Archivo de la categoría: Ensayos

Apuntes sobre la degradación de proteínas y aminoácidos (Dietética y Nutrición)

Johanna Valeria Flores

AUTORA

Escuela Superior Politécnica de Chimborazo. Facultad de Salud Pública, Escuela de Nutrición y Dietética.

 Dirección: Panamericana Sur km 1 1/2, Riobamba-Ecuador | Teléfono: 593(03) 2998-200 | Telefax: (03)2317-001 | Código Postal: EC060155.

 

Degradación de proteínas

     La degradación de la mayor parte de los aminoácidos empieza con la transferencia del grupo a-amino al 2-oxoglutarato, que se convierte en glutamato. Los esqueletos carbonados, de 2-oxoacidos, que se generan son oxidados completamente para obtener energía o son transformados en hidratos de carbono o grasas. El ion amonio, productor de la desanimación oxidativa del glutamato, se elimina rápidamente o se transforma en un producto no toxico en una forma asimilable, constituye uno de los factores limitantes más importantes para el crecimiento de los seres vivos, aunque el N2 es el gas más abundante de la atmósfera, únicamente algunas bacterias lo pueden reducir e incorporar a compuestos orgánicos, en un proceso conocido como fijación biológica del nitrógeno.

Resultado de imagen para degradacion de proteinas

Los esqueletos carbonados de los aminoácidos se sintetizan a partir de unos pocos precursores que son intermediarios de las rutas centrales del metabolismo. Como los nucleótidos son constituyentes importantes, como monómeros de los ácidos nucleicos, todos los organismos vivos pueden sintetizarlos utilizando rutas metabólicas similares. También los nucleótidos y las bases nitrogenadas procedentes de la digestión de los ácidos nucleicos de la dieta o del recambio intracelular pueden ser recuperados y utilizados para la síntesis de nuevos nucleótidos. Los que no son reutilizados se degradan y sus productores catabólicos se excretan.

La mayoría de aminoácidos producidos por degradación de las proteínas son reciclados para sintetizar nuevas proteínas, aunque algunos son metabolizados y sus productos de degradación excretados.

Resultado de imagen para degradacion de proteinas

La degradación de las proteínas debe estudiarse fundamentalmente a dos niveles dependiendo de la localización del proceso:

  1. En el tracto digestivo, donde se procesan las proteínas exógenas o ingeridas de la dieta; es la denominada digestión de proteínas. Este proceso digestivo permite obtener los aminoácidos en forma libre, necesarios para sintetizar las proteínas propias, así como otras biomoléculas que se forman a partir de ellos.
  2. Las proteínas exógenas se degradan en el tubo digestivo, por la acción de potentes enzimas hidrolíticos, para que se transformen en oligopeptidos y aminoácidos libres. Estos atraviesan el epitelio intestinal (utilizando distintos sistemas de trasporte activos) y a través de la sangre se distribuyen a las células del organismo.
  3. Las proteínas endógenas surgen constantes procesos de destrucción para liberar aminoácidos constituyentes

Como por ejemplo podríamos sacar el cálculo de Kcal en proteínas de un adulto sano debe tomar un 10% de las calorías de su dieta en forma de proteínas, calculamos cuantos gramos de proteína deberá ingerir diariamente, si necesita 2500 Kcal/día y por cada gramo de proteína a asimilada deberá obtener 4,1 Kcal. Sede obtiene el 10% de las calorías totales: 2500 x 0,10= Kcal; luego: de 1 g de proteína = 4,1 Kcal, X= 250Kcal dándonos como resultado X= 250/a,4 = 60,97 gramos de proteína.

Resultado de imagen para degradacion de aminoacidos

DEGRADACION DE AMINOACIDOS

Existen dos partes claramente diferenciadas: la primera la determina el grupo amino, que debe ser eliminado de la estructura del aminoácido y trasportado de forma segura hasta su eliminación del organismo; y la segunda implica la eliminación o aprovechamiento del resto del aminoácido, es decir el esqueleto carbonado. Si el grupo amino de los aminoácidos no fuera eliminado se transformaría en amoniaco y cabe resaltar que este es toxico potencialmente muy peligroso en el organismo, este acumulado da origen a la hiperamonemia afectando principalmente al cerebro.

Resultado de imagen para aminoacidos

La función de las enzimas digestivas es apurar las reacciones químicas, experimentar reacciones químicas, experimenta reacciones de desembalaje, debido a la acción de diversas enzimas. Son específicas para cada tipo de nutriente debido a la acción de diversas enzimas, son específicas para cada tipo de nutriente por lo que sin ellas la digestión no ocurriría Las enzimas producen  reacciones químicas y son responsables de construir, sintetizar, transportar y eliminar los ingredientes y químicos que circulan por nuestro cuerpo; en el caso de las enzimas digestivas, estas se encargan del procesamiento y separación molecular de los alimentos que ingerimos, para que su absorción sea más fácil, algunas de las enzimas digestivas son:

  1. Lipasas: producidas por el páncreas, es la enzima encargada de la descomposición de las grasas.
  2. Lactasas: producidas por el intestino delgado, es la enzima que ayuda a descomponer la azúcar de la leche (lactosa)
  3. Proteasa: encargada de ayudar a la buena digestión de las proteínas que ingieres, las descompone en aminoácidos y péptidos.
  4. Amilasas: producidas en las glándulas salivales, ayuda a la absorción de los carbohidratos y los azucares.
  5. Bromelinas: son el conjunto de enzimas derivadas de la pulpa de la piña, ayudan a la digestión y se usa para quemar grasa y bajar de peso.

Resultado de imagen para aminoacidos

Para una mejor degradación enzimática se debe empezar con un cambio en la alimentación para promover la recuperación de las enzimas, se debe optar más por los alimentos crudos, como las verduras, legumbres y frutas, ya que todas estas favorecen a una buena digestión.

SALIVA: se dice que es un fluido líquido de reacción alcalina complejo, viscosa y producida por la glándula salival en la cavidad bucal e involucrado en a la primera fase de la digestión.

Lisozima: es una sustancia que destruye las bacterias contenidas en los alimentos, a su vez protege a los dientes de las caries e infecciones.

PÁNCREAS: productor del jugo pancreático aproximadamente 1 litro Al día, contiene la amilasa, tripsina y quimitripsina, lipasas; produce el glucagón e insulina.

ESTOMAGO: encargado de mezclar todos los alimentos con los jugos gástricos, formador del químico ácido.

Pepsina: secreción de ácido clorhídrico. Estas liberan las células principales del estómago y cuya función es degradar las proteínas de los alimentos peptídicos.

Renina: fermento del alimento, coagula.

HÍGADO: alanina aminotransferasa, encargada del metabolismo convirtiendo los alimentos en energía.

VESÍCULA BILIAR: los ácidos biliares disuelven las gracias en el contenido acuoso del intestino

INTESTINO DELGADO: desdobla químicamente al almidón en maltosa-sacarosa. Desdobla a la lactosa.

INTESTINO GRUESO: absorbe hasta el 20% de agua y potasio

Resultado de imagen para proteina gif

Si te ha gustado esta publicación no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Abejas, la solución de una crisis provocada. EDITORIAL MAYO 2019.

Resultado de imagen para dia mundial de las abejas

La celebración del segundo aniversario del Día Mundial de las Abejas se llevará a cabo el próximo 20 de mayo, tras su proclamación en la Asamblea General de las Naciones Unidas en 2017, esta fecha tiene por objetivo concienciar sobre el papel fundamental de las abejas y los demás polinizadores en el equilibrio de los ecosistemas en el mundo, Mi Septiembre Rojo, como de costumbre en sus editoriales mensuales, ha decidido unirse a la celebración mediante la difusión de este artículo por el bienestar del globo y quienes lo conformamos. La fecha de la celebración  se adoptó como un homenaje a Anton Janša, pionero de la apicultura moderna, quien naciera un 20 de mayo de 1734, en la República de Eslovenia, país que en 2016, propusiera dicha fecha como “Día Mundial de las Abejas” con el apoyo de Apimondia (Federación Internacional de Asociaciones de Apicultura) en la Conferencia Regional de la FAO para Europa, un año más tarde dicha propuesta es sometida a consideración en la 40ª Reunión de la Conferencia de la FAO, logrando de esta manera el apoyo necesario para ser proclamada como una celebración de carácter global.

Resultado de imagen para anton jansa
Anton Janša

Las abejas han beneficiado a la humanidad de forma milenaria, así como también a las plantas, animales y el planeta mismo, razón por la cual protegerlas junto con los demás polinizadores es necesario tanto para el desarrollo sostenible de la humanidad, la soberanía alimentaria y el equilibrio de los ecosistemas naturales y artificiales. Esto ha motivado la movilización de distintos sectores que se han sentido afectados por la eventual disminución de antófilos (abejas), ante lo cual la FAO ha llamado a la denominada “Acción mundial de la FAO sobre servicios de polinización para la agricultura sostenible”, temática que se ve englobada dentro de los objetivos de desarrollo sustentable previstos para la agenda 2030, en donde el proceso de la polinización es considerado como un factor vital para el desarrollo y el hambre cero, dentro de las esferas de desarrollo propuestas por la ONU así lo afirma el portal (FAO, 2018).

Resultado de imagen para polinizacion

La polinización se entiende como un proceso natural en el cual los granos de polen son transportados de la antera al estigma de la flor o de otra flor de igual especie, mediante la intervención de agentes polinizadores que en su mayoría son insectos, animales, el hombre, incluso el viento o la lluvia. El día mundial de las abejas, a pesar de su nombre, pretende también concienciar sobre la importancia de los otros polinizadores como son mariposas, polillas, hormigas, murciélagos, aves, roedores, escarabajos entre otros que tienen la tarea vital de cumplir este proceso estratégico desde el punto de vista biológico para la sostenibilidad de la vida en el planeta Tierra, su papel natural mejora la producción de alimentos, en efecto, sustenta la idea sobre la seguridad alimentaria y nutrición de los seres humanos.

Resultado de imagen para polinizacion

La polinización en casos muy particulares como en el manzano y el duraznero se realiza principalmente por insectos como la abeja melífera a diferencia del maíz o el nogal que normalmente se fecunda gracias al viento o la lluvia. Tomando en cuenta esta ejemplificación entorno al manzano, se conoce que en todo el mundo se produjo aproximadamente 824 millones de toneladas métricas de fruta fresca en 2013, siendo China y Estados Unidos los dos países de más alta producción de esta fruta, posicionándola después del banano como la segunda fruta fresca más importante de mundo y tomando en cuenta otros cultivos alcanza el puesto 20 en importancia, según la (CAFI, 2016); mismos que mencionan, que la tendencia tanto de consumo como de producción iría en aumento en los años siguientes a la publicación. Esta cantidad de fruta se ve relaciona directamente con el tipo de polinización empleada en producción de la fruta, la mayoría de los países minoristas no emplean técnicas de polinización artificial dependiendo casi en un cien por ciento de la polinización natural provista por los insectos.

Resultado de imagen para polinizacion de la manzana
Polinización del manzano.

El trabajo de los polinizadores por lo tanto posee un impacto positivo en el mercado y en el medio ambiente ya que contribuye con mantener la biodiversidad que, a propósito de este artículo, es fundamental recordar que el pasado 22 de mayo se llevó a cabo la celebración del Día Internacional de la Diversidad Biológica, diversidad que en definitiva, se sostiene en procesos como la polinización misma que sostiene también a los dinámicos ecosistemas de los que depende la agricultura que es una actividad económica fundamental para la sostenibilidad de la humanidad moderna. La celebración por tanto es una oportunidad para que los gobiernos, organizaciones, activistas y sociedad civil en general nos involucremos en provocar acciones que protejan y ayuden a los polinizadores y sus hábitats, llevándolos a recuperar sus poblaciones normales y diversidad de especies.

Resultado de imagen para dia mundial de las abejas

Para cumplir este propósito, la ONU propone una ruta a seguir centrando como eje el desarrollo sostenible de la agricultura bajo preceptor vanguardistas amigables con las especies polinizadoras. El primer paso es dar a conocer el hábitat de los polinizadores de esta manera se puede mejorar las condiciones para su supervivencia. En el caso particular de las abejas es fundamental identificar las razones por las cuales pueden estar en peligro, la revista científica Acta Biológica Colombiana, en su Volumen 5., (2000), menciona seis grupos de abejas descritas en la República de Colombia que podrían verse en peligro por factores específicos como:

  • Aquellas perseguidas para la obtención de alguno de sus productos como, por ejemplo: Meliponinos Melipona favosa, cuya familia está distribuida en buena parte de América Latina y que es principalmente perseguida por su miel.
  • Aquellas cuyos sitios de nidificación (colmenas) se producen en tierra, es decir, barrancos, pastizales o potreros. Esta característica las vuelve susceptibles puesto que sus colmenas son destruidas habitualmente por prácticas agrícolas y ganaderas como sucede con géneros como Centris o Anthophora, en el caso del genero Centris se han descrito no menos de 200 especies distribuidas desde Kansas, Estados Unidos hasta la República de Argentina.
Resultado de imagen para abeja centris
beja Centris sp. (Apidae, Centridini) | by GioJansen
  • Abejas con sitios de nidificación arbórea o en sitios muy específicos, como sucede con la familia Megachilidae perteneciente al grupo de las abejas de lengua larga, que de forma general son abejas solitarias que hacen sus hogares en tallos huecos e incluso caracoles, esta característica junto con su capacidad de construcción con materiales diversos ha hecho que se les considere como abejas albañiles.
Resultado de imagen para familia Megachilidae
Rhodanthidium sticticum (llamada comúnmente como abeja roja)
  • Abejas que recoge fragancias, aceites, resinas, de plantas que desaparecen por cualquier motivo causante de deforestación (tala indiscriminada o piromanía), este tipo de abejas utilizan estas sustancias sea como precursores de feromonas para su reproducción o para impermeabilizar sus celdas de crianza de larvas, un ejemplo de abejas con estas características son las abejas de las orquídeas (euglosinos), ésta presentan colores metalizados, frecuentemente verde, robustas y de lengua larga, cuya principal importancia es la polinización de orquídeas.
  • Abejas que dependen de algún tipo de alimento muy específico, como es el caso anterior de las abejas de orquídeas, evidentemente, conseguir su alimento lo vuelve muy específico dadas las características propias de las orquídeas.
  • Abejas incapaces de volar sobre áreas desprovistas de bosques o con órganos de vuelo muy cortos.
Resultado de imagen para euglossini
Euglossa sp., Euglossini | by Ecuador Megadiverso

Como se pone en evidencia, según la fuente consultada (Nates Parra & González, 2000) estos son solo una parte de los factores que ponen en peligro a las abejas, se debe tener en cuenta que en los casos de los demás polinizadores los factores pueden ser igual o parecidos e incluso muy particulares, sin embargo, factores como la agricultura agresiva, deforestación, contaminación, insecticidas, aerosoles y los mismos factores que han provocado el denominado calentamiento global, sin duda son causas que podrían poner en peligro irremediable a todos los polinizadores del mundo, provocando un daño irrecuperable del equilibrio planetario.

Resultado de imagen para muerte de abejas

“Desde el punto de vista primitivo de algunos seres mal llamados humanos, los insectos no son más que seres inferiores sin ningún propósito; dejarán de serlo cuando la CRISIS se ahonde, cuando el hambre aumente y la ya insostenible situación de alimentar una superpoblación de humanos sea imposible.

Alejandro Aguirre.

 

Según la (FAO, 2018), tres cuartos de las especies agrícolas del mundo dependen en buena parte de las abejas y de los demás polinizadores; conservarlos indirectamente  logra medios de vida resilientes creación de empleos para los pequeños agricultores y apicultores principalmente que contribuyen a cubrir la demanda de alimentos saludables y nutritivos entorno a lo señalado en los objetivos de desarrollo sostenible propuestos por la ONU del primero al noveno que abarcan las mencionadas áreas de trabajo.

Resultado de imagen para abejas

Para proteger a los polinizadores de las amenazas sobre su abundancia, diversidad y salud, se requieren esfuerzos conjuntos que engloben desarrollo y mejoramiento de sus espacios de vida (hábitats) tanto en zonas rurales, especialmente en las que se desarrolla el agro y de forma  equivalente en las zonas urbanas; en estas ultimas es fundamental la protección y creación de áreas verdes cuyo sentido de existencia vaya más allá de lo estético, si no más bien se centre en lo naturalmente correcto, espacios verdes con plantas nativas puesto que si poseen inflorescencia se adaptarán sus ciclos de florecimiento a los aspectos climáticos  característicos de la región en cuestión, otra iniciativa importante es emplear plantas ornamentales en los exteriores de las viviendas, esta acción a más de embellecerla atrae mucho a las abejas silvestres; esta junto con otras iniciativas deben ir de la mano con la implementación de políticas que limiten el uso de plaguicidas perjudiciales para los polinizadores.

Imagen relacionada

Es vital también impulsar nuevas prácticas agrícolas que tomen en cuenta los conocimientos y experiencia local juntos con la ciencia, permitiendo la diversificación de cultivos. La consecución de este objetivo requiere como se ha dicho anteriormente la colaboración entre organizaciones nacionales e internacionales, el involucramiento de la academia desde las universidades y por tanto el desarrollo científico e investigación. Los puntos para tratar son claros en torno a la conservación de las abejas:

  • La deforestación

Como tal, la deforestación no solo afecta a las abejas directamente, según la (FAO, 2018), se prevé que la población mundial aumente de los 7 600 millones de personas actuales a cerca de 10 000 millones para 2050, en consecuencia se estima que la demanda de alimentos crecerá en un 50%, ejerciendo una fuerte presión en las tierras aprovechables para la agricultura; la deforestación es causada principalmente por la necesidad de convertir las tierras forestales en tierras agrícolas y ganaderas, esto causa una pérdida de hábitats valiosos y emanaciones enormes de CO2 a la atmósfera un verdadero PROBLEMA del mundo contemporáneo.

Resultado de imagen para deforestacion

  • Prácticas de pastoreo

Esta problemática, básicamente se sustenta en que las especies de abejas y polinizadores cuyos nidos son terrestres sufren el impacto de los animales que demandan pastoreo, al pisotear sus nidos, estas especies se ven obligadas a desplazarse a zonas más lejanas, dificultando la polinización en zonas que poseen ganadería y tierras cultivables al mismo tiempo.

Imagen relacionada

  • Colonización y establecimientos humanos

Este hecho provoca el mismo efecto que el ítem anterior, los polinizadores empiezan a desplazarse conforme el hombre va poblando una determinada zona, sin embargo, algunas especies pueden verse favorecidas de las construcciones humanas creando sus colmenas en tejados, cocheras, jardines, etc. La problemática se da cuando son expulsadas, el factor puede deberse a que su presencia genera el peligro de que los habitantes de la casa sean considerados intrusos y las abejas ataquen aun así se recomienda conservar los colmenares siempre y cuando  no afecten a la población caso contrario es adecuado  consultar con profesionales que permitan retirar un colmenar procurando sea trasladado a un árbol cercano  mediante el uso de implementos especiales que normalmente son empleados por apicultores.

Imagen relacionada

 

  • Introducción de especies exóticas

Un ejemplo claro es de A. mellifera, especie introducida desde Europa hasta América (Nates Parra & González, 2000). Los indígenas hasta la colonización solo conocían abejas sin aguijón, euglosinos y abejorros. Los españoles particularmente se encargaron de la introducción de las abejas africanizadas para la obtención de miel y cera en los nuevos asentamientos; el efecto nocivo es la competencia por alimento entre estas especies y en efecto el desplazamiento de las abejas nativas provocando un desequilibrio del ecosistema, sin mencionar que algunas especies exóticas pueden llegar a convertirse en plagas y otras en colonizadoras de colmenas nativas.

Resultado de imagen para A. mellifera
A. mellifera
  • Explotación inadecuada de recursos provenientes de las abejas

El efecto se relaciona con la anatomía y fisiología misma de la especie que se esté explotando, provocando un debilitamiento en la salud de estas especies explotadas, en normalmente son abejas sin aguijón, este denominado debilitamiento provoca enfermedades en las abejas. Aspectos como la genética de las abejas pueden verse comprometidos por malas practicas en apicultura, por lo cual se recomienda una práctica profesional y responsable de esta practica agrícola.

Imagen relacionada

Imagen relacionada

  • Uso de agroquímicos nocivos

La mayoría de los insecticidas empleados en la agricultura son tóxicos para los insectos polinizadores, sin embargo, puede ser nocivo para el ser humano, principalmente al que consume miel de colmenas expuestas a agroquímicos puesto que los especímenes colectan material contaminado. Se conoce que cerca del 20% de las abejas desaparecidas del mundo se deben al uso de agroquímicos nocivos para las mismas, su desaparición según  (Nates Parra & González, 2000) en 1992 provoco una pérdida de 13 millones de dólares en el sector agrario en Estados Unidos, por falta de polinizadores en los cultivos.

Imagen relacionada

  • Calentamiento global y causas indirectas

Debido a la acción humana, todas las practicas anteriores: deforestación, quema de combustibles fósiles, agroquímicos, aerosoles, emanaciones de gases de invernadero, agricultura invasiva, ganadería, colonización, etc.) han llevado a las abejas a una situación “apocalíptica” según el portal web (ECOOSFERA, 2019) la UNAM ha reportado una perdida de 1 600 millones de abejas por los efectos antes mencionados a lo que las autoridades mexicanas han bautizado como una severa crisis medioambiental. Por otro lado, la variación de la temperatura ambiente en 1-3 grados afecta directamente en la reproducción no solo de los polinizadores si no de otras especies en el mundo, la consecuencia según los especialistas entomólogos provocará migraciones de los polinizadores a zonas de diferente altitud afectando los ecosistemas irremediablemente. Entorno causas indirectas, la principal: desconocimiento, así como los derrames de petróleo, los gases provenientes de las fábricas y la expansión de la frontera agrícola afectan también a los polinizadores.

Resultado de imagen para agroquimicos mata abejas

La conservación de las abejas y los demás polinizadores en el mundo se debe entender por derecho propio como un componente vivo y esencial para la diversidad y equilibrio natural. Son importantes directa e indirectamente en la conservación de otras especies que dependen de su trabajo para su subsistencia; son irreemplazables en el proceso de polinización y son los causantes de que los cultivos alcancen su máximo desarrollo. La abejas como tal son indicadores de la salud de un ecosistema y son herramientas que permiten evaluar la biodiversidad en zonas protegidas; su conservación por lo tanto no es una acción de una sola persona ni siquiera de un colectivo, la conservación como tal es un asunto que nos engloba a todos absolutamente y por esta razón no podemos ser indiferentes con la crisis medioambiental en torno a los polinizadores, que demandan de  la humanidad un verdadero compromiso para la protección y conservación de las especies aun existentes, que en gran parte se encuentran en una situación cada vez más crítica sumado el desconocimiento generalizado por parte de algunos sectores como se mencionó anteriormente.

Imagen relacionada

Los seres humanos desde cada uno de nuestros países de origen estamos comprometidos a proteger y recuperar los sitios naturales de nidificación y del hábitat en general, la academia debe estar enfocada en identificar y clasificar las especies de cada zona y región del territorio nacional que le competa, con el afán de estudiar asuntos faunísticos y comportamentales de las especies en cuestión. Contribuir con nidos artificiales para diferentes tipos de polinizadores como es el caso de la construcción de meliponarios en zonas agrícolas lo que favorece a los cultivos.

