortal. es así que el Carbonato de Litio es un psicofármaco de uso exclusivamente psiquiátrico para tratamiento y profilaxis en trastorno bipolar. Es un metal alcalino del grupo 1º del mismo grupo atómico que el sodio y el potasio, que se presenta para su administración en forma de sal. No se encuentra en forma libre en la naturaleza.

ALGUNOS DATOS INTERESANTES:

  • En la década de los 40’s tuvo que ser prohibido en Estados Unidos, ya que las personas lo utilizaban como sustituyente de la sal de mesa sin ningún estudio previo,  esto provocó intoxicaciones y muerte, en ese mismo periodo de tiempo John Cade psiquiatra australiano, realizaba los primeros estudios de este compuesto como sedante en animales.
  • En 1954 se realizó el primer estudio clínico doble ciego con litio en la manía. Una vez comprobada su eficacia en la manía, la FDA (Food and Drugs Administration) de los EEUU aprobó el uso para su tratamiento en el año 1970 y cuatro años después, en 1974 autorizó el empleo en la prevención de la recaída del trastorno bipolar.

LO CURIOSO:

Pese a que su uso demuestra eficacia a la hora de controlar los efectos de los diversos trastornos antes mencionados, hasta la fecha se desconoce de los efectos bioquimicos que se generan en el organismo humano, ni se conoce como éste fármaco actúa en el mismo; el único dato relevante es el litio se encuentra vestigios en una concentración de 10 a 40 ug/l a manera de vestigios en sangre; lo que es importante para saber si una persona consume antidepresivos, puesto que el litio seria un indicador clave de consumo.

BIBLIOGRAFÍA

G. Wade, J. (2004). Química Orgánica. Madrid: PEARSON EDUCACIÓN, S.A.

¿Qué es y de qué está hecho el JARVIK 7 (CORAZÓN ARTIFICIAL)?

JARVIK 7

A continuación les presentaré los datos más relevantes sobre Jarvik 7:

*SU CREADOR: Robert Koffler Jarvik (n. 11 de mayo de 1946) científico y médico estadounidense. 611389341

*1963, año en que bajo registro de Paul Winchell se patentó por primera vez un corazon artificial dicha patente fue cedida a la Universidad de Utah, misma universidad donde R. Koffler crea el prototipo Jarvik-7; presentando en el grandes innovaciones a los modelos anteriores mediante uso de compuestos orgánicos que recubrieran las paredes internas permitiéndole adherir tejido vivo, dotando de un flujo mas natural de sangre.

*En 1982, el exitoso trasplante del doctor William DeVries a un paciente que sobrevivió 620 días con un Jarvik-7 permitió que todas las primeras planas de los medios se ocuparan del tema, considerándolo un hito en la medicina moderna.

*Su éxito le impulsó a Robert Jarvik a lanzar su propia compañía, Symbion Inc, la cual malogró a causa de sus escasas habilidades empresariales.

*Presentan una capacidad de 70 o 100 mL. Se conectan a las aurículas. Implantados en el cuadrante superior izquierdo abdominal y conectados a la consola mediante tubos percutáneos, por medio de los cuales cada ventrículo es regulado independientemente. Los conductos salen por vía percutánea debajo del arco costal lateral izquierdo, cerca de la línea axilar. Ambos ventrículos se colocan de manera que el derecho se encuentra a la izquierda del esternón y el izquierdo se ubica inferior y lateralmente al primero. En pacientes cuya caja torácica es pequeña, el ventrículo izquierdo debe colocarse en el espacio pleural para prevenir obstrucción del retorno venoso y permitir el cierre del esternón. El funcionamiento de los ventrículos es permanentemente monitoreado.

*La actividad de este dispositivo se realizaba mediante un compresor de aire, fuera del cuerpo del enfermo, de un tamaño grande, y con una fuente de energía, pero la vida del corazón artificial se veía limitada por las conexiones a dicha fuente, las cuales al parecer eran poco fiables y difíciles de desplazar.

MATERIALES Y COMPUESTOS UTILIZADOS EN LA FABRICACIÓN DE JARVIK-7

*Base: Aluminio ortopédico.

*Para sus 4 válvulas mecánicas: 2 de ellas flexibles elaboradas con poliuretano. Las otras dos con tubos del mismo material con dirección al pecho.

*Para el diafragma: también se utilizó poliuretano.(liso para la superficie)

n-poliuretano

Resultado de imagen para poliuretano MOLECULA

Representacion Molécular  3D de poliuretano

¿PORQUÉ EL POLIURETANO?

El poliuretano denominado también como PUR, es un polímero orgánico, normalmente es clasificado según su comportamiento frente a la temperatura, así tenemos poliuretanos termoestables (espumas, muy utilizadas como aislantes térmicos) y poliuretanos termoplásticos (elastómeros, adhesivos selladores de alto rendimiento, suelas de calzado, pinturas, fibras textiles, sellantes, embalajes, juntas, preservativos), estos últimos, utilizados en Jarvik 7, debido a la resistencia que presentaba en otros productos como son los preservativos.