Resultado de imagen para abejas

Los especialistas en apicultura en conjunto con las universidades están comprometidos a estudiar las especies con usos potenciales como alimenticio, medicinal o polinizante aplicable para zonas determinadas que no incurran en un desequilibrio ambiental, de forma análoga la protección de la flora nativa, así como la identificación de polinizadores de la misma en una región determinada es asunto que involucra profesionales como biólogos, botánicos, taxónomos, entomólogos, agrónomos entre otros. Finalmente, el ser humano debe comprometerse al uso racional de los recursos producidos por algunas especies silvestres. Todos estos ejes y recomendaciones solo se conseguirán mediante la vinculación adecuada entre las diferentes organizaciones, niveles de gobiernos estudiantes y sociedad civil en general, la cooperación e información eficaz garantiza una reducción del principal peligro: el desconocimiento, tal que sus efectos han producido una gravísima crisis medio ambiental, la cual de ser atendida de inmediato antes de provocar una crisis alimentaria y medioambiental tan fuerte que atenta con la supervivencia de nuestra y las demás especies; es hora de tomar conciencia y reconocer a las abejas y a los demás polinizadores como la solución de esta crisis provocada por el hombre y que sabiamente puede redimirse contribuyendo todos los días en la conservación de tan minúsculos pero irreemplazables seres dadores de vida.

Bibliografía

CAFI. (12 de Enero de 2016). Cámara Argentina de Fruticultores Integrados . Obtenido de El consumo mundial de la manzana crece: http://www.cafi.org.ar/el-consumo-mundial-de-la-manzana-crece-2/

ECOOSFERA. (26 de Abril de 2019). ECOOSFERA. Obtenido de México ha perdido mil 600 millones de abejas: es una situación “apocalíptica”.: https://ecoosfera.com/mexico-abejas-extincion-perdida-pesticidas-crisis-ambiental/

FAO. (2018). Organización de las Naciones Unidas para la alimentacion y la agricultura. Obtenido de 2018. El estado de los Bosques del Mundo: http://www.fao.org/state-of-forests/es/

FAO. (2018). Organización de las Naciones Unidas para la Alimentación y la Agricultura . Obtenido de Acción mundial de la FAO sobre servicios de polinización para una agricultura sostenible.: http://www.fao.org/pollination/world-bee-day/es/

Nates Parra, G., & González, V. H. (2000). Las abejas silvestres de Colombia: Porqué y cómo conservarlas. Acta Biológica Colombiana., Volumen 5, Número 1. ISSN electrónico 1900-1649. ISSN impreso 0120-548X. , 5-37.

Resultado de imagen para abejitas gif

Si te ha gustado esta publicación no te olvides dejarnos tus comentarios, compartir y seguirnos en redes, y que tengas un

¡FELIZ DÍA MUNDIAL DE LAS ABEJAS!

Evaluación física – química y aceptabilidad de masa para tacos, combinación de cereales-legumbres

Evaluación física – química y aceptabilidad de masa para tacos, combinación de cereales-legumbres

Physical evaluation – chemistry and acceptability of taco dough, combination of cereals and pulses

Katerynne Carolina Borja Mesías1, Johanna Valeria Flores2

Escuela Superior Politécnica de Chimborazo. Facultad de Salud Pública, Escuela de Nutrición y Dietética, 2 Escuela de Gastronomía Dirección: Panamericana Sur km 1 1/2, Riobamba-Ecuador | Teléfono: 593(03) 2998-200 | Telefax: (03)2317-001 | Código Postal: EC060155.

*Correspondencia E-mail: katerynne.borja@espoch.edu.ec  Teléfono: 0960027675

 

RESUMEN

La combinación entre cereales y legumbres es perfecta para establecer una proteína de alto valor biológico; en el caso de las legumbres estas tienen un alto contenido de lisina, pero deficiencia de metionina, lo contrario en los cereales que son ricos en metionina, pero bajos en lisina. La OMS (Organización Mundial de la Salud) afirma en sus estudios que el mundo desarrollado consume más del doble de los requerimientos diarios necesarios en proteínas, esta organización recomienda una proporción de sólo el 25% de leguminosa un 75% cereal. El tipo de investigación es experimental cuantitativo con un diseño completamente al azar con 3 tratamientos de dosificaciones T0 (tratamiento testigo), T1, T2 y T3 de la masa para tacos pero cada una con diferente concentración de harina de leguminosa (arveja) y cereal (maíz). Todos los tratamientos presentaron pH (inferior a 5) y acidez (0,4-0,6)

Palabras claves: proteína de alto valor biológico, maíz y arveja, cereal, leguminosa

ABSTRAC

The combination between cereals and legumes is perfect to establish a protein of high biological value; in the case of legumes they have a high lysine content, but methionine deficiency, the opposite in cereals that are rich in methionine, but low in lysine. The WHO (World Health Organization) states in its studies that the developed world consumes more than twice the daily requirements of protein, this organization recommends a ratio of only 25% of legume to 75% of cereal. The type of research is quantitative experimental with a completely randomized design with 3 treatments of dosages T0 (control treatment), T1, T2 and T3 of the taco dough but each with different concentration of legume flour (pea) and cereal ( corn). All treatments had pH (less than 5) and acidity (0.4-0.6)

Keywords: high biological value protein, corn and peas, cereal, legume

  1. Introducción

1.1 Antecedentes

Las legumbres (fruto de las leguminosas) contienen una alta concentración de proteínas, una proporción adecuada de hidratos de carbono y un contenido bajo en grasas. Además, son ricas en vitaminas del grupo B, antioxidantes y fibra. Esto las convierte en un alimento valioso en la lucha contra la obesidad y en la prevención y control de enfermedades crónicas tales como la diabetes, el hipercolesterolemia, diferentes cardiopatías y el cáncer (Chuang et al., 2012)

Los cereales, por otro lado, son imprescindibles en cualquier dieta por el alto contenido en vitaminas y minerales; pero, sobre todo, por su aporte de hidratos de carbono complejos (almidón) que son una fuente de energía de alta calidad. También son la principal fuente de hierro y una fuente importante de fibra.

La combinación entre cereales y legumbres es perfecta para establecer una proteína de alto valor biológico; en el caso de las legumbres estas tienen un alto contenido de lisina, pero deficiencia de metionina, lo contrario en los cereales que son ricos en metionina, pero bajos en lisina. Por lo tanto, consiguen establecer una proteína de calidad que permita reparar tejidos y crear nuevas estructuras. La OMS (Organización Mundial de la Salud) afirma en sus estudios que el mundo desarrollado consume más del doble de los requerimientos diarios necesarios en proteínas. Mientras, el Tercer Mundo sufre una carencia alarmante de proteínas. Por otro lado, incluso la OMS recomienda una proporción de sólo el 25% de leguminosa un 75% cereal.

1.2 Objetivos

Objetivo general

Crear un producto nutritivo y de calidad total apta para el consumidor, en base de la mezcla de leguminosas y cereales, que ayuden a tratar problemas de malnutrición (desnutrición).

Objetivos específicos:

  1. Revisar documentos bibliográficos acorde al tema.
  2. Elaborar prototipos del producto.
  3. Realizar una evaluación sensorial y análisis de la calidad total del prototipo del producto.
  4. Realizar un análisis físico, químico y microbiológico del producto.
  5. Analizar la tabulación y discusiones de los resultados.
  6. Realizar el diseño del envase o empaquetado del producto y su respectivo etiquetado nutricional.

 

  • Hipótesis

Hipótesis nula: los productos nutritivos final no cumple con los análisis sensoriales y factores de calidad total.

Hipótesis alternativa: la combinación adecuada entre cereales y leguminosas, tiene un buen aporte de proteína vegetal biodisponible y cumple con los estándares de calidad total

  • Estado del Arte
    • Maíz (Zea mays)

Origen y distribución

Zea mays, el maíz, es una gramínea anual originaria y domesticada por los pueblos indígenas en el centro de México desde hace unos 10 000 años, e introducida en Europa en el siglo XVII. Los indígenas taínos del Caribe denominaban a esta planta mahís, que significa literalmente ‘lo que sustenta la vida’. Actualmente, es el cereal con el mayor volumen de producción a nivel mundial, superando incluso al trigo y al arroz.

En el mapa inferior se muestra la tasa de consumo de maíz per cápita a nivel mundial; como se ve en el mapa México, Guatemala, Sudáfrica, Zimbabue, Zambia, Lesoto y Malaui encabezan la lista de los principales consumidores de maíz.

1.png
Figura 1:(Imagen tomada de Maize food average per capita)Tasa de consumo per capita de maíz: ██ más de 100 kg/año ██ de 50 a 99 kg/año ██ de 19 a 49 kg/año ██ de 6 a 18 kg/año ██ 5 o menos kg/año

En la cocina latinoamericana tiene participación importante en diversos platos como: tortillas y diversos platillos hechos con ellas como arepas, tacos, enchiladas, chilaquiles  y quesadillas; locros, sopa de cuchuco, choclo o chócolo, sopa de elote, sopa paraguaya, cachapas, hallacas, hallaquitas, sopes, gorditas, tlacoyos, tlayudas, huaraches, molotes, esquites, tamales y humitas.

Descripción

2.png
Figura 2: Ilustración del maíz de Francisco Manuel Blanco, Flora de Filipinas, Gran edición, Atlas II, 1880-1883.

Raíz

La planta tiene dos tipos de raíz, las primarias son fibrosas, presentando además raíces adventicias, que nacen en los primeros nudos por encima de la superficie del suelo, ambas tienen la misión de mantener a la planta erecta,​ sin embargo, por su gran masa de raíces superficiales, es susceptible a la sequía, intolerancia a suelos deficientes en nutrientes, y a caídas de grandes vientos (acame).

Tallo

El tallo está compuesto a su vez por tres capas: una epidermis exterior, impermeable y transparente, una pared por donde circulan las sustancias alimenticias y una médula de tejido esponjoso y blanco donde almacena reservas alimenticias, en especial azúcares.

Hojas

Las hojas toman una forma alargada íntimamente arrollada al tallo, del cual nacen las espigas o mazorcas. Cada mazorca consiste en un tronco u olote que está cubierta por filas de granos, la parte comestible de la planta.

Inflorescencia

Es una planta monoica de flores unisexuales; sus inflorescencias masculinas y femeninas se encuentran bien diferenciadas en la misma planta:

  • La inflorescencia masculina es terminal y se le conoce como panícula,panoja, espiga y miahuatl en náhuatl, compuesta por un eje central o raquis y ramas laterales; a lo largo del eje central se distribuyen los pares de espiguillas de forma polística y en las ramas con arreglo dístico y cada espiguilla está protegida por dos brácteas o glumas, que a su vez contienen en forma apareada las flores estaminadas; en cada florecilla componente de la panícula hay tres estambres donde se desarrollan los granos de polen.
  • Las inflorescencias femeninas, las mazorcas,se localizan en las yemas axilares de las hojas; son espigas de forma cilíndrica que consisten de un raquis central u olote donde se insertan las espiguillas por pares, cada espiguilla con dos flores pistiladas una fértil y otra abortiva, estas flores se arreglan en hileras paralelas, las flores pistiladas tienen un ovario único con un pedicelo unido al raquis, un estilo muy largo con propiedades estigmáticas donde germina el polen.

Granos

En la mazorca, cada grano o semilla es un fruto independiente llamado cariópside que está insertado en el raquis cilíndrico u olote; la cantidad de grano producido por mazorca está limitada por el número de granos por hilera y de hileras por mazorca.

Composición química

En la Tabla 1 se muestra la composición del maízen estado maduro en base a 100 g de muestra.

TABLA No. 1. Composición química de la harina de maíz

Componentes

Mayoritarios

Contenido (%) Componentes

Minoritarios

Contenido (mg)
Sólidos Totales Vitamina C 0
Sólidos solubles Caroteno 11
PH 2.16 Tiamina (B1) 0
Humedad 1.8 Yodo 80
Azúcares reductores 75.71 Cobalamina (B12) 0
Cenizas 2.43 Folato 10.10
Grasas 2.80 Calcio 18
Pectina Hierro 2.40
Fibra 7.30 Vitamina E 0.42
Proteínas 8.31

Fuente: Base De Datos Internacionales De Composición De Los Alimentos.

Propiedades Nutricionales

  1. El maíz dulce es rico en hidratos de carbono, en vitaminas A, B1, B2, B3, B6, B9, E y C, en fibra y en sales minerales como potasio, magnesio, hierro, calcio, zinc, sodio y fósforo. El germen del grano de maíz contiene un aceite que no contiene colesterol.
  2. El maíz contiene bajo contenido de calcio y elevado de fósforo, como la mayor parte de los cereales. Los alimentos vegetales contienen naturalmente mayor cantidad de potasio que de sodio.  El magnesio está en cantidades importantes en el grano entero de maíz, al igual que en semillas, nueces y otros cereales integrales. El maíz tiene cantidades sumamente variables de hierro, el zinc es esencial para la actividad de más de 70 enzimas y forma parte de proteínas que actúan como receptores hormonales e intervienen en el crecimiento.
  3. El maíz es una buena fuente de fibra de ambos tipos, soluble e insoluble por lo que se aconseja su consumo en caso de estreñimiento y niveles elevados de colesterol y triglicéridos en la sangre. En las variedades comunes el contenido de proteínas puede oscilar entre el 8 y el 11% del peso del grano. Pero se debe tener en cuenta que son de bajo valor nutritivo por cuanto carece de lisina y de triptofano, dos aminoácidos esenciales.
  4. El grano de maíz contiene vitamina B1 o tiaminason los nombres dados a esta sustancia capaz de prevenir o curar los síntomas clínicos conocidos bajo el nombre de “beri-beri”, una enfermedad nutricional. La tiamina participa en el metabolismo energético. El grano de maíz contiene vitamina B1 o tiamina son los nombres dados a esta sustancia capaz de prevenir o curar los síntomas clínicos conocidos bajo el nombre de “beri-beri”, una enfermedad nutricional. La tiamina participa en el metabolismo energético.

1.4.3 Definiciones:

Análisis bromatológico.-. El análisis bromatológico permite conocer la composición cuantitativa de la masa para tacos en cuanto a fibra, grasa, proteínas, ceniza, humedad, azúcares totales, azúcares reductores y azúcares no reductores.8

Análisis microbiológico. – El análisis microbiológico define la aceptabilidad de un producto y/o ingrediente alimentario en base a la presencia o ausencia, o el número de microorganismos por unidad de masa, volumen, área o lote. 8

Análisis Nutricional. – Es el cálculo del valor nutricional de los alimentos, para conocer el potencial nutritivo o la cantidad de nutrientes que el alimento aporta al organismo. 8

Evaluación sensorial. – Es una disciplina científica usada por medio de un test, para medir, analizar e interpretar las reacciones percibidas por los sentidos de las personas hacia ciertas características de un alimento como son su sabor, olor, color, apariencia y textura, por lo que el resultado de este complejo de sensaciones captadas e interpretadas son usadas para medir la calidad de los alimentos. 8

Aceptabilidad. – se determina mediante una escala hedónica con nueve ítemes para conocer la aceptabilidad de los tacos. 8

               

  • Arveja (Pisum sativum)

Origen y distribución

Pisum sativum es una planta herbácea de la familia de las leguminosas (Fabaceae), más o menos trepadora, propia de la cuenca mediterránea, aunque muy extendida en todo el mundo. Se cultiva para obtener sus pequeñas semillas que, al igual que la planta misma, reciben distintos nombres, según la zona; entre otros muchos, guisante, chícharo (del mozárabe číčar-o, y este del latín cicĕra),9​ petipuás arveja y las variedades de tiernas vainas comestibles que los envuelven conocidas como miracielo, cometodo o tirabeque, en ambos casos muy apreciadas para el consumo humano. La arveja es una especie anual y su cultivo se encuentra difundido por casi todo el mundo. Con el paso del tiempo ha ido adquiriendo una mayor importancia en la industria, tanto conservera como de congelación.

 

TABLA No. 2. Importancia económica y distribución geográfica de la arveja

 

Países Producción de arvejas verdes

año 2001 (toneladas)

Producción de arvejas verdes

año 2002 (toneladas)

India 3.800.000 3.800.000
China 1.541.280 1.661.280
Estados Unidos 885.000 787.715
Francia 474.000 418.000
Reino Unido 388.000 352.000
Hungría 283.425 280.000
Egipto 240.000 227.135
Bélgica-Luxemburgo 144.000 150.000
Perú 82.559 80.909
Dinamarca 80.000 80.000
Marruecos 79.000 68.570
Países Bajos 76.800 75.000
Italia 70.902 70.318
Pakistán  70.716 72.128
Australia 65.000 65.000

Fuente: F.A.O

Descripción

La planta posee un sistema vegetativo poco desarrollado aunque con una raíz pivotante que tiende a profundizar bastante. Las hojas están formadas por pares de folíolos terminadas en zarcillos. Las inflorescencias nacen arracimadas en grandes brácteas foliáceas –de hasta 9 por 4 cm– que se insertan en las axilas de las hojas. Las semillas (guisantes) se encuentran en vainas de entre 5 a 10 cm de largo que contienen entre 4 y 10 unidades. Existen variedades de hábito determinado, es decir, que crecen como hierbas hasta una altura definida, y otras de hábito indeterminado, que se comportan como enredaderas que no dejan de crecer y requieren medios de soporte o “guías”.

Son plantas herbáceas anuales, trepadoras, muy variables en forma y hábito, glabras. Hojas imparipinnadas; los 3–5 folíolos distales generalmente reducidos a zarcillos trepadores, folíolos normales 2–6, opuestos, ovados, elípticos u obovados, generalmente 1.5–5.5 cm de largo y 1–2 cm de ancho, estipelas ausentes; estípulas foliáceas, ovadas, generalmente más largas que los folíolos, basalmente semicordadas, amplexicaules y dentadas. Inflorescencia flores solitarias o racimos con 2 o 3 flores en el ápice del pedúnculo; cáliz campanulado, 5-lobado, los 2 lobos superiores más anchos; corola 1.5–2 cm de largo, blanca o rosada, estandarte obovado o suborbicular, las alas falcado-oblongas, la quilla encorvada, apicalmente obtusa; estambres 10, diadelfos, el vexilar libre; estilo barbado en la superficie interna. Legumbres oblongas o cilíndricas, más o menos comprimidas o teretes, 2.5–12.5 cm de largo y 1.5–2.5 cm de ancho, rectas o curvadas, carnosas y ceráceas al madurar, dehiscentes; semillas 3–12, forma y tamaño variable.10

Composición química

La Tabla 3 se muestra la composición de harina de arveja en base a 100 g de muestra.

TABLA No. 3. Composición química de la harina de arveja

Componentes

Mayoritarios

Contenido (%) Componentes

Minoritarios

Contenido (mg)
Sólidos Totales Vitamina C 0
Sólidos solubles Caroteno 11
PH 2.16 Tiamina (B1) 0
Humedad 1.8 Yodo 80
Azúcares reductores 75.71 Cobalamina (B12) 0
Cenizas 2.43 Folato 10.10
Grasas 2.80 Calcio 18
Pectina Hierro 2.40
Fibra 7.30 Vitamina E 0.42
Proteínas 8.31

Fuente: Base De Datos Internacionales De Composición De Los Alimentos

 

La Tabla 4 se muestra la composición de harina de maíz y arveja en base a 100 g de muestra.

TABLA No. 4. Composición química de la harina de maíz y harina de arveja

Componentes

Mayoritarios

Contenido (%) Componentes

Minoritarios

Contenido (mg)
Sólidos Totales Vitamina C
Sólidos solubles Caroteno
PH 2.16 Tiamina (B1)
Humedad 1.8 Riboflavina (B2)
Azúcares reductores 7.22 Niacina (B5)
Cenizas 2.43 Fósforo
Grasas Calcio
Pectina Hierro
Fibra
Proteínas
Acidez cítrica
Acido oxálico (mg)

Fuente: Tello 2002

Propiedades Nutricionales

  1. La harina de maíz no contiene gluten y, por tanto, puede ser consumida porlos celiacos. Sin embargo, la ausencia de esta proteína hace que no pueda elaborarse pan exclusivamente con ella, por lo que tiene que ser mezclada con harinas de otros cereales (trigo, arroz, avena) para conseguir una consistencia y una elasticidad adecuadas.
  2. Cocinada convenientemente da lugar a una pasta muy apreciada en cocina como, por ejemplo, es el caso de la polenta italiana o de los tamales mexicanos. También, se usa como harina secundaria en rebozos, bizcochos o tortas, aportando un ligero sabor dulce. Además de su uso en repostería, es muy adecuada para dar una buena masa a las croquetas y a las galletas saladas.
  3. La composición química de la harina depende del grado de extracción (cantidad de harina obtenida a partir de 100 kilos de cereal). Cuanto mayor sea éste, menor será la proporción de almidón y mayor la cantidad de vitaminas, minerales y fibra aportada por la cáscara. Tiene un valor energético similar al trigo, pero aporta una mayor cantidad de grasas y menos proteínas. Este aporte calórico se sitúa en torno a 330 kcal/100 g. El aporte de fibra se sitúa en 9,5 g/100 g, una cantidad que resulta ser nada despreciable.
  4. El maíz es un cereal particularmente deficiente en niacina (vitamina B3) y tiene una riqueza proteica relativamente baja, ya que es deficiente en lisina y en triptófano. Por este motivo, resulta necesario que el maíz y sus productos derivados se enriquezcan con vitaminas o se complementen con otros alimentos para conseguir proteínas completas.

 

1.4.2 Tortillas para taco

Buen aporte de energía por su alto contenido en hidratos de carbono, además de ser una rica fuente de fibra, son bajas en grasa aportan alrededor de 23 kcal. Acorde al tamaño de la tortilla una persona sana podría consumir hasta 4 tortillas diarias. Es una buena fuente de betacarotenos, y tiene un potente antioxidante, posee vitaminas del complejo B, tales como B1, B3 y B9, además de vitamina E. otro beneficio es que son de bajo costo y de fácil elaboración.

1.4.3 Definiciones:

Dosificación de la tortilla. –  aporta 23 calorías de las cuales el 50% son carbohidratos, y un 39% son proteínas.

 Análisis bromatológico.-. El análisis bromatológico permite conocer la composición cuantitativa de las tortillas en cuanto a fibra, grasa, proteínas, ceniza, humedad, azúcares totales, azúcares reductores y azúcares no reductores.

Análisis microbiológico. – El análisis microbiológico define la aceptabilidad de un producto y/o ingrediente alimentario en base a la presencia o ausencia, o el número de microorganismos por unidad de masa, volumen, área o lote.

Análisis Nutricional. – Es el cálculo del valor nutricional de los alimentos, para conocer el potencial nutritivo o la cantidad de nutrientes que el alimento aporta al organismo.

Evaluación sensorial. – Es una disciplina científica usada por medio de un test, para medir, analizar e interpretar las reacciones percibidas por los sentidos de las personas hacia ciertas características de un alimento como son su sabor, olor, color, apariencia y textura, por lo que el resultado de este complejo de sensaciones captadas e interpretadas son usadas para medir la calidad de los alimentos.

Aceptabilidad. – se determina mediante una escala hedónica con nueve ítems para conocer la aceptabilidad de la tortilla

  1. Métodos

2.1 Modalidad y tipo de investigación:

Es una investigación experimental cuanti-cualitativa, de con variables que pueden ser medibles mediante la toma de datos numéricos y la realización de pruebas a nivel de laboratorio, así como también con pruebas de análisis sensorial y aspectos referentes a la calidad del producto formulado, es proyectiva ya que induce a la preparación de un producto innovador.

El trabajo tuvo una duración de 2 meses distribuidos en: recolección de información, elaboración del producto terminado (tortilla de maíz y arveja) que se realizó en la ciudad de Riobamba en el laboratorio de bromatología y tecnología de los alimentos.

Variable Independiente: 

  • Formulación de las tortillas de maíz y arveja.

Variable dependiente:

  • Análisis bromatológico de las tortillas.
  • Análisis microbiológico de las tortillas
  • Análisis nutricional de las tortillas.
  • Evaluación sensorial de las tortillas
  • Aceptabilidad de las tortillas

 

Se realizó un diseño experimental con tres tratamientos T1, T2, T3; en el cual variamos la cantidad de la tortilla de maíz y arveja y se compara con el tratamiento T0 es el blanco que se preparara una tortilla normal de harina de trigo.

TABLA No 5.   Dosificación de la Bebida de la masa de taco

Ingredientes    T0     T1     T2 T3
Harina de maíz 10g 8g 5g
Harina de arveja 5g 7g 10g
Harina de trigo 15g
Agua 10ml 10ml 10ml 10ml
Huevo 17g 17g 17g 17g

Elaborado por: Borja Katerynne y Flores Valeria

2.2 Proceso:

En el siguiente diagrama de flujo se indica los pasos subsecuentes que se realizan para la preparación de la tortilla de maíz y arveja. (Anexo 1)

 TORTILLAS PARA TACOS

3.png

Referencias

  1. FAO: the evolution of corn.
  2. FAO: Archaeological evidence of teosinte domestication from Guilá Naquitz, Oaxaca.
  3. MaizeThe Oxford English Dictionary. Disponible en : http://www.dictionary.oed.com/cgi/entry/00299980?query_type=word&queryword=maize&first=1&max_to_show=10&sort_type=alpha&result_place=2&search_id=2K83-vPUJCp-982&hilite=00299980
  4. FAO: «Producción mundial del maíz en 2006».
  5. According to 2000 CIMMYT World Maize Facts and Trends.
  1.  Kato, Takeo Ángel; Mapes, L.M. Mera, J.A. Serratos, R.A. Bye, R. (2009). «Origen y diversificación del maíz: una revisión analítica»Universidad Nacional Autónoma de México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: 116.
  2.  «Corn Stalk Lodging»Monsanto Imagine. 2 de octubre de 2008.
  1. Jorge, A. (2013). Elaboracipon de Bebidas Dietéticas con Frutos expoticos en la Provincia de Esmeraldas. Tesis, Escuela Superior Politpecnica de Chimborazo, Facultad de SaLud Pública, Riobamba.
  2. Allkin, R., D. J. Goyder, F. A. Bisby & R. J. White. 1986. Names and synonyms of species and subspecies in the Vicieae: Issue 3. Vicieae Datab. Proj. 1–75.
  3. Berendsohn, W.G. & A.E. Araniva de González. 1989. Listado básico de la Flora Salvadorensis: Familia 118: Leguminosae. Cuscatlania 1(2): 1–16.

 

Agradecemos la importante colaboración de nuestras autoras:

Katerynne Carolina Borja Mesías1, Johanna Valeria Flores2

Escuela Superior Politécnica de Chimborazo. Facultad de Salud Pública, Escuela de Nutrición y Dietética, 2 Escuela de Gastronomía.

 

Resultado de imagen para tacos gif

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Conmemoración de todas las Víctimas de la Guerra Química. (EDITORIAL. ABRIL-2019)

Alejandro Alfredo Aguirre Flores.

TODOS LOS DERECHOS RESERVADOS © Copyright 2019

 

     “Trabajar juntos por un mundo libre de armas químicas” es el lema de la OPAQ, Organización para la Prohibición de las Armas Químicas, organismo internacional con sede en La Haya (Holanda), encargado de la aplicación de la Convención sobre Armas Químicas, que en 2013 fue congratulado con el Premio Nobel de la Paz, por su importante labor en la erradicación y desmantelamiento de las armas de la Guerra Civil Siria. La ejecución de la Convención sobre Armas Químicas (CAQ), empezó el 29 de abril de 1997, fecha verdaderamente histórica para la humanidad, sin embargo, después de 22 años de la firma poco o nada se sabe sobre la implicación de esta convención; por esta razón el equipo editorial de Mi Septiembre Rojo, en la vigésima segunda Conmemoración de todas las Víctimas de la Guerra Química, se une a esta lucha por la ética y la verdadera Paz Mundial, mediante la difusión del presente editorial.

Resultado de imagen para ORGANIZACIÓN PARA LA PROHIBICIÓN DE LAS ARMAS QUÍMICAS

Entrada en vigencia la firma del (CAQ), se acordó entre los Estados miembros de la ONU, mediante acuerdo multilateral el desarme mundial, concentrándose en la eliminación de armas de destrucción masiva, pese a las esforzadas negociaciones que duraron años en la Conferencia de Desarme y en la Comisión Preparatoria, previo al nacimiento de la OPAQ [1], dicha organización centra sus esfuerzos en suprimir la producción , almacenamiento transferencia y empleo de armas químicas, esfuerzos que tienen por finalidad finiquitar la existencia de tales armas, que en definitiva se constituyen como un riesgo para la humanidad. Desde la antigüedad, diversas sustancias químicas eran empleadas como armas, por ejemplo, ciertas comunidades aborígenes de África disponen de plantas que contienen glucósidos cardíacos como la ouabaína presente en plantas del género Acokanthera, cuya toxicidad suponen un riesgo mortal; la lista de especies sería interminable, sin embargo su uso ha evolucionado a escalas masivas cuyo impacto es significativo en tácticas de guerra modernas.

Resultado de imagen para ouabaína
La ouabaína, también conocida como estrofantin-GAcocanterinaOctahidrato de ouabaínakombetina, es un poderoso glucósido cardíaco de acción rápida que se extrae del Strophanthus gratus y de la corteza de Acokanthera ouabaio.

SE RECOMIENDA EL ESPECIAL DE DATOS CURIOSOS DE LA QUÍMICA Edición especial: Envenenamientos, muertes e intentos de asesinato.

De esta manera es que se pasó desde los fitotóxicos hasta los humos mortales, como lo son los humos de arsénico y amoniaco, su uso se considera como una acción cruel e innecesaria que en otras palabras no deja de ser un “juego sucio” entre dos partes en pugna, bien pude decirse que entre dos naciones en litigio de guerra, sin embargo, la “guerra química” es una realidad presente principalmente en la violencia de género y es allí donde radica el verdadero problema entorno al mal uso de sustancias químicas por ejemplo, Diario “El Tiempo” de Colombia afirma que en el 2012 se registraron 162 casos y en 2013 fueron 69 casos donde el factor en común fue la alta incidencia de los ataques en mujeres provocados por sus propias parejas [2], estos casos registraron el uso de vitriol entre otras sustancias. El fenómeno se tornó de carácter global, a tal punto que la Acid Survivors Trust International (ASTI), afirma que 1500 personas son atacadas con ácido cada año en el mundo donde cerca del 80% son mujeres y en el 90% de los casos los agresores son varones, más allá de una evidente violencia de género, es una muestra significativa del mal uso de sustancias químicas que comprenden la lucha por la erradicación de este tipo grave de violencia, que a opinión personal de éste su autor, es parte indiscutible de la neo guerra química que suscita desde los hogares disfuncionales en todo el mundo. Esta indiscutible falta de civilidad promueve los esfuerzos internacionales por erradicación de las armas químicas en todos sus niveles, en el caso de los eventos “menores” de ataques químicos por efectos violencia intrafamiliar es y debe ser reglada desde la legislación civil de cada nación.

Resultado de imagen para ATAQUES CON ACIDO A MUJERES
Natalia Ponce de León se ha convertido en el rostro de las víctimas de ataques con ácido sulfúrico en Colombia, país que ocupa el primer lugar en el mundo en ataques con ácido, como una forma de violencia hacia las mujeres. 

Por otro lado, las armas químicas de mayor impacto promovieron acuerdos internacionales que datan desde 1675 cuando en Estrasburgo, los líderes de Francia y Alemania acordaron la prohibición de balas envenenadas, el mismo escenario se vivió doscientos años más tarde (1874), en Bruselas, cuando se habló sobre el Proyecto de declaración internacional en referencia a las leyes y costumbres de guerra, el acuerdo de este proyecto prohibía el uso de proyectiles envenenados o cualquier otro material que causaran a sus víctimas daños o sufrimientos innecesarios, lastimosamente nunca entro en vigor, reflejando que para la época encontrar un consenso ético para la guerra no era más que un sueño utópico.

Ya en el siglo XX, partiendo desde la Conferencia de Paz de La Haya (Holanda), todas las partes prohibieron textualmente: “el empleo de proyectiles que tengan por único objeto el esparcir gases asfixiantes o deletéreos”, reiterándolo en la siguiente Convención de La Haya (1907) [1]. Empero a dichas medidas y ante la evidente e indiscutible utilización de armamento químico durante la primera guerra mundial, la definición de “guerra química”, nace en la localidad de Ypres (Bélgica) el 22 de abril de 1915, era jueves y empezadas las horas de la tarde un globo asciende desde las trincheras alemanas lanzando una potente bengala roja, señal que ordenaba al ejército alemán en un frente de 6.5 km se disponga abrir los grifos de unos 5700 recipientes de gas cloro, equivalentes a 168 toneladas métricas, en contra del ejército francés y argelino mismos que al pensar que se trataba de humo normal, sin imaginar que se trataba de una gran nube de gas toxico de color gris verde por sus propiedades químicas, fueron tomados por sorpresa presentando graves síntomas de ceguera, tos, vomito, náuseas violentas, y dolores de cabeza y pulmones, que llevaron a un total de 10000 hombres repartidos en dos divisiones al pánico colectivo, que sin con justa razón los indujo a la retirada, el impacto de ataque increíble incluso para el mismo ejército alemán, que no supo aprovechar dicha rupturas de filas enemigas, a lo cual el ejército canadiense intervino tratando de neutralizar el gas con paños empapados de su propia orina lo que les permite resistir en sus posiciones con un trágico saldo de 1500 soldados canadienses muertos. Finalmente mueren asfixiados en Ypres unos 5000 soldados y otros miles quedando severamente incapacitados por el gas cloro puesto que en la mayoría generó insuficiencia respiratoria [3].

Resultado de imagen para ATAQUE ypres
La Segunda Batalla de Ypres: El Infierno Químico

Al final de la primera guerra mundial se habían liberado un enorme total de 124.200 toneladas métricas de gas mostaza (bautizada como iperita de Ypres) (C4H8Cl2S), así como otros agentes químicos, con ellas más de 90.000 soldados tuvieron sin lugar a dudas una muerte espantosa, cerca de 1´000.000 de hombres volvieron de la guerra totalmente ciegos y probablemente miles con daños causados por la pérdida de conciencia, como daños neurológicos, desfiguraciones o incluso lesiones. Este horrendo panorama que como saldo dejo la guerra química, llevó a las naciones a planear estrategias militares y establecer protocolos, así es que en 1925, el conocido Protocolo de Ginebra, impulso la negociación mediante diversos instrumentos jurídicos de la prohibición del uso en la guerra de gases asfixiantes, armas biológicas (bacterias y virus) y sustancias toxicas [1], lastimosamente nunca se consideró el desarrollo de dicho armamento , por lo que silenciosamente las naciones seguían invirtiendo en el avance de estas poderosas armas y muchos de los países miembros se negaron a cumplir el protocolo en ya que muchas naciones con las que se tenía enfrentamientos no pertenecían al protocolo porque consideraron “justo” atacarlos basados en ese hecho.

Imagen relacionada

Los avances científicos entorno a las armas químicas tuvieron auge entre los años 20 a 30 cuando un sinfín de sustancias neurotóxicas fueron descubiertas, despertando interés especial en las naciones que formaron parte del conflicto bélico de la segunda gran guerra mundial, donde las armas químicas  también tuvieron su parte, a tal punto que al finalizar la Guerra Fría, tanto Estados Unidos como la extinta URSS llegaron a poseer decenas de millares de toneladas de armas químicas.

Resultado de imagen para ATAQUE ypres

Las negociaciones empiezan formalmente, en 1972 con la Convención de las Armas Biológicas (CAB), cuyo principal problema fue la inexistencia de métodos de verificación de las medidas tomadas, posteriormente en 1980 la Conferencia de Desarme estableció un grupo de trabajo específico sobre las armas químicas [1], casi 5 años más tarde, dicho grupo propuso términos de evaluación del convenio. Precisamente fue en esa década que se produjeron diversos factores que favorecieron el desarme y destrucción de las armas químicas en cuestión, dichos factores fueron inicialmente el acercamiento entre las grandes potencias, el ataque químico en 1988 contra Halabja, en Iraq, la amenaza de guerra química en el transcurso de la Guerra del Golfo y el posible acuerdo bilateral entre la URSS y USA para la destrucción de las armas químicas así como la finalización de su producción.

Resultado de imagen para gas mostaza

El trasfondo de las negociaciones se veían siempre empañadas por los deseos persistentes de los Estados Unidos, quienes insistían en tomarse el derecho de reprimir con el mismo nivel (químico) en caso de que algún Estado miembro rompiera el pacto, tema que se fue “superando” muy lentamente. De esta manera el proyecto de Convención de la Conferencia de Desarme entró en debate entre los años 1992 y 1993 cuya firma realizaron 130 países en la Asamblea General de las Naciones Unidas, el 13 de enero de ese año, en París. Posteriormente los países que firmaron la convención entraron en un periodo de preparación para el desarme, estableciendo su primera Secretaria Técnica Provisional en La Haya en febrero de 1993, el convenio entró en rigor el 31 de octubre de 1996 en Hungría, país que fuese el 65º en firmar el acuerdo, esta Comisión Preparatoria llevó a cabo 16 reuniones oficiales cuyo principal logro fue la creación de Laboratorio y Almacén de Equipo de la OPAQ, finalmente la Comisión se encargó de preparar la sede oficial de la OPAQ en La Haya que empezó sus operaciones el 29 de Abril de 1997.

En la actualidad la OPAQ cuenta con 189 países miembros, mismo que representan el 98% de la población mundial [4]. Países como Corea del Norte, Angola, Egipto, Sudán del Sur no han firmado el acuerdo y países como Israel y Birmania no lo han ratificado desde su firma en 1993. Según la OPAQ en todas sus operaciones ha sido necesario la inspección “in situ” de su destrucción para garantizar el desarme, en la actualidad ya se han realizado más de 6300 inspecciones, según sus propias cifras, entre los años 1997 y 2013 realizó 5167 inspecciones en territorio a alrededor de 86 países. Un 81% de agentes químicos en armamento en el mundo han sido destruidos y hasta el 2013 un 57% de las municiones y contenedores químicos de las municiones han sido eliminados. Por esta razón es que el 11 de octubre de 2013 el Premio Nobel de la Paz fue otorgado a dicha organización (OPAQ) por la supervisión y desmantelamiento del armamento militar químico del ejército sirio de Bashar al Asad, tras el ataque químico en un suburbio de la ciudad de Damasco controlada hasta entonces por los rebeldes el 21 de agosto de 2013, donde se dejó centenares de muertos civiles, enviados especiales de la ONU junto con la OPAQ determinaron que el ataque se perpetuo con gas sarín.

Resultado de imagen para ataque quimico en siria
Damasco atacado con gas sarín
Resultado de imagen para ataque quimico en siria damasco
Niños intoxicados por los gases en el barrio de Douma, en las afueras de Damasco.
Resultado de imagen para opaq
Inspectores de OPAQ

Cifras más actuales mencionan que se la OPAQ ha verificado la destrucción cerca de 57740 toneladas métricas, mismas que equivalen al 81.1% de las armas químicas declaradas en el mundo. Afortunadamente Albania, India y Corea del Sur han completado la destrucción de sus arsenales químicos declarados, de igual forma la OPAQ reporta que Estados Unidos ha desmantelado 90% de sus inventarios, Libia un 51% y Rusia una 70% de sus respectivos inventarios declarados.

Resultado de imagen para opaq

La eficiencia con que se desarrollaron sus operaciones llevó a la Organización a una reputación de profesionalidad e imparcialidad. La otra cara de la moneda es que en la actualidad países como Rusia han propuesto el análisis de la reestructuración de la OPAQ y han tomado cierta reticencia junto con China, tras no aceptarse profesionales Rusos en las operaciones de la OPAQ, adicionalmente en 2018 gobierno ruso se ha visto envuelto en escándalos fuertes como lo es el envenenamiento fallido del ex espía ruso Sergei Skripal y su hija Yulia el 6 de marzo del 2018, tras la confirmación del envenenamiento por análisis realizados por la OPAQ en Reino Unido lo que ha llevado a serias disputas legales tras la denuncia e informe emitido en el gobierno de Theresa May, sin embargo no se ha hecho pública la sustancia química empleada, esta acción llevo a graves disputas diplomáticas entre ambas naciones tras disponerse del personal ruso del Reino Unido. Los retos de la OPAQ, en la actualidad son aún más grandes, puesto que tras el taque Salisbury (Reino Unido) cuando se pretendió dar de baja a Skripal, las relaciones diplomáticas de la OPAQ con Rusia se volvieron más tensas puesto que mantiene su posición de haber eliminado la mayor parte de sus arsenales químicos generando así un cruce de severas acusaciones.

Resultado de imagen para opaq

Finalmente, en esta Vigésima Segunda Conmemoración de Todas las Víctimas de la Guerra Química, nos hacemos eco del factor más relevante del presente artículo, LA PAZ, una paz que se construye con esfuerzos de TODOS, de todos los países miembros y de todos sus profesionales químicos, mismos que están llamados a proceder con ética. La OPAQ por su parte hasta el pasado 31 de enero de 2019, afirma que las reservas de armas químicas declaradas en el mundo fueron destruidas en un alentador 96.8%, las reservas declaradas totales de agentes químicos peligrosos asciende a 72.304 toneladas métricas, mientras que las existencias de agentes químicos destruidos equivalen a 69.987 toneladas métricas; las instalaciones de producción de armas químicas declaradas son 97 en todo el mundo, mientras que se han destruido otras 74 instalaciones, de igual forma se han declarado 23 instalaciones se han convertido para fines pacíficos y de investigación [5]. El reto de la OPAQ es terminar con la inspección de 19 instalaciones pendientes entre otros asuntos como es la desactivación de armamento abandonado, la eliminación de armamento perteneciente a antiguas guerras y diversos laboratorios de investigación química en todo el mundo; para lo cual en el presente la OPAQ dispone de 22 laboratorios ambientales (en 18 Estados), 17 laboratorios de biomédica (en 13 Estados), todo ello regidos tanto a la convención 122 (entorno a legislación integral de la aplicación del convenio) y de la convención 33 (acerca de la implementación de la firma entre los Estados miembros), cuenta además con un presupuesto para 2019 de 69.689.837 €, y una afiliación actual de 193 países miembros encabezado por 1 Estado signatario y 3 no signatarios, encargados del cumplimiento de la principal misión: un mundo libre de armas químicas y de la amenaza de su uso, que la química y sus ciencias derivadas sean empleadas para la paz el progreso y la prosperidad.

Resultado de imagen para opaq

Referencias

[1]

OPAQ , «ORGANIZACIÓN PARA LA PROHIBICIÓN DE LAS ARMAS QUÍMICAS,» Orígenes de la Convención sobre las Armas Químicas y de la OPAQ, Marzo 2016. [En línea]. Available: https://www.opcw.org/sites/default/files/documents/Fact_Sheets/Spanish/Fact_Sheet_1_Espanol_vs2.pdf. [Último acceso: 09 Abril 2018].

[2] D. P. AVENDAÑO, «Perdón sin olvido: Diana y el temor a que su tragedia se repita,» DIARIO EL TIEMPO, 20 Julio 2016.
[3] LA VANGUARDIA, «Ypres, nace la guerra química,» LA VANGUARDIA, 22 04 2015.
[4] CINABRIO EDITORES, «GANÓ NOBEL DE LA PAZ 2013 LA ORGANIZACIÓN PARA LA PROHIBICIÓN DE LAS ARMAS QUÍMICAS,» cinabrio blog, 11 10 2013. [En línea]. Available: http://cinabrio.over-blog.es/article-gano-nobel-de-la-paz-2013-la-organizacion-para-la-prohibicion-de-las-armas-quimicas-120541125.html. [Último acceso: 9 04 2019].
[5]

Organización para la Prohibición de Armas Químicas. Copyright © 2019, «Organización para la Prohibición de Armas Químicas,» OPCW por los números, 2019. [En línea]. Available: https://www.opcw.org/media-centre/opcw-numbers. [Último acceso: 10 04 2019].

Resultado de imagen para bomba atomica gif

 

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

La alimentación materna durante el embarazo, puerperio y lactancia

asdf

Valeria Flores Rea. [1]

[1] ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO /FACULTAD DE SALUD PÚBLICA / ESCUELA DE NUTRICIÓN Y DIETÉTICA

TODOS LOS DERECHOS RESERVADOS © Copyright 2019

     Es muy importante llevar una buena y adecuada alimentación antes y durante la gestación. La etapa fetal y los primeros años de vida de un ser humano son períodos críticos en la vida, pues se establecen las bases moleculares, genéticas y metabólicas que condicionan el posterior desarrollo, o no, de ciertas enfermedades. Dada la importancia de la alimentación por su capacidad de influencia, su cotidianidad y esencialidad, se comprende que en este momento se considere de la máxima importancia el estudio de la interacción entre genes y nutrientes.

La cantidad de cuidados médicos que se despliegan en torno a una mujer gestante tienen el peligro de “medicalizar” los embarazos: control estricto del peso, prohibición de muchos alimentos, poli medicación con suplementos de minerales y vitaminas, con frecuencia la toma de hormona tiroidea para optimizar los niveles de TSH. A veces tanta preocupación en las madres que se convierten en personas estresadas. Llevar una dieta equilibrada es una preocupación que se intensifica durante el embarazo, ya que, en esta etapa, comer sano influye de forma positiva tanto en la salud de la madre como del bebé.

 -Para llevar una dieta adecuada se debe tomar en cuenta los siguientes puntos:

  • Cubrir las necesidades nutricionales de la mujer embarazada
  • Preparar el organismo de la madre para el parto
  • Satisfacer las exigencias nutritivas del bebé
  • Asegurar la reserva energética en forma de grasa para la lactancia

Imagen relacionada

  El déficit de vitaminas y minerales (déficit VM) es responsable de que 60 mil mujeres en el mundo mueran cada año al momento de dar a luz. En nuestro país 270 mil madres gestantes sufren de anemia por deficiencia de hierro, y 1,200 mueren cada año durante el parto o el posparto inmediato.

Para evitar las enfermedades o deficiencias durante el embarazo se debe llevar una dieta adecuada, equilibrada, completa, y consumir alimentos ricos en folato, hierro y calcio que son los minerales que más necesita la mujer en etapa de gestación.

Tomar en cuenta las siguientes indicaciones:

Es conveniente que no comas alimentos crudos o poco cocinados, sobre todo si has dado negativo a la prueba de la toxoplasmosis.

– Has de lavar muy bien los utensilios de cocina así como los alimentos que consumes.

– Evita los quesos no pasteurizados y los patés.

– Intenta comer al menos una pieza de fruta al día.

– Mantente siempre hidratada y, aunque no es necesario obligarse a beber agua sin sed, si conviene no beber menos de un litro de agua al día.

Resultado de imagen para alimentacion materna

Alimentación durante el primer trimestre del embarazo

En el momento en que una mujer se queda embarazada uno de los cambios importantes es el lentecimiento de la digestión. El objetivo de esto es que el alimento permanezca durante más tiempo en el intestino y, en consecuencia, la absorción de nutrientes sea mayor.

La ganancia de peso durante los primeros tres meses debe ser de entre 0,5 kg. y 1,5 kg. de peso. Esta ganancia de peso es muy pequeña ya que el feto tan sólo alcanza unos 16 cm de tamaño.

Nutrientes a tener en cuenta durante la primera etapa del embarazo:

  • Proteínas, grasas e hidratos de carbono: Su presencia es muy importante, aunque las cantidades recomendadas no son diferentes a las de una dieta equilibrada. Esto significa que debe haber una fuente de proteína en cada comida (carne, pescado, legumbres, queso, tofu, seitán o huevos), que los hidratos de carbono complejos (pasta, pan, arroz, patata) deben estar presentes diariamente y que hay que vigilar con las grasas (consumir preferentemente aceite de oliva, frutos secos y pescado azul).
  • Minerales: La dieta debe cumplir los requerimientos de hierro, yodo y calcio, aunque las cantidades de estos y otros minerales no deberán ser mayores hasta el 4º mes de embarazo.
  • Vitaminas: Desde el inicio del embarazo es importante aumentar el consumo de vitamina C, A, D, E y vitaminas del grupo B. Puedes cubrir este aporte con el consumo de frutas y hortalizas crudas, cereales integrales, aceite de oliva crudo y lácteos. Muchas veces se recomienda tomar algún tipo de suplemento natural para asegurar el aporte vitamínico necesario.
  • Fibra: El consumo diario de fibra en necesario para tener un intestino sano y evitar el estreñimiento. La fibra la aportan las frutas, las verduras, los cereales integrales y las legumbres. Una mujer embarazada no debería consumir más de 30 g. de fibra al día ya que puede disminuir la absorción intestinal de nutrientes importantes.

Dieta durante el segundo y el tercer trimestre del embarazo

A partir del cuarto mes de embarazo empieza aumentar el requerimiento energético y calórico de la futura madre. El peso que se recomienda ganar durante el segundo trimestre del embarazo es de 3,5 a 4 kg, y durante el último trimestre del embarazo es de 5 a 5,5 kg de peso.

Recomendaciones que hay que tener en cuenta:

  • Aumentar la cantidad de alimentos que aportan hidratos de carbono complejos, por ejemplo, comiendo más pan.
  • Aumentar la cantidad de proteína diaria, por ejemplo, comiendo trozos más grandes de carne o pescado.
  • Disminuir las grasas saturadas y aumentar las grasas saludables consumiendo aceite de oliva, frutos secos y pescado azul o bebiendo un vaso más de leche.
  • Aumentar la ingesta de calcio: A partir del 4º mes de embarazo y hasta el nacimiento del bebé la cantidad de calcio que se consume debe ser mayor. La mejor manera de hacerlo es tomando más lácteos o sustitutos de los lácteos enriquecidos en calcio (bebida de soja, de arroz, de avena, etc.).
  • Aumentar el hierro de la dieta: Es muy común que aparezca anemia en fases avanzadas del embarazo provocada por el aumento del tamaño del feto. Por esta razón el consumo de hierro es muy importante. Los principales alimentos que lo contienen son las carnes rojas, los mejillones, el huevo, el pescado y las legumbres. Aunque se consuman alimentos ricos en hierro normalmente no es suficiente para combatir la anemia y lo más indicado es tomar suplementos alimenticios. Para combatir la anemia también es necesario ingerir cantidad suficiente de vitamina B12 (presente en la carne, el pescado, los huevos y los lácteos) y ácido fólico (presente en los espárragos, las espinacas, los guisantes, la col, los frutos secos, el huevo y la carne). Tomar diariamente alimentos ricos en vitamina C también ayudará a una mejor asimilación del hierro de la dieta.
  • Aumentar la ingesta de yodo: Es un mineral importante durante todo el embarazo. Se encuentra en los alimentos que provienen del mar, pescado, marisco y algas.  Se recomienda comer pescado 4 veces a la semana.

 

Asociación de la alimentación materna durante la lactancia

Resultado de imagen para alimentacion materna

La lactancia materna exclusiva durante los seis primeros meses de vida y continuada hasta los 2 años (en combinación con alimentos complementarios) ha sido reiterativamente recomendada por la Organización Mundial de la Salud y UNICEF como el mejor alimento para el niño. No existe alimento que se acerque a la calidad de la leche materna pues ésta presenta no sólo un mejor balance del contenido de nutrientes, sino que también permite una mayor absorción de ellos, y protege a la criatura contra infecciones comunes. Además, el vínculo afectivo que se desarrolla entre la madre y su hijo es decisivo para el bienestar del niño.

La leche materna es el mejor alimento para los recién nacidos y lactantes. Las reservas nutricionales de una mujer lactante pueden estar más o menos agotadas como resultado del embarazo y la pérdida de sangre durante el parto. La lactancia plantea necesidades nutricionales especiales, principalmente debido a la pérdida de nutrientes a través de la leche materna.

El volumen de leche materna varía ampliamente. Los nutrientes presentes en la leche proceden de la dieta de la madre o de sus reservas de nutrientes.

Para conseguir un buen estado nutricional durante la lactancia, la mujer tiene que aumentar la ingesta de nutrientes. La leche materna tiene una composición bastante constante y la dieta de la madre solo afecta a algunos nutrientes. El contenido de grasa de la leche materna varía con la dieta. El contenido de hidratos de carbono, proteína, calcio y hierro no cambia mucho incluso si la madre ingiere poca cantidad de estos en su dieta. Sin embargo, si la dieta de una madre es deficiente en vitaminas hidrosolubles y vitaminas A y D, su leche contiene menos cantidades de estos nutrientes. En cada visita posnatal tanto la madre como el niño deben ser examinados, y se debe proporcionar asesoramiento sobre la alimentación saludable. Durante la lactancia se debe evitar una dieta que aporte menos de 1.800cal al día.

Las necesidades nutricionales de la mujer aumentan durante el embarazo y la lactancia. Durante la lactancia las glándulas mamarias tienen una cierta autonomía metabólica que garantiza la adecuada composición de la leche. Todas las madres, a no ser que se encuentren extremadamente desnutridas, son capaces de producir leche en cantidad y calidad adecuadas.

Las variaciones de la dieta de la madre pueden cambiar el perfil de los ácidos grasos y algunos micronutrientes, pero no se relacionan con la cantidad de leche ni con su calidad. La leche de toda madre, a pesar de que esta presente una malnutrición, posee un excelente valor nutricional e inmunológico. El cuerpo de la madre siempre prioriza las necesidades del bebé y, por ello, la mayoría de los nutrientes, como el hierro, el cinc, el folato, el calcio y el cobre se siguen excretando en la leche en un nivel adecuado y estable, a expensas de los depósitos maternos.

La energía, las proteínas y todos los nutrientes de la leche provienen tanto de la dieta como de las propias reservas maternas. Las mujeres que no obtienen suficientes nutrientes a través de su alimentación pueden estar en riesgo de deficiencia de algunos minerales y vitaminas que cumplen funciones importantes. Estas deficiencias se pueden evitar si la madre mejora su dieta o toma suplementos nutricionales.

Calorías

Las recomendaciones nutricionales de la mujer lactante son un tanto empíricas y se basan fundamentalmente en la cantidad y composición de la leche producida. En los primeros 6 meses después del parto se producen unos 750ml de leche al día y 100ml de leche materna aportan una media de 70kcal de energía al hijo. La energía requerida para producir un litro de leche se estima que es de aproximadamente 700kcal.

El consumo calórico materno recomendado durante la lactancia es de 2.300-2.500cal al día para alimentar un hijo y de 2.600-3.000cal para la lactancia de gemelos.

Proteínas

El aumento de las necesidades de proteínas durante la lactancia es mínimo en comparación con el de las calorías. Sin embargo, si el consumo de energía es bajo, la proteína se utiliza para la producción de energía. Los requisitos adicionales durante la lactancia pueden ser satisfechos por los alimentos ricos en proteínas (por ejemplo, un huevo o 25g de queso o 175g de leche).

Hidratos de carbono

La lactosa es el hidrato de carbono predominante en la leche materna y es esencial para la nutrición del cerebro del niño. Aunque la concentración de lactosa es menos variable que la de otros nutrientes, la producción total se reduce en las madres con desnutrición grave

Lípidos

Los lípidos de la leche proporcionan la fracción más importante de calorías en la leche materna; sin embargo, son los componentes más variables en su contenido y calidad. La desnutrición materna se relaciona con niveles más bajos de lípidos en la leche. La distribución del espectro de los ácidos grasos en la leche materna también es sensible a la dieta de la madre

Vitaminas liposolubles

Vitamina A

Está implicada en las reacciones fotoquímicas en la retina, es antioxidante y tiene propiedades anti infecciosas. El contenido de vitamina A en la leche disminuye a medida que progresa la lactancia. La cantidad obtenida con una dieta equilibrada es adecuada y la suplementación no es necesaria.

Vitamina D

La deficiencia de vitamina D en la mujer embarazada y lactante es frecuente. Las madres que han restringido la ingesta de alimentos, como los vegetarianos estrictos, y las que tienen una exposición limitada a la luz solar (madres con escasa exposición solar, de piel oscura, que visten con velo) pueden tener niveles plasmáticos muy bajos.

Vitamina E

La concentración de vitamina E en la leche materna es sensible a la ingesta materna, por lo que se debe revisar la alimentación materna y dar suplementos si no es adecuada

Vitamina K

La vitamina K también es elaborada por las bacterias que recubren el tracto gastrointestinal. Si la dieta es adecuada, la madre lactante no precisa suplemento de vitamina K. Los recién nacidos normalmente tienen niveles bajos de vitamina K. Se recomienda la administración de 1mg de vitamina K IM para prevenir la enfermedad hemorrágica del recién nacido.

Vitaminas hidrosolubles

Vitamina B6 (piridoxina)

En las primeras semanas de vida, las reservas de vitamina B6 acumuladas durante la gestación son de gran importancia para mantener niveles adecuados en los niños alimentados al pecho.

Vitamina B12 (cianocobalamina)

En madres bien nutridas, las concentraciones de vitamina B12 en la leche son adecuadas. Sin embargo, las concentraciones son bajas en mujeres vegetarianas estrictas (veganas), madres desnutridas o con anemia perniciosa, incluso si la madre no muestra signos de deficiencia.

Oligoelementos y minerales

A diferencia de las vitaminas, la mayoría de los minerales no parecen estar correlacionados con la ingesta materna, excepto el hierro y el yodo. Las concentraciones de cobre y cinc parecen estar estrechamente relacionadas con las reservas hepáticas de la madre durante el tercer trimestre del embarazo y la ingesta materna tiene muy poco efecto sobre ellas, aunque su biodisponibilidad en la leche es muy elevada. El yodo, el hierro, el cobre, el magnesio y el cinc tienen una alta biodisponibilidad en la leche materna. El contenido en selenio está fuertemente influido por la alimentación de la madre.

Resultado de imagen para nutricion  madre  gif

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Precursores de la Medicina Latinoamericana (Parte V. CARLOS FINLAY)

Alejandro Alfredo Aguirre Flores.

TODOS LOS DERECHOS RESERVADOS © Copyright 2019

 

Precursores de la Medicina Latinoamericana

Parte V.

El Dr. Carlos J. Finlay  y el origen de la fiebre amarilla

     La quinta entrega de este especial dedicado a los galenos precursores de la medicina latinoamérica concierne a Carlos Finlay, quien revolucionó la medicina cubana. Siete veces nominado al Nobel, injustamente sin ser favorecido, se consagra como un importante referente de la medicina centro americana, tras unos 20 años de ser ignorada su hipótesis, en la actualidad Finlay y su descubrimiento marca un antes y un después en las enfermedades transmisibles a través de intermediarios patógenos (mosquitos). El Dr. Plutarco Naranjo, ilustre médico ecuatoriano recoge en sus publicaciones a Carlos Juan Finlay como un médico eficiente y entregado a la búsqueda de soluciones a las diversas enfermedades que aquejaban a los cubanos del siglo XIX, entendiéndolo como un precursor de la ciencia galena, este artículo le rinde homenaje. Bienvenidos.

En la provincia más oriental de la bella Cuba, la pequeña ciudad de Camagüey se consagra como la cuna de Carlos Juan Finlay y Barrés, un 3 de diciembre de 1833, fecha que, en su honor, se ha instaurado como el Día de la Medicina Latinoamericana, curiosamente y con justicia, la principal vía que atraviesa la ciudad de Camagüey lleva también su nombre. Su padre de origen escocés según (Naranjo, 1978) puede contradecirse con otros autores que afirman que era inglés y médico de oficio que había luchado junto con el libertador Simón Bolívar junto con su madre francesa y española a la vez, habían migrado desde Europa hasta Cuba, donde Finlay en la ciudad de La Habana transcurriera su infancia. Su segunda enseñanza, es decir, su adolescencia y juventud la realizó en Francia, inspirado en su padre y tío (quienes acompañaran a Bolívar en sus cruzadas libertarias), decide estudiar medicina en la Jefferson Medical College de Filadelfia en Estados Unidos, graduándose con honores en 1855, en medicina general y además oftalmología, su título a su vez fue convalidado en la Universidad de La Habana años más tarde.

Resultado de imagen para carlos juan finlay

Se dice de Finlay, era un joven muy inquieto y aventurero, tentando suerte en diversas ciudades de Cuba e incluso viajando a Lima, sin embargo, en 1860 en la ciudad de París, decidió perfeccionar varios de sus conocimientos en distintos centros médicos. En 1865, de regreso en Cuba contrae matrimonio con Adela Shine, hecho que hace residir definitivamente en Cuba al aún joven médico.

Sobre sus diversas investigaciones se puede iniciar mencionando que en 1857 comienza sus estudios experimentales entorno a la fiebre amarilla, dicha endemia que desde 1762 parecía fustigar a toda Cuba era conocida también como vomito negro y atrajo de modo especial la atención de Finlay. El momento histórico era crucial, importantes hombres de ciencia como Luis Pasteur o Koch estaban y mantenían a la vanguardia los estudios y descubrimientos bacteriológicos que fueron determinantes para el entendimiento acerca del mecanismo de contagio de la enfermedad ya que no se había hallado bacteria alguna, en la actualidad se ha demostrado que el origen de la fiebre amarilla es de carácter virulento y sus orígenes de remontan desde África Occidental y fue transmitida en América entre los siglos XVI a XX, posiblemente a través de los marineros o esclavos que viajaban en las mercancías hacia el nuevo continente.

Sobre la obra de Pasteur podría interesarte el siguiente artículo: Luis Pasteur, un golpe de gracia contra la “generación espontánea”.

Los primeros pasos en torno a la investigación de la causa de la fiebre amarilla se dan cuando Finlay ingresa como miembro de la Academia de Ciencias de La Habana en 1872, donde se perfila como un muy agudo observador e investigador de carácter sistemático, publicando un articulo donde relaciona la alcalinidad del aire de Cuba en el cual postula a dicha alcalinidad como causa de la enfermedad en cuestión, sin embargo, siete años más tarde, una importante Comisión Científica Norteamericana llega a la isla a investigar la enfermedad, donde como era de esperarse, Finlay formo parte de la comisión llegando a descartar su postulado y llevándolo a un análisis más profundo que dependía de diversos factores, Finlay terminan fijándose en los insectos lanzando la atrevida teoría de que el Culex, como se conocía entonces al mosquito Aedes aegypti, era el portador de vector infeccioso capaz de transmitir la enfermedad.

Resultado de imagen para aedes aegypti
Aedes aegypti

Su hipótesis de partida, sobre los factores climáticos, fue descartada no siendo así el fin de sus investigaciones. En 1885, aprovechando en intervención como delegado de la Conferencia Sanitaria Internacional en Washington, plateó la teoría de la existencia de un vector de propagación a manera de intermediario que era preciso descubrir para frenar el avance de la fiebre amarilla, en aquella intervención no mencionó al mosquito, sin embargo, Finlay ya había empezado ensayos experimentales acerca del tema, no obstante, su teoría fue ignorada ante la presencia de muy afamados y respetados sanitaristas presentes en dicha conferencia (Naranjo, 1978).

Imagen relacionada

Pese a pasar inadvertido, en agosto de ese mismo año presenta en la Academia de Ciencias de La Habana su trabajo más importante y a la vez recurriendo a la prudencia mediante un título muy reticente, Finlay publicó: “El mosquito, hipotéticamente considerado como agente de transmisión de la fiebre amarilla”. En su momento, esta publicación parecía no ser tan significativa; siguieron los años, Finlay por su parte seguía en la tarea de demostrar su hipótesis, improvisó un laboratorio, desarrolló un criadero de mosquitos e hizo que picaran a enfermos de fiebre amarilla, basándose en que la inoculación controlada podría causar inmunidad en los pacientes, realizo sus primeros ensayos clínicos en algunos sacerdotes Jesuitas que se aprestaron a ser picados por los insectos, Finlay descubrió que, el vector (mosquitos) era capaz de chupar la sangre del enfermo contaminado, incubar al microorganismo y luego incubarlo en un individuo sano, este descubrimiento fue revolucionario para toda la ciencia médica de la época.

Finlay siempre llevo a cabo todas sus experimentaciones con el más alto control por tratarse de un vector de contagio no confirmado, toda documentación, ensayos y observaciones eran también compartidas en altos centros científicos en Europa y Estados Unidos. Afortunadamente Finlay vivió lo suficiente para que sus afanes no queden olvidados, a los 65 años, en medio de la primera invasión norteamericana a Cuba, Finlay fue testigo del holocausto de las vidas de los soldados que perecían por causa de la fiebre amarilla; Estados Unidos vuelve a enviar una comisión que fue precedida por el Dr. Walter Reed, cuya finalidad era determinar de una vez por todas el origen del mal, Reed inició sus investigaciones siguiendo, de comienzo sus propias ideas y posteriormente fracasando en sus intentos; dicho fracaso hace que la comisión de por fin oído a la teoría de Finlay quien repitió su experimentación con la comisión entregándole a Reed los mosquitos infectados comprobando con plenitud la teoría del cubano.

Resultado de imagen para CARLOS FINLAY

En la actualidad según (Organización Mundial de la Salud, 2018), la fiebre amarilla se define como una enfermedad vírica aguda hemorrágica, transmitida por mosquitos infectados. El término “amarilla” alude a la ictericia que presentan algunos pacientes. Por definición:

El virus de la fiebre amarilla es un arbovirus del género Flavivirus transmitido por mosquitos de los géneros Aedes y Haemogogus. Las diferentes especies de mosquitos viven en distintos hábitats. Algunos se crían cerca de las viviendas (domésticos), otros en el bosque (salvajes), y algunos en ambos hábitats (semidomésticos). (Organización Mundial de la Salud, 2018)

Con ello fue dispuesto el saneamiento de Cuba, países como Panamá lo imitaron principalmente por la incidencia del canal que conecta ambos océanos y cuyas embarcaciones eran puntos susceptibles para que sus tripulantes adquieran la enfermedad, el resto de los países tropicales del Mar Caribe replicaron el saneamiento con campañas que buscaban desesperadamente detener el avance de la endemia. Los honores para Finlay no se hicieron esperar, aunque tardíos sirvieron para reconocer la noble intención de salvar vidas y darle la satisfacción de haber contribuido con sus investigaciones al cumplimiento de ese fin.

Imagen relacionada
Exterminación de mosquitos en la zona del Canal de Panamá. (1914)

La OMS no tardó en sonar la alerta y recomendar a todos los países de riesgo dispongan al menos de un laboratorio nacional que se pueda encargar de los análisis básicos de sangre para detectar la fiebre amarilla, la detección rápida de la fiebre amarilla y la respuesta inmediata con campañas de vacunación de emergencia son esenciales para controlar los brotes. Los estudios del Dr. Carlos Juan Finlay permitieron también identificar que el virus es endémico de las zonas tropicales de África, América Central y América del Sur. La vacuna que se desarrollo posteriormente es eficaz, segura y asequible, se necesita de una sola dosis para que el paciente sea inmunizado y protegido de por vida sin necesidad de dosis de refuerzo.

Los estudios de Finlay sin embargo no solo se centraron en la fiebre amarilla, según el repositorio de la Universidad de La Habana, Finlay elaboro diversos trabajos de investigación como lo son:

  • Memoria sobre la Etiología de la Fiebre Amarilla.
  • Sobre el tratamiento quirúrgico del cáncer.
  • La extracción de cataratas.
  • Referencias a la lepra.
  • Investigaciones sobre el cólera.
  • Inoculación por el mosquito de la fiebre amarilla.
  • Estudio de la transmisión de la fiebre amarilla por un agente intermediario.
  • El cólera y su tratamiento.

Todas estas investigaciones significaron para Finlay la nominación de 7 ocasiones para el premio Nobel, injustamente en ninguna de ellas fue galardonado. Descubrió además que la enfermedad de tétanos en los recién nacidos se debía a la contaminación del hilo de sutura del cordón umbilical y gracias a tal descubrimiento se han salvado otras innumerables vidas de neonatos en todo el mundo. Finalmente, Finlay deja este mundo un 20 de agosto de 1915 llevándose consigo la satisfacción del deber cumplido.

Referencias

Naranjo, P. (1978). Precursores de la Medicina Latinoamericana. Academia de Medicina del Ecuador. Quito-Ecuador: Editorial Universitaria.

Organización Mundial de la Salud. (1 de mayo de 2018). Organización Mundial de la Salud. Obtenido de Fiebre Amarilla: https://www.who.int/es/news-room/fact-sheets/detail/yellow-fever

Imagen relacionada

 

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Datos curiosos de la Química. (Parte VI. 41-45)ESPECIAL NOMBRES CURIOSOS 2

Alejandro Alfredo Aguirre Flores.

TODOS LOS DERECHOS RESERVADOS © Copyright 2019

     En la entrega anterior se habló de nombres muy curiosos para algunas sustancias químicas de naturaleza bastante peculiar, por lo que antes de iniciar los invito a visitar la primera parte de este especial en el siguiente enlace: Datos curiosos de la Química. (Parte V. 36-40) ESPECIAL DE NOMBRES CURIOSOS. Bienvenidos.

41.- OROPIMENTE

El oropimente es un mineral bastante raro del arsénico y se presenta con la fórmula As2S3, su color se constituye como un verdadero atractivo para la vista, presenta tonalidades amarillentas y doradas. Algunos historiadores en química sostienen que fue Alberto Magno el primero en aislar arsénico a partir de este mineral en el siglo XIII [1], aunque en la actualidad se Considera descartada dicha posibilidad. Lo cierto es que Plinio el Viejo es el primero en citar al oropimente denominándole “auri pigmentum” (pigmento dorado) por su semejanza al oro. Lo curioso del oropimente, es que en repetidas ocasiones era confundido por oro propiamente dicho, otros alquimistas en la edad media lo confundían por cobre y lo que llama la atención es que la bibliografía menciona que dichos alquimistas esperaban obtener plata de este curioso mineral, para lo que procedían a quemarlo en el aire de modo que se producía anhídrido arsenioso, un toxico tan poderoso que terminaba matándolos.

Resultado de imagen para oropimente

42.-  FLORES MARCIALES

Este curioso nombre etimológicamente hablando viene de la traducción latina “Flores de Marte”, este curioso nombre se usa para designar al tetracloroferrato (III) de amonio (NH4 FeCl4) dentro de la química de complejos de coordinación, junto con éste todas las sales de hierro que se forman en la soluciones de cloruro de amonio [1]. Las flores marciales amoniacales eran utilizadas como excitantes y emenagogo para preparar algunas aguas y soluciones minerales ferruginosas, por esta razón también era denominado como Muriato de amoniaco ferruginoso.

Resultado de imagen para marte

 

43.- ÁCIDO CÓMICO

Resultado de imagen para commic acid

Un nombre algo alejado de la realidad y que más bien precede de una mala traducción, su nombre original en inglés es el “commic acid” que en realidad debe escribirse ácido commico y al contrario de lo que aparentaría su nombre este compuesto se encuentra dentro de algunas especies vegetales como la Commiphora pyracanthoides, especie perteneciente a la flora africana en Mozambique, esta especie pertenece a la familia de la mirra, y nada tiene que ver con el buen humor, la IUPAC  a su vez no reconoce al “ácido cómico” como un nombre adecuado para este compuesto por lo que se recomienda su correcta escritura.

Resultado de imagen para Commiphora pyracanthoides
Commiphora pyracanthoides subsp. pyracanthoides

44.- ÁLCALI ORINOSO

La mayoría de soluciones acuosas de amoniaco han tomado diversos nombres durante la historia debido principalmente a sus potentes hedores, en el siglo XVIII se les denominaba álcalis orinosos precisamente por la similitud que presenta su olor con el de la orina con el paso del tiempo, se denominaron también “soluciones agrio amoniacales”, “espíritu alcalino volátil” e incluso “espíritu de cuerno de venado”, este último nombre se utilizó en procedimientos que implicaban la destilación de las soluciones con virutas extraídas de los cuernos de estos animales y su potente olor se le atribuía al espíritu del venado macho [1].

Resultado de imagen para cuerno de venado

45.- ANTIPAIN

antipain
Antipain dihydrochloride (C27H44N10O6•2HCl)

No te dejes engañar por su nombre, este compuesto químico no actúa como un inhibidor del dolor como podría creerse a simple vista, en realidad actúa como un inhibidor de proteasa [2] para evitar la degradación de proteínas. Éste es un compuesto altamente tóxico que irónicamente produce dolores muy insoportables al contacto con la piel [1], según la fuente es un oligopéptido que se aísla a partir de bacterias (actinomicetos o actinobacterias) mismas que producen largos filamentos al crecer, demostrándonos así que la química puede ser muy irónica en sus nombres.

Resultado de imagen para actinomicetos
Actinomicetos, bacterias grampositivas anaeróbicas que se parecen a los hongos.

Referencias

[1]

D. Pleé, «Pontificia Universidad Católica del Perú,» Revista de Química PUCP, vol. 27, nº 1-2, pp. 33-36, 2013.

[2]

Alfa Aesar, «Alfa Aesar by thermo Fisher Scientific,» J63680 Antipain dihydrochloride, 2001. [En línea]. Available: https://www.alfa.com/es/catalog/J63680/. [Último acceso: 18 03 2019].

 

Imagen relacionada

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

“Las cinco primeras de la ciencia y el Nobel” EDITORIAL ESPECIAL MARZO 2019

Alejandro Alfredo Aguirre Flores.

EDITOR

TODOS LOS DERECHOS RESERVADOS © Copyright 2019

     Corría el 25 de marzo de 1911, había pasado prácticamente una semana desde el 19 de marzo del mismo año, cuando se llevó a cabo la primera conmemoración del “Día internacional de la mujer” en Alemania, Austria, Dinamarca y Suiza; 123 jóvenes trabajadoras junto con otros 23 varones, todos empleados de la camisería neoyorquina Triangle Shirtwaist; la mayoría migrantes guiadas por las promesas de libertad y justicia sin embargo, fueron víctimas de uno de los crímenes de género más vergonzosos de la historia de la humanidad, muriendo en medio de un incendio en la fábrica sin mínima posibilidad de escape, puesto que habían sido encerradas por su patrón.

Durante la primera Guerra Mundial la lucha por la igualdad de género continuó, así como la reivindicación de la mujer en la sociedad que se libró en múltiples escenarios llevando consigo la voz de cientos de miles de mujeres que empezaron a luchar mucho antes del fatídico incendio de New York, como lo fue la denominada “Huelga de las Camiseras” en 1909, donde se levantaron en contra de la explotación laboral, cerca de 20000 mujeres trabajadoras textileras dirigidas por la valiente Clara Zetkin (sindicalista).  Finalmente, tras años de lucha la actriz polaca Beata Pozniak, reivindica en el Congreso de Estados Unidos el reconocimiento del Día Internacional de la Mujer en USA, el 8 de marzo de 1994, para finalmente en 2011, conmemorar el centenario de lucha del Día Internacional de la Mujer, operando desde entonces “ONU Mujeres” a favor de la equidad de género en todo el mundo, sin embargo, la movilización de mujeres no se ha detenido y tras  ocho años desde el centenario, el escenario no parece haber cambiado mucho, lastimosamente el rol de la mujer se ve atentado, los índices de femicidio en América Latina y el mundo parecen ir en aumento y en pleno siglo XXI hablar de violación y esclavismo no parece ser tema del pasado.

Resultado de imagen para Clara Zetkin

El pasado 8 de marzo del 2019, se conmemoró un año más de lucha, un año más que no tiene, lastimosamente, sabor a fiesta, sino más bien un silencio luctuoso por las voces de tantas mujeres que día a día mueren y son víctimas de una sociedad injusta y fría. Hoy el escenario de lucha nace en nuestros hogares y la llave maestra para encontrar la verdadera igualdad, es la educación, por esta razón Mi Septiembre Rojo, se une la conmemoración y rinde su homenaje mediante este editorial del mes de marzo a las mujeres, que desde las aulas, los laboratorios y la ciencia reivindican con su esfuerzo la verdadera posición y rol de la mujer en la sociedad. Pensando en ello qué mejor sino rendir homenaje a las cinco primeras mujeres que transformaron la ciencia y se han alzado con el Nobel en sus manos, ratificando que la mujer es y será siempre capaz de alcanzar sus aspiraciones.

Bienvenidos

 

UNO

Marie Skłodowska, el primer nobel por la igualdad de género

Resultado de imagen para marie curie

Corría el año de 1910 y la física para entonces se constituía como privilegio de varones, ese año se veía nacer uno de los tratados científicos más importantes y respetados de la ciencia, el tratado sobre la  radiactividad, es el fruto de las investigaciones realizadas junto con su esposo Pierre Curie y Henri Becquerel, quienes en 1903 ganan el Nobel de Física en reconocimiento a los extraordinarios servicios que han prestado con sus investigaciones conjuntas sobre los fenómenos de la radiación, siendo así que Marie Curie se convierte en la primera mujer galardonada con el Nobel [1]. Al ser la pionera del estudio de la radiactividad, lo que fue determinante en el estudio de la estructura atómica de la materia; años más tarde en 1911, se convierte en la ganadora del Premio Nobel a la Química por el descubrimiento del Radio y el Polonio en 1898, llegando a la conclusión de que la radioactividad reside en los átomos de cada elemento, convirtiéndose de esta manera en la Primera mujer en ganar un premio Nobel en la Química, la primera y única mujer en ganar dos premios Nobel en la historia de la humanidad en dos ciencias diferentes (Física y Química) (hasta el momento sería la única persona en conseguirlo) y a la vez se convierte en la primera y cuarta mujer galardonada con este reconocimiento, todo un orgullo para Francia y Polonia, puesto que poseía ambas nacionalidades.

Resultado de imagen para marie curie solvay conference

DOS

El legado de los esposos Curie: Irène Joliot-Curie

El octavo Nobel entregado a una dama fue nada más y nada menos que para el legado de los esposos Curie, su hija Irène Joliot-Curie, igual que su madre, Irène se convierte en la segunda mujer en ganar un Nobel para la ciencia, desde su madre se habían otorgado tres galardones a mujeres relacionadas con la Literatura y la Paz, sin embargo, Irène como su madre rompe el molde, dándole a Francia su siguiente Nobel a la Química en 1935, de la mano de su esposo Frédéric Joliot. Ambos habían continuado los estudios de Marie y Pierre Curie, en la Universidad de París, logrando ser los primeros en sintetizar nuevos elementos radiactivos (Radiactividad Artificial) [2]. Mérito que se logró en medio de la primera Guerra Mundial, la trascendencia de su trabajo fue que se permitiera con sus investigaciones la instalación de unidades de rayos X en los distintos hospitales militares. Tras la muerte de su madre y después de huir a Suiza en la Segunda Guerra Mundial, retorna a París a dirigir el Instituto de Radio como sucesora de su madre, así como la Comisión de Energía Atómica Francesa. Finalmente, Irène como Marie, muere por leucemia ocasionada por una prolongada exposición a la radiación de los elementos que estudiaban.

Resultado de imagen para irene joliot curie
Irene Joliot-Curie charlando con Albert Einstein 

TRES

Gerty Theresa Cori y el misterio del glucógeno

Resultado de imagen para Gerty Theresa Cori

Tuvieron que pasar 12 años para que una científica vuelva a ganar un Nobel, esta vez en la categoría de Fisiología o Medicina. La checo-norteamericana Gerty Theresa Cori en 1947 se convierte en la duodécima (12º) mujer en merecer un Nobel y la tercera en un ámbito científico; Cori fue maestra en la Washington University School of Medicine, junto con su esposo Carl Cori, sus estudios inician cuando descubren un importante éster que se constituye como el primer paso en la transformación del glucógeno en glucosa [3].

Su descubrimiento los llevaría a formular un verdadero ciclo al que denominaría el ciclo de Cori en el cual el glucógeno hepático es transformado en glucosa sanguínea y finalmente pasaría a constituir glucosa muscular. Los esposos Cori compartieron el Nobel con su colega argentino, el Dr. Bernardo Houssay. Gerty se convierte de esta manera en la PRIMERA norteamericana en alcanzar el Nobel.

CUATRO

Maria Goeppert-Mayer, la Madre de San Diego que ganó el premio Nobel

Imagen relacionada

Goeppert sin duda es una de las mentes femeninas más brillantes de la historia, se constituye como la segunda mujer en ganar un premio Nobel a la Física, después de Curie. Maria Goeppert alcanza su galardón desde la física teórica en 1963 cuando propone el Modelo de capas nucleares. La historia de Goeppert-Mayer nació en las aulas, puesto que por sí misma, es la séptima generación consecutiva de profesores docentes universitarios de su familia de orígen aleman, su vida siempre giró entorno a la ciencia, su padre Friedrich Goeppert fue un brillante profesor de pediatría en la Universidad de Gotinga, misma a la que años más tarde, en 1924, ingresara con la intención de convertirse en matemática [4].

Los apasionantes escritos y publicaciones que se hacían en la época entorno a la física cuántica, que apenas nacía, fueron suficientes para enamorarla de este campo de la ciencia, obteniendo así en 1930 su doctorado en física teórica, posteriormente se trasladarían con Joseph Edward Mayer, su esposo, hasta Baltimore – Estados Unidos. Es importante mencionar que sentía profunda deuda con Max Born quien le había ayudado con su orientación científica y que años más tarde también seria premio Nobel. Karl F. Herzfeld se interesó por su trabajo, y bajo su influencia y la de su esposo, Joseph Edward Mayer, se convirtió lentamente en una física química. Escribió varios artículos con Herzfeld y con su esposo, y comenzó a trabajar en el color de las moléculas orgánicas. Lastimosamente por ser mujer la consideraron molesta en múltiples centros de investigación, sin embargo, en 1946 en Chicago fue profesora en el Departamento de Física y en el Instituto de Estudios Nucleares donde no fue sino aceptada de brazos abiertos y no tardó en encontrar su camino allí, donde conoció al mismísimo Enrico Fermi y Edward Teller con quieres discutió mucho acerca de la física nuclear; en 1948 trabaja entorno a los números mágicos.

Resultado de imagen para Maria Goeppert-Mayer
Maria Goeppert-Mayer Nuclear Physicist

En su tesis doctoral calculó la probabilidad de que un átomo sea capaz de absorber dos fotones simultáneamente y excitar al átomo tal como lo haría un solo fotón con energía igual a la suma de energía de ambos fotones. Su teoría fue confirmada experimentalmente en la década de 1960 con el advenimiento del láser. De acuerdo con la física moderna, un átomo consiste en un núcleo formado por nucleones, protones y neutrones, rodeado de electrones distribuidos dentro de capas con un número fijo de electrones. Se hizo evidente que los núcleos atómicos en los que el número de nucleones correspondía a las capas de electrones completos son especialmente estables. En 1949, Maria Goeppert Mayer y Hans Jensen desarrollaron un modelo en el que los nucleones se distribuían en depósitos con diferentes niveles de energía. El modelo reflejaba observaciones de direcciones en las que los nucleones giraban alrededor de sus propios ejes y alrededor del centro del núcleo [4].

Cuando la Real Academia de las Ciencias de Suecia anunció que había ganado el premio Nobel, un periódico local de San Diego encabezó la noticia con la frase «Madre de San Diego gana el premio Nobel»

Desde 1960, Goeppert-Mayer fue nombrada para un puesto como profesora (a tiempo completo) de Física en la Universidad de California en San Diego y se trasladaron a vivir a la vecina localidad de La Jolla. A pesar de que sufrió un derrame cerebral poco después de llegar allí, continuó enseñando e investigando durante varios años.

En su discurso de aceptación Goeppert-Mayer dijo: «Ganar el premio ha sido la mitad de apasionante que hacer el trabajo».

 

CINCO

Dorothy Crowfoot Hodgkin, la transformadora de la química orgánica

Resultado de imagen para Dorothy Crowfoot Hodgkin

Ciudad del El Cairo-Egipto cuna de la gran Dorothy Crowfoot, nacida un 12 de mayo de 1910 en una colonia inglesa. Sus primeros años los vivió en Inglaterra junto con sus hermanas bajo los cuidados de su nodriza. Años más tarde se traslado a Cambridge donde trabajo con J. D. Bernal. Posterior a eso se traslada de regreso a Oxford donde ocupó una plaza de investigación y donde contrae nupcias con el Historiador Thomas Hodgkin. En 1947 es nombrada miembro de la Royal Society de Londres.

Su principal aporte científico es el desarrollo de la técnica de difracción de rayos x para la búsqueda de la estructura exacta de las moléculas, especialmente orgánicas. Escribió sobre los esteroles, vitaminas y antibióticos, en 1932. Determinó, en 1945 y 1954 respectivamente, la estructura del antibiótico penicilina y de la vitamina B12, que posee más de noventa átomos distribuidos en una estructura compleja. En 1969 descubre la estructura cristalina de la insulina, sustancia fundamental en la síntesis del fármaco que combate la diabetes mellitus, también descubre las estructuras de la lactoglobulina, ferritina y el virus del mosaico del tabaco; constituyéndose de esta manera como la pionera en la técnica de difracción de rayos x para la determinación de estructuras químicas de interés bioquímico encaminando los estudios en farmacología de la época. Finalmente, en 1964 fue galardonada con el Premio Nobel de Química por la determinación de la estructura de muchas sustancias biológicas mediante los rayos X. El trabajo de Hodgkin se consideró tan importante que se convirtió en la primera mujer, desde Florence Nightingale, a la que la Reina le concedió la Orden del Mérito.

Imagen relacionada

Incluyendo la edición 2017 y 2018 el premio Nobel ha sido entregado 844 veces a hombres, 24 veces a diversas organizaciones y tan solo 52 veces a mujeres, de ellas solo 20 han sido en torno a la ciencia siendo la primera Marie Curie, 17 mujeres han ganado un premio Nobel a la Paz y otras 14 a la literatura, como es evidente, la mujer ha jugado un papel fundamental en la ciencia en medio de tanta desigualdad, en el año 2009 fue el año en que más mujeres se alzaron con el Nobel con un total de cinco, y es por este número que el presente editorial tuvo por finalidad resaltar a las 5 pioneras en ganar este importante galardón en torno a la ciencia. Nikola Tesla entorno al rol de la mujer menciono: “no es con la imitación física superficial de los hombres como las mujeres afirmarán su igualdad, primero, y su superioridad después, sino mediante el despertar del intelecto de la mujer”. Por esta razón y esperando este artículo sirva para inspirar especialmente a niñas y jóvenes en la ciencia Mi Septiembre Rojo, la saluda y las invita a apoderarse de la verdadera lucha por la igualdad de género y oportunidades para todos y todas, la educación sea la herramienta y camino que nos conduzca a la verdadera libertad y es desde el seno materno o desde la esencia de la mujer; el trascender de los conocimientos de cada generación junto con el verdadero desarrollo humano, científico y social esta también en sus manos. Esperando que este editorial haya sido de su total agrado nos despedimos con esta bella frase: “La ciencia es bella y es por esa belleza que debemos trabajar en ella, y quizás, algún día, un descubrimiento científico como el Radio puede llegar a beneficiar a toda la humanidad” Madame Curie.

Referencias

[1]

CSIC, «Marie Salomea Skłodowska Curie,» Ministerio de Ciencia, Innovación y Universidades (ESPAÑA), 2010. [En línea]. Available: http://www.kids.csic.es/cientificos/curie.html. [Último acceso: 7 Marzo 2019].
[2] Clickímica, «Irene Joliot-Curie,» Clickímica, 2010. [En línea]. Available: https://clickmica.fundaciondescubre.es/conoce/nombres-propios/irene-joliot-curie/. [Último acceso: 2019].
[3] © Biografías y Vidas, «Gerty Theresa Cori,» © Biografías y Vidas, 2004. [En línea]. Available: https://www.biografiasyvidas.com/biografia/c/cori_gerty.htm. [Último acceso: 2019].
[4]

The Nobel Lectures, «THE NOBEL PRIZE,» Elsevier Publishing Company-Maria Goeppert Mayer, 1963-1972. [En línea]. Available: https://www.nobelprize.org/prizes/physics/1963/mayer/biographical/. [Último acceso: 18 03 2019].

Imagen relacionada

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Luis Pasteur, un golpe de gracia contra la “generación espontánea”.

Alejandro Alfredo Aguirre Flores.

TODOS LOS DERECHOS RESERVADOS © Copyright 2019

     Cuando se habla de Luis Pasteur, se habla en definitiva, de una de las mentes más brillantes que tuvo la humanidad en el siglo diecinueve; la literatura entorno a este magnífico científico es abundante dada la importancia de sus estudios entorno a ciencia. El presente articulo tiene por fin resaltar la obra de Pasteur como una contribución académica a favor de los estudiantes de las distintas áreas de la salud y alimentación, Bienvenidos.

En primera instancia el perfeccionamiento del microscopio compuesto hizo posible el nacimiento de la microbiología descriptiva, como parte de la Historia Natural, sin embargo el nacimiento de la microbiología como una ciencia experimental sólo fue posible cuando se logró relacionar a los microorganismos con los distintos fenómenos naturales, muchos de estos fenómenos o procesos son trascendentales en el desarrollo humano, animal e inclusive vegetal; como las fermentaciones y las enfermedades; tras evidenciarse que los microorganismos eran causa y no consecuencia de dichos fenómenos.

Luis Pasteur jugó un papel fundamental en el desarrollo de esta naciente ciencia, puesto que sus investigaciones y experimentos permitieron definir claramente los procesos naturales como las fermentaciones, putrefacción y diversas enfermedades de los seres humanos y animales como procesos típicos microbianos.

Imagen relacionada
Luis Pasteur en la realización de su experimento mediante balón de cuello de cisne para comprobación de contaminación de muestras por agentes microbianos externos.

Según menciona Norberto J. Palleroni (1970), la obra de Pasteur tuvo el mérito de dar un “golpe de gracia” con un poderoso argumento que destrozó la idea de la generación espontanea, misma que sustentada en viejas creencias no científicas o seudocientíficas defendía como cierto que la vida compleja se generaba a partir de la materia inerte (orgánica o inorgánica) casi como si se tratara de un acto de magia. Dicha creencia popular se fundamentaba en el hecho de que la vida surgía de cúmulos de materia por ejemplo: el hecho de que los rayos del sol incidan sobre los granos de trigo o maíz o la misma ropa sucia según el clérigo Johann Baptista Van Helmont, de origen belga (1667), generarían de manera espontanea vida en forma de ratas o insectos y aunque que suene descabellada esta idea en la actualidad, la teoría de la generación espontánea fue considerada como cierta hasta finales del siglo XVIII, esta teoría fue descrita por ARISTÓTELES y su escuela filosófica en la antigua Grecia.

Resultado de imagen para GENERACION ESPontanea

Y aunque la teoría de la generación espontánea tuvo varias formas a través de los tiempos, no fue sino hasta el siglo XIX que su debate dio lugar a una  gran polémica sobre su veracidad, hoy es sabido que los alimentos al entrar en un proceso de putrefacción y al someterlo a análisis microscópico, se encuentra que está repleto de bacterias y hongos que se encargan de su degradación, por lo tanto mantener a los alimentos envasados prácticamente por un tiempo indefinido sin que se pudran o fermenten es posible, gracias a las investigaciones de Pasteur que corroboran que dicho alimento al ser sometido a un shock térmico, calentamiento o enfriamiento y al envasarse herméticamente pueden ser conservados sin que éstos entren en procesos de descomposición por un tiempo prolongado.

Resultado de imagen para descomposición de alimentos
Cebolla en descomposición con proliferación de hongos cuyas esporas son procedentes del ambiente.

Pasteur seguramente se preguntó ¿De donde provienen estos seres minúsculos y que con frecuencia no se ven en el alimento fresco?.

Pues bien este brillante químico francés primero demostró que en el aire habían estructuras que se parecían mucho a los microorganismos que observó en la materia en descomposición. Según Madigan M., Martinko J., & Parker Jack (2004) Pasteur descubrió que el aire normal contiene de manera continua una amplia diversidad de células microbianas intangibles mismas que se encuentran en materias en descomposición. De forma análoga estas células microbianas se encuentran adheridas a superficies, utensilios y prácticamente a todo que les sea un medio de proliferación. Pasteur concluyó que los organismos encontrados en materias en descomposición se originaban a partir de las células presentes en el medio ambiente (aire) para finalmente postular que éstas células se depositan constantemente sobre todos los objetos. Si sus conclusiones eran correctas, un alimento “tratado” no debía estropearse de tal modo que debía existir alguna manera de destruir los microorganismos que contaminasen el alimento en su superficie.

Resultado de imagen para BACTERIAS gif
Spirillum de agua dulce

Pasteur y su experimento del matraz cuello de cisne

     Para dicho golpe de gracia Pasteur descubrió que el calor era capaz de eliminar los contaminantes pues destruía con efectividad los organismos vivos, sin embargo, esto no es un dato que se le atribuya únicamente a Pasteur, de hecho ya varios investigadores habían descubierto que, si una solución de nutrientes se introducía en un matraz de vidrio y este se sellaba llevándose posteriormente a ebullición, este nunca se descomponía mientras se mantuviera cerrado. A sus ideas no le faltaron detractores que defendían la generación espontanea y sostenían que la generación espontanea requería aire fresco para que se originara de modo que el aire encerrado dentro del matraz sufría cambios durante su calentamiento, lo que para sus detractores, explicaría el por que no se origina vida en esas condiciones; superadas las objeciones y sin prestar mucha atención a sus detractores, Pasteur se aventuro a la construcción de un matraz muy singular al que llamaría matraz “cuello de cisne”, mismo que se designa también como el matraz de Pasteur.

Resultado de imagen para matraz cuello de cisne
Los matraces en forma de “cuello de cisne” de #Pasteur

Según lo mencionan Madigan M., Martinko J., & Parker Jack (2004), Pasteur coloco las soluciones nutritivas en su interior, allí las llevo a ebullición, luego cuando el matraz se equilibraba con la temperatura ambiente, el aire podía ingresar de nuevo, pero la curvatura del matraz evitaba que los microorganismos alcanzasen el interior del matraz donde se encontraba el caldo nutritivo, siendo así el material ahora esterilizado en el recipiente no se descomponía y no aparecían microorganismos mientras el cuello del matraz no hiciera contacto entres los microorganismos y el caldo nutritivo estéril. Sin embargo, bastaba con que el matraz se inclinara lo suficiente como para que el liquido estéril contactara con el cuello para que ocurriera la putrefacción llenándose así el contenido de microorganismos.

Imagen relacionada

 

Este sencillo experimento fue suficiente para aclarar definitivamente la controversia que se venia dando por la teoría equivoca de la generación espontanea; haciendo que sus publicaciones alcanzaran el interés de médicos en toda Francia que no entendían por que después de que un paciente salia con éxito de una intervención quirúrgica, en muchos casos moría  por gangrena, Pasteur con su experimento estaba conceptualizando la idea de que los microorganismos eran omnipresentes y que al dejar una herida expuesta al ambiente, era muy probable que se convirtiera en medio de cultivo como lo que demostró con su matraz, lo que era el origen de la gangrena  que ocasionaba la muerte en los pacientes.

LA OBRA DE PASTEUR

Eliminar todos los microorganismos de un determinado objeto, es un concepto que en la actualidad denominamos esterilización, en el presente y gracias a Pasteur la calidad de vida ha mejorado considerablemente en comunidades que consumen productos inocuos, procedimientos como el “pasteurizar” en lácteos y jugos han permitido el control de  enfermedades como brucelosis entre otras infecciones.

Imagen relacionada

Resultado de imagen para pasteurizacion proceso

Finalmente Louis Pasteur no solo se dedico a investigar a los microorganismos, si bien es cierto que la mayor parte de su tiempo lo invirtió en investigaciones sobre bacterias, hongos y virus; describió también el proceso adecuado de la pasteurización en 1862. Con este método, los líquidos como la leche son calentados a una temperatura entre los 60 y los 100 grados Celsius y con esto se eliminan los microorganismos que causan que se echen a perder. La pasteurización se utilizó por primera vez en las industrias de vino francesas para salvarlas del problema de la contaminación y luego de esto se trasladó a otras bebidas como la leche y la cerveza.

Demostró que la denominada fermentación era un proceso provocado por microorganismos, puesto que descubrió que ciertas levaduras presentes principalmente en cerveza y vino eran agentes fermentadores de las bebidas alcohólicas, al producir ácido láctico como producto de su metabolismo, dando de esta manera un factor importante en la producción de bebidas espirituosas en la Europa de aquel entonces.

Resultado de imagen para fermentacion

“Una botella de vino contiene más filosofía que todos los libros del mundo”

Louis Pasteur (1865)

Entre  uno de los datos poco conocidos de Pasteur es que básicamente salvo la industria de la seda en toda Europa, esto lo realizo mientras se encontraba en la realización de  su “Teoría de los Gérmenes”. Descubrió que la pebrina era una enfermedad ocasionada por un gusano microscópico denominado Nosema bombycis, afectando gravemente la salud del gusano de seda que era empleado en la producción textil de sedas, esto ocasiono la quiebra de muchas industrias de seda en Europa y que se comenzaba a expandir con gran velocidad de región en región, tras elaborarse un método, desarrollado por Pasteur, se pudo ir erradicando la enfermedad y recuperando la producción normal de sedas finas.

Resultado de imagen para Nosema bombycis
Silkworm pebrine disease and Nosema bombycis

En 1879, Pasteur se convierte en ser el creador de la primera vacuna, dicha vacuna fue empleada en pollos, con la finalidad de curar el cólera del pollo. Los pollos inoculados contrajeron la enfermedad, pero se volvieron resistentes al virus. Termino desarrollando vacunas para otras enfermedades como el cólera, tuberculosos, ántrax (carbunco) y sarampión.

Resultado de imagen para primera vacuna colera de pollo

“Al enseñarme a leer, te aseguraste de que aprendiera sobre la grandeza de Francia”

Louis Pasteur, recordando la relación con su padre.

Entorno a la microbiología, determino que la temperatura era un factor importante para el control microbiano. Sus investigaciones con gallinas infectadas de fiebre esplénica por ántrax, que se mantenían inmunes a la enfermedad, pudo exponer que la bacteria que producía ántrax no era capaz de sobrevivir en el torrente sanguíneo de las gallinas. El motivo era que su sangre está a 4 grados Celsius sobre la temperatura de la sangre de los mamíferos como vacas y cerdos. El ántrax la mayor causa de muerte de animales de pastoreo y también causa ocasional de la muerte de humanos, el desarrollo de una vacuna en contra de esta bacteria produjo un caída dramática en el rango de infecciones, sobre el ántrax, el doctor alemán Robert Koch ya había encontrado la bacteria causaba el mal; Pasteur anunció que había descubierto la vacuna e inmunizó con éxito 31 animales.

Resultado de imagen para antrax vacuna pasteur
Louis Pasteur (1822-1895) químico y bacteriólogo francés. La vacunación de ovinos contra el ántrax. Agerville (Francia).

A diferencia de lo que muchos pueden creer sobre Pasteur, también fue profesor de física,  es así que en 1849, cuando era profesor de Física en la escuela de Tournon, decidió estudiar a fondo la geometría de los cristales de diversas sales y la manera en que la luz incide sobre ellos, para ello estudio cristales de sales formadas por ácido tartárico mismos que polarizaban la luz de manera distinta, descubriendo así que los cristales eran asimétricos en el caso del tartárico lo que permitió comprender de mejor manera la geometría molecular en la química y física.

En 1857, mientras estudiaba los procesos fermentativos, principalmente el del ácido butírico, descubrió que el proceso de fermentación puede detenerse a través del paso de aire en el fluido fermentado. Esto lo llevó a concluir la presencia de una forma de vida que podía existir aún en ausencia del oxígeno. Esto llevó al establecimiento de los conceptos de vida aeróbica (con oxígeno) y anaeróbica (sin oxígeno). El proceso de inhibir la fermentación a través del oxígeno es conocido como el Efecto Pasteur, este descubrimiento definía la anaerobiosis.

Uno de los datos mas importantes de Pasteur fue el descubrimiento y creación de la vacuna contra la rabia. En 1880 concentró su atención en la rabia, una enfermedad mortal con síntomas horribles que causa una muerte lenta y dolorosa. Pasteur había ensayado una vacuna en perros, pero le preocupaba hacerlo en humanos.

Se enfrentó a ese dilema con Joseph Meister, un niño al que lo había mordido un animal rabioso. No estaba seguro de que Joseph desarrollaría la versión humana de la rabia, pero ensayó el tratamiento de todas maneras y finalmente Joseph sobrevivió.

Resultado de imagen para pasteur y la rabia
Joseph Meister, primer individuo en recibir la vacuna contra la rabia.

Sustentado en los resultados de su experimento con el matraz valido su “Teoría de los Gérmenes”, con lo que aclaro un gran dilema filosófico sobre el origen de la vida. Los resultados que obtuvo el joven Meister hacen que la demanda crezca desmesuradamente en toda Europa y encamina a Pasteur hacia la erradicación de otras enfermedades como la difteria inoculando a dos de sus ayudantes (Emile Roux y Alexandre Yersin)  y luego volviéndolos inmunes, en la actualidad la lucha contra la difteria es una de las mas exitosas desde el punto de vista medico puesto que alrededor del 85% de los niños de todo el mundo son inmunizados.

Esta demanda por vacunas hizo necesaria la creación de un centro de investigaciones que lo fundo Pasteur en 1887 y que lleva su mismo nombre hasta la actualidad. Hoy es uno de los principales centros de investigación, con más de 100 unidades de investigación, 500 científicos permanentes y aproximadamente 2700 personas que trabajan en este campo. Los logros del Instituto Pasteur son un mayor entendimiento de afecciones de origen infeccioso, y ha importantes contribuciones en el ámbito de tratamientos, prevención y curas de enfermedades infecciosas que existen hasta hoy como la difteria, fiebre tifoidea, tuberculosis entre otras.

Resultado de imagen para instituto luis pasteur

Finalmente Pasteur continuó dirigiendo el Instituto en París, pero su salud se fue deteriorando. Tras otro derrame, su parálisis empeoró. Murió a los 72 años de edad y  Francia lo trató como un héroe nacional. Fue enterrado en la catedral de Notre-Dame. siendo uno de los científicos de mayor relevancia en la historia humana.

REFERENCIAS:

  • Norberto J. Palleroni.(1970). Principios Generales de Microbiología. Departamento de Bacteriología e Inmunología de la Universidad de California (Estados Unidos). Programa Regional de Desarrollo Científico y Tecnológico. Departamento de Asuntos Científicos. Secretaría General de la Organización de Estados Americanos. Washington, D.C. pp. 2-3.
  • Madigan M., Martinko J., & Parker Jack (2004). Brock Biología de los Microorganismos. Pasteur y el fin de la generación espontánea. 10º Edición. Pearsons Prentice Hall. Madrid-España. pp. 10-12.

 

Resultado de imagen para luis pasteur billete

Francia : 5 Francs 1966 ( Louis Pasteur ) SC-

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

NUTRIGENÓMICA

WhatsApp Image 2019-02-22 at 7.45.31 PM

Mackilff Carolina [1]

[1] ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO /FACULTAD DE SALUD PÚBLICA / ESCUELA DE NUTRICIÓN Y DIETÉTICA

TODOS LOS DERECHOS RESERVADOS © Copyright 2019

     La definición inicial de nutrigenómica hacia referencia a los efectos que los nutrientes y/o alimentos bioactivos sobre la expresión de los genes de un individuo. Hoy en día esta definición es más amplia puesto que también involucra los estudios sobre los factores nutricionales que actúan protegiendo el genoma. Esta nueva ciencia busca entender la influencia que tienen los componentes de la dieta sobre el genoma, el transcriptoma, el proteoma y el metaboloma. La nutrigenómica sentó sus bases a finales del siglo XVIII, sin embargo, las antiguas civilizaciones de Egipto, Grecia, Roma, Persia, China y la India ya eran conscientes del vínculo existente entre la alimentación y la salud.

Resultado de imagen para egipto y nutricion
Ofrendas de alimentos en la tumba de Menna (1400 A.E.C.). Se ven, entre otros alimentos patos, peces y ánforas de vino.

Nuestra relación con los alimentos es compleja y se encuentra en constante cambio. En la actualidad sabemos que desde la lactancia, la expresión de nuestros genes, se ve influenciada por los nutrientes que contiene. Asimismo, las diferencias regionales en la comida y la cultura han dejado su huella en nuestro genoma. Los nutrientes desde una perspectiva nutrigenómica actúan como señales, las cuales son detectadas por los sistemas sensores que tienen nuestras células, lo que influencia directamente sobre la expresión de los genes y posteriormente en la producción de metabolitos.

Imagen relacionada

La nutrigenómica tiene un vínculo estrecho con la epigenética, que estudia las modificaciones del ADN y proteínas que pueden causar cambios en la estructura de la cromatina, sin cambiar la secuencia de los nucleótidos. Un ejemplo de esta interacción es el suplemento de ácido fólico, antes y durante el embarazo, el cual disminuye el riesgo de que se presenten defectos del tubo neural, esto a través de favorecer la metilación del ADN.

Imagen relacionada
El ácido fólico es un tipo de vitamina B. Es la forma artificial (sintética) del folato que se encuentra en suplementos y se le agrega a los alimentos.

La nutrigenómica nos muestra una nueva forma de visualizar a la nutrición, la cual permitirá una mejor comprensión de cómo los alimentos interfieren con la expresión de los genes y cómo el organismo responde a estas interferencias. Esto seguramente derivará en estrategias y programas que permitan alcanzar una dieta saludable que nos conduzcan a una mejor calidad de vida.

  • Nutrigenómica propiamente dicha, que estudia el efecto de los nutrientes en la actividad génica.
  • La nutrigenética, que analiza cómo la variabilidad del genoma afecta a la manera en que utilizamos los nutrientes, y cómo esta variabilidad está ligada a la aparición de enfermedades.

Resultado de imagen para nutrigenetica

 

APLICACIONES DE LA NUTRIGENÓMICA

Desarrollar nuevos sistemas de detección y autenticación de ingredientes, presencia de microorganismos, residuos alérgenos, efectos del procesado de los alimentos sobre la eficacia de los componentes, etc. Que permitirán incrementar la seguridad alimentaria, especialmente entre las poblaciones con mayor riesgo.

Ámbito clínico: utilizado como una herramienta para el tratamiento de las diferentes enfermedades.

Ámbito poblacional: utilizado como herramienta preventiva y de tratamiento de la obesidad y la enfermedades cardiovasculares entre otras.

Intervención en los periodos críticos del desarrollo y la capacidad de modificar la susceptibilidad genética a ciertas enfermedades a través de la alimentación.

Resultado de imagen para nutrigenetica

RETOS Y ALCANCES DE LA NUTRIGENÓMICA

Es importante identificar la nutridinámica de los alimentos, es decir como interaccionan con el organismo, para personalizar la dieta de un individuo con respecto a la expresión de su genoma, así contribuiremos de manera efectiva a controlar patologías que se pueden adquirir.

NUTRIGENÓMICA Y MEDICINA CLÍNICA.

Las posibles aplicaciones terapéuticas y preventivas de la genómica nutricional son amplias: en personas con deficiencias enzimáticas, predisposición Genética para enfermedades complejas como dislipidemias, diabetes y cáncer o en personas que ya las padezcan, en personas con alteraciones del estado de ánimo o memoria, en el proceso de envejecimiento, en mujeres embarazadas, e incluso en personas sanas como método preventivo.

Imagen relacionada

NUEVAS TECNOLOGÍAS EN LA NUTRIGENÓMICA.

La nutrigenómica utiliza las técnicas tradicionales en metabolismo y nutrición; pero también las nuevas tecnologías bioquímicas y en particular las denominadas tecnologías ómicas (transcriptòmico, proteómico, metabólico) que se nutren de los rápidos avances en el conocimiento de los genes que conforman el genoma y se benefician de los grandes progresos en el conocimiento de la bioquímica y la fisiología humana y en concrétamente del metabolismo.

HERRAMIENTAS DE LA NUTRIGENÓMICA.

Actualmente se propone un enfoque más global y ambicioso: el fenotipo nutricional con un enfoque genómico y metabólico. Basado en un los micro ensayos de ADN complementario, utilizados para la expresión génica en condiciones de normalidad o estados patológicos así como para la caracterización de la respuesta genómica que se desencadenarían ante un fármaco específico.

  • La cromatografía de gases con espectrometría de masas.
  • La cromatografía líquida o la electroforesis por capilaridad acoplada a la espectrometría de masas.

Resultado de imagen para cromatografia de gases
Equipo cromatografía Gases/Masas/Masas

POSTULADOS DE LA NUTRIGENÓMICA

  • Bajo ciertas circunstancias y en algunos individuos la dieta puede ser un factor de riesgo importante para varias enfermedades.
  • Las sustancias químicas comunes en la dieta alteran de manera directa o indirecta la expresión genética o la estructura genética.
  • La influencia de la dieta en la salud depende de la constitución genética del individuo.
  • Algunos genes o sus variantes normales comunes son regulados por la dieta, lo cual puede jugar un papel en las enfermedades crónicas.
  • Las intervenciones dietéticas basadas en el conocimiento de los requerimientos nutricionales, el genotipo pueden ser utilizadas para desarrollar planes nutrición individual que optimicen la salud.

MECANISMOS DE LA NUTRIGENÓMICA

Intentos por confirmar ciertos inventos han llevado a la nutrigenómica a realizar investigaciones entre genes nutrientes, aunque interacciones no resultan ajenas algunas son inconsistentes al momento de evaluar los resultados.

 

¿POR QUÉ LA NUTRIGENÓMICA ES LLAMADA LA NUTRICIÓN PERSONALIZADA?

Es llamada la nutrición personalizada ya que busca que a través de la investigación del genoma se lleve a que una persona pueda adquirir una dieta individual que contraste con la expresión de su genoma y así pueda tener una vida amable con su genoma.

NUTRIGENOMICA EN LA MEDICINA CARDIOVASCULAR

La dieta y las enfermedades cardiovasculares: la dieta siempre ha sido considerada como uno de los principales factores de riesgo causante de las enfermedades cardiovasculares, otros factores que intervienen son el cambio de comportamiento, las modas, la presión de los medios de comunicación, el sedentarismo, intervenciones deficientes en materia de salud.

Resultado de imagen para medicina cardiologia

NUTRIGENÓMICA, OBESIDAD Y SALUD PÚBLICA

Una intervención nutricional en periodos críticos del desarrollo y la capacidad de modificar la susceptibilidad genética a ciertas enfermedades a través de la alimentación es el gran reto de la nutrigenómica, más allá del diseño de dietas o alimentos funcionales personalizados.

Resultado de imagen para obesidad

INTERACCIONES ENTRE GENES Y NUTRIENTES

GENÓMICA NUTRICIONAL

Variaciones genéticas y requerimientos dietéticos, Interacciones directas entre genes y nutrientes e interacciones epigenéticas “Entendiendo la regulación epigenómica como una adaptación al entorno, es por tanto imprescindible la preservación del epigenoma a lo largo de la vida. La influencia de la alimentación en este sentido no se limita a las acciones directas de los nutrientes presentes en los alimentos (colina, ácido fólico, vitamina B6, B12) sobre la conservación de los patrones de metilación epigenéticos. Otros componentes (aditivos, pesticidas, tóxicos) pueden ser capaces de producir alteraciones en la metilación del ADN.” Situación actual de la nutrigenómica, (esperanza o realidad).

Las investigaciones actuales nos muestran que aunque existen unas pautas generales pueden que no se adecuen a las necesidades de todo el mundo. Cada vez se hace más evidente que los nutrientes interaccionan con los genes y esto parece indicar que ciertos alimentos con compuestos bioactivos son capaces de interactuar con regiones del genoma para conseguir una acción protectora frente a algunos mecanismos de iniciación de enfermedades mientras que otros pueden provocar el efecto contrario.

La genómica nutricional podría considerarse de gran importancia en el área de la salud pública porque permitiría que desde el momento de nacer se tuviese en cuenta los polimorfismos “informativos” para tenerlos en cuenta en forma de predecir la predisposición genética futura a las enfermedades, facilitando la implantación de técnicas de prevención (consejos dietéticos, estilo de vida, alimentos funcionales para determinados perfiles genéticos, etc.).

POLIMORFISMO EN LA EXPRESIÓN Y REGULACIÓN GENÉTICA

El polimorfismo genético hace referencia a la existencia en una población de múltiples alelos de un gen. Es decir, un polimorfismo es una variación en la secuencia de un lugar determinado del ADN en los cromosomas (locus) entre los individuos de una población. Hablamos de polimorfismo (que viene de las palabras griegas “poli” -múltiples- y “morfismo” -forma-) cuando estas formas representan al menos al 1% de la población.

Resultado de imagen para polimorfismo genetico

Aquellos polimorfismos que afectan a la secuencia codificante o reguladora y que producen cambios importantes en la estructura de la proteína o en el mecanismo de regulación de la expresión, pueden traducirse en diferentes fenotipos (por ejemplo, el color de los ojos o el color de cabello).

Tipos de polimorfismo

Resultado de imagen para polimorfismo en secuencia

  • Polimorfismo de Secuencia

Son aquellos donde el orden de los nucleótidos se ve alterado. Normalmente, al tratarse del mismo locus su diferencia no es muy notable, pero no forman exactamente la misma secuencia. Una clase de estos polimorfismos son los SNPs (Single Nucleotide Polimorphism) que afectan a un sólo nucleótido, es decir, el cambio de una base (A, T, C, G) dentro de la secuencia del ADN.

  • Polimorfismo de Longitud

Son variantes del mismo locus pero que se diferencian por la longitud, es decir el número de nucleótidos dentro del fragmento de ADN. Cada polimorfismo tiene en sus extremos una secuencia que delimita su posición y permite identificarlo. La mayoría de estos polimorfismos de longitud son secuencias repetitivas en tándem; es decir, una serie ordenada de nucleótidos más corta que se repite una y otra vez. Las veces que cada secuencia se repite varían, por lo que cuantas  más repeticiones se den, más larga será la longitud del locus del ADN total.

  • Polimorfismo de Nucleótido Único

Es una variación en la secuencia de ADN que afecta a una sola base (adenina (A), timina (T), citosina (C) o guanina (G)) de una secuencia del genoma. Estas variaciones tienen la cualidad de hacernos más fuertes o más débiles frente al desarrollo de enfermedades o la absorción de medicamentos, haciendo de los SNPs la base fundamental de nuestros estudios y la piedra angular del Mapa de Salud.

EJEMPLOS:

  • Los Grupos Sanguíneos ABO

Los grupos sanguíneos son creados por moléculas presentes en la superficie de las células rojas de la sangre (y a menudo en otras células también). Los grupos sanguíneos ABO fueron los primeros en ser descubiertos (en 1900), y son los más importantes para asegurar las transfusiones de sangre seguras.

Resultado de imagen para Los Grupos Sanguíneos ABO

  • El Factor RH

Los antígenos Rh son proteínas transmembrana con bucles expuestos en la superficie de las células rojas de la sangre. Parecen ser utilizado para el transporte de dióxido de carbono y / o amoníaco a través de la membrana plasmática.

Resultado de imagen para el factor rh de la sangre

  • El Complejo Mayor de Histocompatibilidad (MHC)

El complejo mayor de Histocompatibilidad es una familia de genes cuyos productos están implicados en la diferenciación de lo propio y lo ajeno en el sistema inmunitario.

REGULACIÓN DE LA EXPRESIÓN GÉNICA: MÚLTIPLE Y COMPLEJA

  • El estudio de la expresión genética a escala genómica ha sido un avance crucial para establecer que la variación de la expresión genética entre una persona y otra es un fenómeno común y que se vincula con un fenotipo.
  • El propósito de esta revisión es resumir los avances recientes de las medidas ideadas para la identificación de SNP en regiones reguladoras (rSNP), su validación funcional y el estudio de su profundo efecto fisiopatológico consecutivo a la sobreexpresión, subexpresión o expresión aberrante de un gen.
  • Se analiza el hecho de que la identificación de SNP reguladores (rSNP) abre un campo promisorio a la búsqueda de determinantes genéticos de afecciones de origen multifactorial. Como preámbulo, se presenta una breve introducción a los conceptos actuales sobre la regulación de la expresión genética. Los aspectos generales de la búsqueda de determinantes genéticos en enfermedades complejas se han descrito en otras investigaciones.

      Factores Externos

  1. Genoma: cromatina, histonas, metilación del ADN (epigenética)
  2. Transcripción: Factores de transcripción
  3. Procesado y transporte del ARNm
  4. Degradación o inhibición de la traducción de ARNm por ARN de interferencia o silenciación (microARNs)

INTERRELACIÓN CON ASPECTOS PROTEÓMICOS Y METABOLÓMICOS

PROTEÓMICA

La proteómica es el análisis del proteoma, el conjunto de proteínas presentes en las células o tejidos, el proteoma es dinámico en el sentido de que cambia en función de las condiciones ambientales y otros factores, y de gran interés para la nutrigenómica.

Imagen relacionada

Características

  • La descripción del proteoma permite tener una imagen dinámica de todas las proteínas expresadas, en un momento dado y bajo determinadas condiciones concretas de tiempo y ambiente.
  • La proteómica es una ciencia relativamente reciente. Para su despegue definitivo, ha sido necesaria la consolidación definitiva de la espectrometría de masas como técnica aplicada al análisis de moléculas biológicas y el crecimiento exponencial en el número de entradas correspondientes a genes y/o proteínas en las bases de datos.
  • Para entender las bases genéticas de algunas enfermedades, se debe estudiar tanto el proteoma como el genoma de los individuos que las presentan. El cáncer es una de las enfermedades más estudiadas y para detectarlo en sus inicios se utiliza la aproximación proteómica, a través de la identificación de proteínas cuya expresión se ve afectada durante el proceso de la enfermedad.

METABOLÓMICA

Es el estudio y comparación de los metabolomas, es decir, la colección de todos los metabolitos (moléculas de bajo peso molecular) presentes en una célula, tejido u organismo en un momento dado. Estos metabolitos incluyen a intermediarios del metabolismo, hormonas y otras moléculas de señalización, y a metabolitos secundarios.

APLICACIONES PRESENTES Y FUTURAS DE LA METABOLÓMICA

  • Un enorme potencial en la monitorización de intervenciones nutricionales, a partir de la medida del cambio provocado por un determinado alimento (o régimen) sobre determinados grupos de metabolitos, especialmente los triglicéridos y colesteroles.
  • Muy eficaz en la monitorización de los transplantes de órganos, ya que a partir de una muestra de orina o suero, permite analizar la evolución de un conjunto de metabolitos que  nos indican, en estadios incipientes,  si se producirá o no el rechazo del órgano implantado.
  • Un ámbito de aplicación emergente es el diagnóstico de enfermedades, especialmente en cáncer, enfermedades neurológicas y metabólicas.  En un estudio reciente (5) se ha comprobado que la sarcosina es un potencial biomarcador del cáncer de próstata; en el caso de confirmarse el estudio, el impacto clínico sería enorme, ya que podría diagnosticarse la enfermedad a partir de un simple análisis de orina.
  • Otro ámbito realmente interesante al que la  investigación metabolómica puede contribuir es la detección de factores de riesgo en poblaciones.  A partir de un análisis de orina (o suero), sería realmente extraordinario poder conocer para un individuo determinado, qué factores de riesgo presenta, a qué tipo de enfermedades está predispuesto (antes de desarrollarlas), y una estimación sobre la probabilidad de desarrollarlas.

Resultado de imagen para METABOLÓMICA

INTERACCIÓN GEN DIETA

El concepto de la nutrición personalizada basada en los genes, también conocida como nutrigenética o nutrigenómica, no es nuevo. Su aplicación en la práctica médica apareció en el siglo pasado como medida necesaria para la prevenir los graves efectos, a veces letales, de errores congénitos del metabolismo

Como por ejemplo la fenilcetonuria y la galactosemia. Estos, como su nombre indica, son hereditarios y debidos a mutaciones genéticas que alteran el metabolismo del individuo pero que, a menudo, pueden ser subsanados mediante regímenes dietéticos personalizados. Estos errores metabólicos son poco frecuentes (menos de 1 de cada diez mil nacimientos) en la población, de ahí que se denominen “enfermedades raras”. Sin embargo, a pesar de su rareza, el impacto a nivel individual y familiar en aquellos que lo padecen puede ser devastador. Afortunadamente, la manifestación de la enfermedad asociada a estos defectos metabólicos o metabolopatías puede ser eliminada totalmente –o al menos disminuida en gran medida gracias a los programas de detección precoz neonatal de errores congénitos del metabolismo y a la instauración del tratamiento paliativo (ej. dieta personalizada). Así pues, las enfermedades raras innatas y monogénicas – así como el desarrollo por la industria alimentaria y farmacéutica de productos diseñados para ciertos genes – fueron la primera aplicación de la nutrigenómica.

LOS ALIMENTOS ESCULPEN EL GENOMA

La baja frecuencia de las metabolopatías “raras” se debe a la carencia de una ventaja evolutiva asociada a las mutaciones que la causan. Sin embargo, otras mutaciones han contribuido de manera muy importante a los hábitos alimentarios de la población, así como a las diferencias interindividuales en el consumo de alimentos más allá de las resultantes de nuestros gustos peculiares.

Desde el punto de vista de la nutrición, el depender de un amplio espectro de productos nos daba la variedad predicada en una dieta saludable. Lo que este estilo de vida ancestral no nos daba era estabilidad ya que lo que primaba era el nomadismo. Por el contrario, la agricultura proporcionó una “estabilidad” que pudo desencadenar un gran crecimiento demográfico. El compromiso fue el perder la variedad alimentaria al depender de una pequeña fracción de cosechas que aprendimos a cultivar y de animales que conseguimos domesticar.

Resultado de imagen para alimentos y genes

El problema más acuciante desde el punto de vista de la salud pública son las enfermedades complejas, comunes y poligénicas que se han clasificado como epidémicas en los países industrializados. Para su prevención, se han ido diseñando diferentes guías prácticas de alimentación, que en sus versiones más recientes adoptaron las formas de pirámide o de plato. Sin embargo, estas recomendaciones no tienen en cuenta la realidad biológica de nuestra individualidad genética y no están además optimizadas para las diferentes fases de nuestras vidas. Al objeto de incorporar la genética las recomendaciones nutricionales se iniciaron, hace ya más de dos décadas, estudios de identificación de variaciones genéticas en rutas metabólicas de interés (por ejemplo el metabolismo de las lipoproteínas) al objeto de acumular conocimiento al respecto de cómo algunas de estas variantes podían predecir desajustes metabólicos y riesgo de enfermedad, así como la respuesta a diferentes componentes de la dieta.

Aunque los genes, el genoma, y la genómica han ocupado desde hace años el estrellato de la prensa científica y popular, no olvidemos que al fin y al cabo las proteínas son las que hacen la mayoría del trabajo y forman la mayoría de las estructuras.

De momento, una de las áreas más activas de adquisición, almacenamiento, tratamiento e interpretación de datos a gran escala corresponde al estudio de las variaciones del genoma humano. Para ello lo primero que necesitamos es obtener una imagen detallada del mismo. Es decir, de cómo las regiones codificantes y otras secuencias del genoma (recordemos que el 98% del mismo está en esa sección de “otras”) funcionan y se coordinan entre ellas y en respuesta a factores ambientales (por ejemplo, la dieta). Este conocimiento debería suponer un impacto tremendo en la manera en que las enfermedades, o mejor dicho el riesgo a padecerlas, son prevenidas, diagnosticadas y como última medida tratadas. Para ello vamos a necesitar una serie de avances, algunos de ellos tecnológicos y otros conceptuales, referentes a cómo asumimos estas revoluciones en la sociedad. El primer paso incluye el desarrollo de pruebas genéticas fiables que posibiliten un diagnóstico preciso del riesgo de un individuo asintomático de padecer la enfermedad, en muchos casos con décadas de antelación.

Resultado de imagen para pruebas genéticas

De hecho, cientos de test genéticos ya se comercializan en la actualidad para usos clínicos y un número probablemente mucho mayor se encuentra en fase de desarrollo. Bien es verdad que la mayoría de los que ya están en el mercado y además son fiables lidian con enfermedades monogénicas poco comunes. Este hecho contrasta con lo que ocurre con las enfermedades más comunes, en las que gran cantidad de genes pueden estar implicados. Este es el caso de la fibrosis quística, de la distrofia muscular de Duchenne, de varias anemias, o de la enfermedad de Huntington por citar alguna. El aspecto positivo es que los test genéticos pueden predecir estas enfermedades con gran precisión; el negativo es que todavía hay poco que podamos hacer para prevenir o paliar los efectos de muchas de ellas. Más recientemente las pruebas genéticas están comenzando a penetrar el mercado de enfermedades mucho más comunes, pero también mucho más complejas dado el número de factores implicados. Entre ellas se encuentran los test para la detección de diferentes tipos de cánceres, como el de mama, el de ovario y el de colon. Estas pruebas tienen todavía grandes limitaciones, pero pueden utilizarse para hacer estimación de riesgo en individuos asintomáticos con un historial familiar de la enfermedad. Tales pruebas genéticas podrían ayudar a los médicos a atender al paciente de una manera más eficaz.

Resultado de imagen para alimentos y genes

Durante muchos años, los estudios de nutrigenómica enfocados hacia las enfermedades comunes de la población (obesidad, diabetes, cáncer, cardiovasculares, etc.) se han llevado a cabo a imagen y semejanza de los estudios de las enfermedades monogénicas raras. Es decir, limitando los estudios a una variante en un solo gen, un factor de riesgo (ej. Colesterol en plasma) y un único nutriente (ej. grasa saturada). De esta manera se ha conseguido establecer el concepto de la interacción gen-dieta y se ha demostrado su potencial de aplicación clínica en casos específicos. Algunos ejemplos dignos de destacar incluyen interacciones entre una variante funcional del gen de la lipasa hepática (LIPC -514 C/T), el consumo habitual de grasa y los niveles de colesterol en HDL; o el de otra variante funcional, en este caso en el gen de la apolipoproteinaA2 (APOA2 -265 T/C), consumo de grasa saturada y el riesgo de obesidad.

La lipasa hepática es un enzima producido principalmente en el hígado cuya función principal es la hidrólisis de fosfolípidos y triglicéridos en lipoproteínas plasmáticas. Su actividad se ha asociado con niveles en plasma de estas lipoproteínas, especialmente las HDL. El gen que la codifica está localizado en el brazo largo del cromosoma 15 y sus variantes han sido estudiadas en relación a diferentes dislipidemias, así como el riesgo de enfermedad cardiovascular. Una de es-tos polimorfismos es conocido como LIPC -514 C/T, localizado en la zona promotora del gen, es decir la región que interacciona con factores que determinan cuando y en qué niveles el gen se expresa en respuesta a las necesidades del organismo. El alelo más común en las poblaciones de origen europeo se caracteriza por la presencia de C en esta posición, mientras que la forma mutada es la que contiene T en este locus. La frecuencia varía en diferentes grupos étnicos siendo más alta en asiáticos y africanos. Lo interesante de este polimorfismo, desde el punto de vista de la nutrigenómica, es su uso potencial para clasificar la respuesta de HDL al consumo de grasa en la dieta. En un estudio llevado a cabo por nuestro grupo en la población del Estudio de Framingham demostramos una respuesta diametralmente opuesta del colesterol en HDL al consumo de grasa en los homocigotos (TT) para el alelo menos común y en aquellos homocigotos para el alelo más común (CC). Es decir, en sujetos que tenían el genotipo CC, el consumo de grasa estaba asociado directamente con los niveles de colesterol en HDL (más consumo de grasa, más colesterol HDL). Por lo tanto, estos sujetos podrían consumir un amplio espectro de dietas, desde las bajas a las altas en grasa, sin modificar su riesgo cardiovascular ya que los ni-veles de HDL parecen ajustarse para mantener la relación entre HDL (protectora) y LDL (aterogénica) constante independientemente de la dieta consumida. Este no es el caso de los sujetos con el genotipo TT, ya que un mayor consumo de grasa está asociado con niveles más bajos de colesterol en HDL. Esto se traduce desde el punto de vista clínico y de asesoramiento nutricional en la necesidad/recomendación de que estos sujetos reduzcan su consumo de grasa en la dieta al objeto de mantener los niveles de colesterol HDL en niveles saludables. Estos resulta-dos también ofrecen una explicación parcial acerca de por qué los resultados de los estudios poblacionales e incluso de intervención son tan variables ya que los mismos dependerán en parte de la constitución genética de los participantes.

De esta manera vamos viendo aparecer en la literatura estudios de interacción gen-dieta que incluyen decenas de miles de sujetos. Interacciones genes-dieta y sus implicaciones en la práctica clínica.

Al estudio conjunto de múltiples genes e incluso barridos completos del genoma. Gracias a ello podemos empezar a vislumbrar ya esas aplicaciones clínicas que guiarán al médico, al profesional de la salud a distribuir el portafolio de recomendaciones dietéticas (macronutrientes y micro-nutrientes) y conductuales comportamientos (actividad física, etc.) acordes con las necesidades reales del individuo basado en su genoma/genotipo. Un ejemplo del progreso llevado a cabo utilizando estas nuevas aproximaciones al estudio de la nutrigenómica queda plasmado por un reciente estudio en el que se investigó la relación entre el consumo de bebidas azucaradas y el riesgo de obesidad modulado por la genética. Este es un tópico de gran relevancia debido al énfasis reciente en relacionar el consumo de estas bebidas con el aumento en la prevalencia de obesidad. Sin embargo, lo que desconocíamos era el papel de los genes en la relación entre el consumo de bebidas azucaradas y la obesidad. Al objeto de investigar dicha cuestión, el grupo de Lu Qi en Harvard analizó esta interacción en un consorcio que incluía tres estudios individuales con una población total de aproximadamente unos 33.000 sujetos, todos ellos con datos genéticos, antropométricos y nutricionales7.

Un score de predisposición genética a la obesidad fue calculado utilizando variantes en 32 genes asociados con el índice de masa corporal (IMC). En general, la asociación del score genético con IMC fue significativamente más marcada en aquellos sujetos con un score genético más alto – es decir, aquellos sujetos con una predisposición genética a la obesidad – que en aquellos con una baja predisposición genética a la obesidad, En consecuencia, el consumo de bebidas azucaradas dispara el riesgo de obesidad en aquellos que están genéticamente predispuestos. Por el contrario, en aquellos sujetos que no son susceptibles genéticamente a la obesidad, el consumo de bebidas azucaradas no se traducía en aumento de peso

Este es un ejemplo más de cómo el conocimiento de los genes podría ayudar a combatir la obesidad, primero mediante la determinación de la predisposición genética y segundo medianteunas recomendaciones más personalizadas y apropiadas para conseguir los objetivos. Por ejemplo, recomendando de manera específica el evitar o limitar las bebidas azucaradas en sujetos con alto score genético o limitando el consumo de grasas saturadas en aquellos que sean portadores del genotipo CC en el polimorfismo citado anteriormente para la APOA2.

Resultados más alentadores con relación a este mismo gen fueron aquellos derivados del estudio PREDIMED, que han demostrado que la dieta Mediterránea no sólo reduce la glucosa en ayunas de los individuos con el genotipo de riesgo (TT), de forma que se observa un mayor efecto protector en aquellos que más lo necesitan y no al contrario como en el ejemplo anterior,sino que además la adherencia a la dieta Mediterránea también disminuye su riesgo a sufrir. De esta forma, aquellos individuos con mayor riesgo a sufrir accidentes cerebrovasculares como consecuencia de su genotipo pueden anular esta predisposición adoptando una dieta Mediterránea. De forma similar, el consumo de vegetales y frutas ha sido también relacionado con una disminución del riesgo de infarto de miocardio y enfermedad cardiovascular en los estudios.

Imagen relacionada

INTERHEART y FINRISK, enfocados a estudiar las interacciones entre SNPs en la región y factores medioambientales como la dieta, la actividad física y el tabaquismo en 5 etnias diferentes (Europea, China, Sudasiática, Latinoamericana y Árabe) en el caso del INTERHEART y en una población Finlandesa en el caso del FINRISK obteniendo resultados consistentesapoyando su hipótesis.

La hora de considerar las interacciones entre nuestro genoma y la dieta tenemos que hacerlo de una manera global incluyendo el ambiente en su totalidad, poniendo énfasis en la relación tan estrecha que existe entre nuestro aparato digestivo y el cerebro. No debemos olvidar que “no estamos solos” y que estamos acompañados de genomas presentes en nuestro microbioma y cuya contribución al nuestro sólo estamos empezando a comprender. Otro as-pecto que será de gran interés será el epigenoma que apenas empezamos a entender y por último y como ya he destacado, el factor tiempo, la cronobiología, debe ocupar un papel importante en las investigaciones y las recomendaciones.La medicina del futuro se ha definido como de las cuatro “Ps” (predicción, prevención, personalización, participación). Para que así ocurra la genética debe jugar un papel esencial para conseguir esa elusiva salud y prolongarla el mayor tiempo posible.

Resultado de imagen para microbioma

APLICACIONES EN LA PRODUCCIÓN DE ALIMENTOS

En el año 2003 se hizo pública la secuencia que conforma nuestro genoma, el genoma humano. Somos poco más de veintitrés mil genes interaccionando con el ambiente. Pero lo que somos no depende de nuestro color de piel, ni de nuestro credo político o religioso; está escrito en ese alfabeto molecular y se traduce en función de nuestro ambiente físico o cultural. Es evidente el impacto de la genómica en nuestra vida cotidiana y ello ha dado lugar a la aparición de dos nuevas disciplinas científicas: la nutrigenética y la nutrigenómica. Por nutrigenética entendemos la disciplina científica que estudia el efecto de las variaciones genéticas entre individuos en la interacción entre dieta y enfermedad. Por nutrigenómica, aquella que estudia el efecto de los nutrientes de los alimentos sobre la expresión de nuestros genes. Con su empleo empezamos a entender cómo se va a definir en el futuro una alimentación a la carta en función de lo que podríamos llamar pasaporte genético.

Resultado de imagen para alimentos inteligentes

Puede que a muchos les aterre, pero quizás no lo vean tan grave si piensan en la ventaja que para un recién nacido puede suponer que sus padres sean informados sobre una posible mutación en su genoma que le predisponga a desarrollar una enfermedad cardiovascular si su alimentación no es adecuada. Está claro el enorme potencial que el conocimiento del genoma humano puede tener en las pautas de alimentación, pero no será menor el que tenga la secuenciación de los genomas de otros organismos vivos de interés agroalimentario. Hasta ahora se han secuenciado totalmente más de quinientos genomas distintos y hay más de setecientos proyectos de secuenciación en marcha. Algunos de ellos se refieren a animales, plantas o microorganismos de relevancia alimentaria, como, por ejemplo, el arroz, la levadura panadera, la bacteria Bifidobacterium bifidum —usada en muchos productos probióticos— o patógenos responsables de toxoinfecciones alimentarias,como Escherichia coli.

Imagen relacionada

El conocimiento de los genes que componen el genoma de estos organismos permite conocer sus genes clave para así definir estrategias de mejora por genética clásica —la llamada mejora asistida por marcadores—oporingeniería genética, desarrollar mecanismos de defensa frente a su patogenicidad o descubrir nuevas funciones fisioló- gicas con impacto nutricional. La secuenciación de genomas ha sido hasta ahora una técnica costosa en tiempo y dinero. Hace apenas un año, se describió una nueva técnica de secuenciación basada en el empleo de nanomateriales. Dicha técnica se denomina pirosecuenciación y permite secuenciar genomas de forma masiva en mucho menos tiempo y a un menor costo. Por ejemplo, la tecnología clásica de secuenciación aplicada en un laboratorio convencional tardaba en secuenciar el genoma de una bacteria láctica un tiempo variable de entre uno y tres años. Con la tecnología de pirosecunciación, es posible hacerlo en sólo ocho horas y por un precio en costo de materiales diez veces menor al de la tecnología convencional. Sin duda, la pirosecuenciación va a revolucionar la secuenciación de genomas y también de los llamados metagenomas.

Resultado de imagen para productos probióticos

Con este último sustantivo se hace referencia a la secuenciación de ADN extraído de un ecosistema, de modo que, a partir de los datos de secuencia, es posible inferir los organismos presentes en dicho nicho ecológico. Su aplicación en alimentación y nutrición es más próxima de lo que muchos imaginan. Por ejemplo,recientemente se han llevado a cabo proyectos de secuenciación masiva en voluntarios humanos, determinándose que más de trece mil cepas bacterianas distintas pueblan nuestro tracto digestivo. También mediante el empleo de metagenómica se han detectado diferencias en la composición de la flora microbiana del tracto digestivo de individuos obesos. Son los primeros resultados de una tecnología potente que permitirá conocer aspectos nuevos de nuestra fisiología y su relación con la alimentación. Podemos concluir por todo lo expuesto que el futuro de la genética en la alimentación es importante. La época en que los tecnólogos de alimentos eran expertos en el manejo de las tuberías de las instalaciones industriales ha quedado lejos. La nueva tecnología de alimentos precisa de nuevos profesionales que entiendan la importancia de la biotecnología y la genética y también que puedan discutir sobre conocimientos de otros campos del saber, como la farmacología, la nutrición, el control automático de sistemas o las nanotecnologías.

EL EMPLEO DIRECTO DE LA GENÉTICA EN LA ALIMENTACIÓN: MEJORA GENÉTICA DE LOS ALIMENTOS

La comunidad científica entiende por biotecnología el uso de un organismo vivo con un propósito industrial. Biotecnología de alimentos no es más que el uso de seres vivos en la producción de alimentos, lo que incluye toda la alimentación, porque todo cuanto comemos son, o han sido, seres vivos, ya sean animales, vegetales o alimentos o bebidas fermentadas por un microorganismo. Pero el consumidor, sobre todo el europeo, tiene una percepción distinta de lo que es y entiende que éste término hace referencia a la aplicación de la genética en la alimentación. En otras palabras, los consumidores europeos entienden por biotecnología de alimentos «poner genes en su sopa». Hay que recordar a los consumidores que la genética se ha aplicado en la alimentación desde que comenzó la agricultura y la ganadería. Desde entonces, el hombre ha mejorado empíricamente el genoma de las variedades vegetales comestibles, las razas animales y los fermentos. Esta mejora se ha fundamentado en la aparición de mutantes espontáneos, la variabilidad natural y la aplicación del cruce sexual o hibridación.

Resultado de imagen para transgénicos

De esta forma se han obtenido variedades de trigo con espigas incapaces de dispersar sus semillas en la naturaleza, pero capaces de generar unas harinas panaderas con inmejorable aptitud tecnológica, o patatas comestibles al contener niveles mínimos de alcaloides tóxicos. Desde hace treinta años, los científicos aíslan en el laboratorio fragmentos concretos que portan genes determinados. Esos genes se pueden variar en el tubo de ensayo y se pueden reintroducir en el organismo natural o en uno distinto generando un transgénico. Al global de estas técnicas lo llamamos ingeniería genética, y cuando se aplica en el diseño de un alimento surgen los llamados alimentos transgénicos. Hoy se comercializan muchos alimentos transgénicos en todo el mundo, sobre todo en Estados Unidos, Australia, Canadá y China. Los más conocidos son la soja resistente al herbicida glifosato y el maíz Bt, aunque existen muchos más. Son de gran importancia los que hacen referencia a la mejora nutricional de los alimentos. Desde algunas organizaciones ecologistas se acusa a los alimentos transgénicos de ser un veneno para la salud y el medio ambiente. No es cierto. Desde hace más de quince años, FAO, OCDE y OMS han establecido grupos de trabajo para evaluar la seguridad para el consumidor de los alimentos transgénicos. Se ha llevado a cabo una evaluación de riesgos sanitarios de todos los alimentos transgénicos comercializados atendiendo al contenido nutricional, la posible presencia de alérgenos y el nivel de toxicidad.

Son los alimentos más evaluados de la historia de la alimentación y no disponemos de un dato científico que indique que representen un riesgo para la salud del consumidor superior al que implica la ingestión del alimento convencional correspondiente. Este hecho ha sido puesto de manifiesto por la OMS en su página de Internet. Es interesante destacar que, tras la publicación de esta decisión, dichos grupos han variado su estrategia y apenas hablan de los riesgos sanitarios de los transgénicos pero sí de los riesgos ambientales. Ahí las cosas son menos claras, porque hay una falta de metodologías para analizar este tipo de riesgos que afectan tanto a las plantas transgénicas como a las convencionales. Aun así, debemos afirmar con contundencia que existen tres posibles riesgos: la transferencia de los genes exógenos desde la variedad transgénica a variedades silvestres, la pérdida de biodiversidad y los efectos dañinos que ciertas plantas transgénicas resistentes a insectos pueden tener sobre poblaciones de insectos distintos de aquellos contra los que protegen. Todos estos riesgos ya existen con las variedades convencionales. Por ello, la cuestión clave es conocer si el empleo de transgénicos acelerará la aparición de estos riesgos. Parece que no, siempre que se mantengan y mejoren las normas de evaluación que empleamos actualmente con las plantas transgénicas.

Resultado de imagen para mejoramiento genetico en alimentos

Finalmente, debemos considerarlos riesgos económicos. El 90% de los agricultores que utilizaron semillas transgénicas en el 2006 eran agricultores pobres de países en desarrollo. Una realidad muy lejana del estereotipo que hace de lo transgénico un negocio en manos de pocas compañías multinacionales. Pero conviene debatir acerca de la opinión del consumidor sobre los transgénicos. En general, y destacando la falta de formación e información en biotecnología de nuestra sociedad, así como la constante presencia de los grupos en contra en los medios de comunicación, los perciben como algo peligroso. Por ello resulta importante la divulgación de los datos reales que desde la ciencia tenemos de estos productos.

Alimentos “nutriactivos”

Lo más importante en este aspecto, es que la genómica nutricional permitirá cruzar la información genómica individual con la alimentación y los componentes de los alimentos, de modo que el efecto sea positivo para la salud del individuo. La idea es que los alimentos riesgosos puedan reemplazarse con otros potencialmente menos nocivos.

Resultado de imagen para Alimentos nutricionales

El perfil genómico individual puede ayudar a mejorar la nutrición y la salud, y en este nuevo escenario la genómica y la bioinformática cumplirán un papel crucial en la identificación de variantes genéticas que causen enfermedades, lo cual está siendo realizado mediante investigación de las bases de datos del genoma humano. En este sentido, es fundamental conocer los cambios que se producen dentro de la célula, sus modelos de interacción con el transcriptoma y el metaboloma, para poder personalizar los efectos de una dieta sana en la corrección de un metabolismo alterado. La comparación de un genotipo individual con una base de datos genómica permitirá la recomendación de nutriente individualizado genotipo-dependiente de acuerdo a los requerimientos y necesidades de cada individuo.

Los recientes desarrollos de la proteómica aplicados a la nutrición, están revolucionando los conceptos de alimentos “nutriactivos” como inductores de la expresión de ciertos genes y el consiguiente procesamiento de proteínas cuya acción es fundamental para el funcionamiento normal del metabolismo celular (metaboloma).

Referencias:

https://cefegen.es/blogs/polimorfismos-geneticos-definicion-ejemplos

Resultado de imagen para microbioma

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

La nutrigenética y nutrigenómica como herramientas de prevención de enfermedades no transmisibles

asdf

Valeria Flores Rea. [1]

[1] ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO /FACULTAD DE SALUD PÚBLICA / ESCUELA DE NUTRICIÓN Y DIETÉTICA

TODOS LOS DERECHOS RESERVADOS © Copyright 2019

     La nutrigenética es la rama de la genética que estudia la relación entre los genes y la respuesta individual a la dieta.  Es una rama de la genómica nutricional, que tiene como objetivo estudiar como las distintas variantes genéticas de las personas influyen en el metabolismo de los nutrientes, la dieta y las enfermedades asociadas a ésta. De forma análoga estudia nuestro ADN para conocer las predisposiciones negativas que nos afectan. Todos compartimos el 99,9% de esa información genética y es el 0,01% lo que nos hace diferentes y determina nuestras características antropométricas, fisiológicas, metabólicas y de comportamiento. Finalmente tiene como objetivo generar recomendaciones nutricionales de acuerdo con el acervo genético de las personas.

Imagen relacionada

¿CÓMO SE APLICA LA NUTRIGENÉTICA EN LA DIETA?

En la actualidad, los avances en  nutrigenética nos ayudan a establecer qué alimentación debemos seguir para prevenir una serie de enfermedades identificadas a partir del análisis de nuestro ADN y que pueden evitarse o modularse mediante unas pautas dietéticas concretas. De esta forma, se alcanza la máxima personalización de la dieta.

¿CÓMO FUNCIONA UN TEST NUTRIGENÉTICO?

Los test nutrigenéticos estudian el ADN a través de un análisis de saliva con el objetivo de observar e identificar las variables genéticas de la persona que le hacen reaccionar de manera distinta a los alimentos y tener mayor o menor predisposición a determinados problemas de salud.

Por ejemplo, se conocen más de 40 genes asociados al desarrollo de la obesidad. Una persona que tenga la mayoría de estos marcadores genéticos tendrá más probabilidades de ser obesa, si no cuida la dieta.

Resultado de imagen para obesidad

BASE CIENTÍFICA:

Debido a los procesos evolutivos, los seres humanos difieren en su ADN, precisamente en los llamados SNPs (abreviatura de “Single Nucleotide Polymorphism” (Polimorfismo de nucleótido simple) que influyen en la forma en que los individuos absorben y procesan los nutrientes.

  • La actividad fisiológica en el organismo humano que concierne el consumo o el transporte de los nutrientes también está conectado con diferentes variantes genéticas. Esta relación constituye la base de las ciencias nutrigenéticas.
  • Los diferentes procesos nutrigenéticos en el cuerpo humano puede implicar una ventaja en términos de selección natural. Así, por ejemplo, la evolución instó al ser humano a digerir la lactosa de la leche de vaca.

Imagen relacionada

 

MÉTODOS DE ANÁLISIS NUTRIGENÉTICOS

La identificación del genotipo necesario se lleva a cabo por medio de un análisis de sangre o de saliva. Posteriormente, se analiza el ADN de diferentes maneras. Una forma común de estudiar los datos genéticos es el llamado “gen candidato” cuando se identifica un posible gen de riesgo. Después de los experimentos en cultivos celulares, animales o seres humanos los científicos pueden establecer una correlación positiva o negativa entre la expresión de este gen candidato y los aspectos nutricionales.

OBESIDAD

Un objetivo importante para los investigadores nutrigenéticos es identificar los genes que hacen que algunas personas sean más susceptibles a la obesidad y las enfermedades relacionadas con la obesidad. La hipótesis “gen ahorrador” es un ejemplo de un factor nutrigenético en la obesidad. Actualmente se han detectado más de sesenta genes asociados con la obesidad. Avances actuales en la investigación nutrigenética demuestran potencialmente la existencia de genes ahorradores, así como también se empiezan a plantear contra-efectos con el fin de prevenir la obesidad y las enfermedades relacionadas con la obesidad.

Resultado de imagen para obesidad

Gracias a la nutrigenética los nutricionistas y médicos pueden individualizar las recomendaciones de salud y la dieta. De la misma manera, la medicina preventiva, diagnóstica y realiza terapias que podrían ser optimizadas. De hecho, los ensayos comparativos, como un estudio demuestran que los consejos de salud basados en los resultados de un análisis nutrigenético es más exitoso que los consejos de una dieta convencional.

GENÓMICA NUTRICIONAL

Genómica: es la ciencia que estudia las variaciones a nivel estructural del ADN. Además de ser la conformación de los genes y la variación poblacional de los polimorfismos genéticos.

Resultado de imagen para genomica

La genómica nutricional es la interacción de genes–nutrientes, siendo así la nutrigenética a la interacción gen – nutriente denominado también como polimorfismos y nutrigenómica a la interacción nutriente-gen denominado también como la expresión de los genes.

Así decimos que la nutrigenómica es la constitución genética que determina la respuesta a la ingesta de determinados nutrientes. Así, la genómica nutricional pretende contestar preguntas como: ¿por qué algunas personas que consumen muchas grasas no padecen enfermedad cardiovascular?, o ¿por qué hay personas que no consumen muchas grasas, pero tienen niveles altos de colesterol?. La respuesta a estas interrogantes probablemente se encuentre en la calidad y cantidad de enzimas y proteínas que intervienen en el metabolismo lipídico, que se encuentra determinada genéticamente en cada individuo.

Resultado de imagen para cardiaco

La genómica nutricional se basa en 4 principios:

  • Las dietas pueden ser un factor de riesgo importante para variar enfermedades;
  • Las sustancias químicas alteran directa o indirectamente la estructura genética;
  • La influencia de la dieta en la salud depende de la constitución genética del individuo; y
  • Las intervenciones dietéticas basadas en conocimientos nutricionales, estado nutricional y el genotipo pueden ser utilizadas para optimiza la salud de prevenir enfermedades crónicas.

Estos principios se basaron en dos hipótesis:

  1. La herencia genética confiere una amplia gama de posibles fenotipos y que las restricciones metabólicas – ambientales y la disponibilidad de nutrientes determinan el fenotipo final de un indicio.
  2. La suposición de que la progresión de un fenotipo saludable a un fenotipo enfermo crónico esta ligada a cambiar en la expresión genética o a diferencias en la actividad de enzimas y proteínas que alteran la respuesta a diferentes factores ambientales (incluida la dieta).

Siendo así Ambiente + Genotipo = Fenotipo

¿QUÉ NO ES LA GENÓMICA NUTRICIONAL?

  • La genómica nutricional no es una dieta milagro.
  • La genómica nutricional no da soluciones a corto plazo, pero si prevención a largo plazo.
  • La genómica nutricional tiene efectos que no se pueden compararse con los efectos farmacogenómicos.

Imagen relacionada

ENFERMEDADES RELACIONADAS CON AL NUTRIGENÓMICA

  • Aspectos Negativos: Se encontraron heredabilidades significativas de los fenotipos relacionados a las enfermedades relacionadas con alto grado de adiposidad, resistencia a la insulina y las enfermedades del llamado síndrome metabólico en poblaciones de América Latina, incluso existen genes candidatos para la aparición de diabetes tipo 2. La alimentación compulsiva relacionada a la obesidad, así como otros trastornos metabólicos poseen componentes genéticamente relevantes.
  • Aspectos Positivos: mejoramiento de las propiedades nutricionales de los alimentos tanto vegetales como los de origen animal.

 

DIETAS MODERNAS UTILIZANDO LA NUTRIGENÓMICA

Relaciona a los nutrientes con el metabolismo. La genómica nutricional ha demostrado que los alimentos modulan el balance de numerosos procesos fisiológicos que están directamente asociados con la expresión de los genes.

ENFERMEDADES METABÓLICAS

Se entienden por enfermedades metabólicas o del metabolismo aquellas que interfieren con los procesos bioquímicos del organismo involucrados en el crecimiento y conservación de la buena salud de los tejidos orgánicos, en la eliminación de productos de desecho y en la producción de energía para llevar a cabo las funciones corporales. Así, por ejemplo, el cuerpo puede tener un exceso o un déficit de determinadas sustancias (proteínas, grasas, hidratos de carbono). Este desequilibrio a menudo interfiere con las funciones normales de los tejidos y órganos del ser humano.

Resultado de imagen para enfermedades metabolicas

Las enzimas y las hormonas son los componentes responsables de las reacciones químicas del metabolismo. Los trastornos metabólicos se deben fundamentalmente a la escasez o demasiada audacia de enzimas u hormonas o al mal funcionamiento de las mismas. Entonces se produce una imposibilidad de la metabolización o una metabolización inadecuada de las sustancias químicas y esto puede conllevar a una falta de sustancias que son necesarias para el buen funcionamiento del organismo o a la aparición de toxinas como consecuencia de una mala metabolización.

Pueden ser hereditarias o adquiridas, pueden ser debidas a la interrupción de una cadena de síntesis por ausencia de una enzima a una anomalía endocrina o alimentaria puede afectar el equilibrio de los glúcidos, de los nucleótidos de los prótidos, de los lípidos los equilibrios ácido- básico, iónico, osmótico, hídrico, mineral, fosfocálcico, vitamínico, etc.

En pacientes con patologías médicas graves es frecuente el trastorno global de la función cerebral. Estas encefalopatías metabólicas con frecuencia comienzan por alteraciones en el estado de alerta (somnolencia) seguidas de agitación, confusión, delirium o psicosis, progresando a estupor o coma.

Las principales enfermedades metabólicas que afectan a la población actual son:

  • HIPERTIROIDISMO: Se caracteriza porque la tiroides produce demasiada hormona tiroidea.
  • HIPOTIROIDISMO: La tiroides produce poca hormona tiroidea.
  • DIABÉTES: Consiste en el exceso de glucosa en la sangre u otra.
  • OBESIDAD: Aunque esta enfermedad puede responder a muchas causas, algunas tienen su origen en problemas metabólicos. Ciertas enfermedades endocrinas como las alteraciones en la tiroides pueden desencadenar o favorecer la obesidad.
  • DISLIPEMIA: Alteración del metabolismo de las grasas.
  • HIPODIPILEMIA: Alteración del metabolismo de las grasas consistente en a presencia de bajos hipertiroidismo. Infecciones crónicas o estados inflamatorios, desnutrición, cáncer o abuso del alcohol, niveles de grasas en la sangre.
  • GALACTOSEMIA: Enfermedad metabólica congénita caracterizada por la imposibilidad de digerir adecuadamente la leche.
  • ALBINISMO: Falta de melanina.

Resultado de imagen para albinismo

Las enfermedades metabólicas pueden ocasionar problemas neurológicos, digestivos y hepáticos.

Las enfermedades metabólicas tratan de aquellas patologías causadas por anormalidades en sistemas enzimáticos implicados en el metabolismo intermediario. Las anormalidades pueden ser congénitas o adquiridas. Las congénitas son producidas por alteraciones genéticas que van a dar lugar a enzimas defectuosas (errores congénitos del metabolismo), mientras que las adquiridas son debidas a enfermedades de órganos endocrinos o al fallo de órganos metabólicamente activos. En las enfermedades metabólicas hereditarias el diagnóstico precoz es importante para conseguir un tratamiento efectivo.

Las enfermedades metabólicas o errores innatos del metabolismo son hereditarias, provocadas por el bloqueo de alguna de las diversas reacciones bioquímicas que ocurren dentro de las células del organismo. Estos bloqueos afectan con mayor frecuencia a la utilización de los diferentes grupos de alimentos como fuente de energía, pero también a la formación o degradación de las diversas moléculas que forman nuestro organismo.

En su mayoría se presentan en recién nacidos y niños, pero también puede afectar a adolescentes y adultos.

La enfermedad puede ocasionar daños a nivel neurológico, digestivo y hepático provocado retraso del desarrollo psicomotor, epilepsia, hipotonía o falta de fuerza muscular, falta de tolerancia al ejercicio, compromiso de conciencia recurrente, movimientos anormales (síndrome extra piramidal) falta de apetito, vómitos recurrentes, mal incremento de peso, desnutrición, hepatitis de causa poco clara, crecimiento anormal del hígado o del bazo e hipoglicemia o baja de azúcar en la sangre.

CAUSAS DE LAS ENFERMEDADES METABÓLICAS

¿PORQUÉ SE PRODUCE? Las enzimas y las hormonas son los componentes responsables de las reacciones químicas del metabolismo. Los trastornos metabólicos se deben fundamentalmente a la escasez o demasiada abundancia de enzimas u hormonas o al mal funcionamiento de las mismas.

En estos casos se produce una imposibilidad de metabolización o una metabolización adecuada de las sustancias químicas. Ello puede conllevar a una falta de sustancias que son necesarias para el buen funcionamiento del organismo o a la aparición de toxinas como consecuencia de una mala metabolización. En ambos casos pueden producir trastornos orgánicos.

Resultado de imagen para embarazo  y cigarrillo

CARACTERÍSTICAS DE LAS ENFERMEDADES METABÓLICAS

Las enzimas y las hormonas son los componentes responsables de las reacciones químicas del metabolismo. Los trastornos metabólicos se deben fundamentalmente a la escasez o demasiada abundancia de enzimas u hormonas o al mal funcionamiento de las mismas. Entonces se produce una imposibilidad de metabolización o una metabolización inadecuada de las sustancias químicas y esto puede conllevar a una falta de sustancias que son necesarias para el buen funcionamiento del organismo o a la aparición de toxinas como consecuencia de una mala metabolización.

Pueden ser hereditarias o adquiridas, ser debidas a la interrupción de una cadena de síntesis por ausencia de una enzima a un anomalía endocrina o alimentaria, puede afectar el equilibrio de los glúcidos (por ejemplo, diabetes, glucogénesis, galactosemia congénita) de los nucleótidos (por ejemplo, gota) de los prótidos (por ejemplo las aminoacidopatías) de los lípidos (por ejemplo, obesidad, dislipidosis), los equilibrios ácido básico, iónico, osmótico, hídrico, mineral, fosfocálcico, vitamínico,etc

En pacientes con patologías médica grave es frecuente el trastorno global de la función cerebral. Estas encefalopatías metabólicas con frecuencias comienzan por alteraciones en el estado de alerta (somnolencia), seguidas de agitación confusión, progresando a estupor y coma.

VARIABILIDAD EN LA RESPUESTA A LAS INTERVENCIONES DIETÉTICAS

Las intervenciones dietéticas se centran en la corrección de las prácticas y los hábitos personales. La adición de nutrientes a alimentos básicos se denomina “enriquecimiento”, mientras que la “suplementación” se refiere al aporte de determinados nutrientes o mezclas de nutrientes al margen de los alimentos.

Imagen relacionada

REVISIÓN DE LA EVALUACIÓN DIETÉTICA 

El estado nutricional es uno de los predictores más importante de riesgo en la salud.

DIETAS RICAS EN:

  • Frutas
  • Verduras
  • Granos enteros
  • Carne Magra de aves de corral
  • Pescado

Imagen relacionada

Inversamente asociadas con riesgo de enfermedades crónicas relacionadas con la edad:

  • Enfermedades cardiovasculares
  • Cáncer
  • Diabetes

DIETAS ALTAS EN:

  • Granos refinados
  • Azúcares agregados

Resultado de imagen para GRANOS REFINADOS

PERO BAJAS EN:

  • Alimentos de origen vegetal

Incrementan el riesgo de Obesidad y enfermedades relacionadas con la Obesidad:

  • Enfermedades cardiovasculares
  • Cáncer
  • Diabetes
  • La variabilidad del día a día en la ingesta de alimentos puede ser tan grande que puede ser difícil identificar cualquier patrón consistente subyacente.
  • La evaluación dietética es una tarea compleja tanto para investigadores como para clínicos.

La nutrición personalizada está cobrando cada día mayor relevancia para conseguir una mayor eficiencia en la consecución de los ON (cereales refinados). Tras décadas en las que se prestaba menos atención a las particularidades de cada persona en cuanto a preferencias alimentarias, dificultades en el seguimiento de las dietas, etc, los profesionales de la nutrición son cada vez más conscientes del mayor porcentaje de éxito en el resultado de una intervención dietética si se dedica una mayor atención a las características individuales de la persona participante para adaptar mejor las dietas.

Además de esta personalización basada en variables sociodemográficas (sexo, edad, nivel de estudios, etc.), conductuales, psico culturales y fenotípicas (mayor o menor peso, presencia o ausencia de hipercolesterolemia, hiperglucemia, etc.), existe también otro nivel más profundo de individualización de las dietas basado en el genoma. En este sentido, desde hace varias décadas, decenas de investigaciones han demostrado diferencias interindividuales en la respuesta fenotípica de los individuos a la dieta, fundamentalmente en el ámbito de las ECV, la obesidad, la DM, etc. Aunque en los estudios publicados se expresan los resultados de las intervenciones dietéticas como valores medios para los individuos analizados, lo cierto es que al examinar los datos de manera individual para cada participante en el estudio nos encontramos con una gran variabilidad en los resultados de la intervención.

Podemos encontrar individuos en los que la dieta apenas ha producido ningún cambio en el parámetro estudiado, otros en los que la dieta ha producido cambios más grandes que los esperados, y aquellos en los que la dieta produce el cambio medio esperado. Varios estudios han clasificado a los individuos en normorrespondedores, hiporrespondedores o hiperrespondedores en función de si su respuesta fenotípica a la dieta era la esperada, menor a la esperada o superior a la esperada, respectivamente. Sin embargo, a pesar del conocimiento de esta distinta respuesta interindividual a la dieta, los mecanismos que la explican no se conocen, ya que en décadas pasadas pocas veces los investigadores se han interesado por estudiar esta variabilidad de manera detallada.

Es más, en algunas ocasiones se ha atribuido la diferencia interindividual en las respuestas a las intervenciones dietéticas a un distinto cumplimiento de la dieta por parte de los participantes en los estudios, pero se ha comprobado que no siempre es así. Por ello, se piensa que el conocimiento del genoma humano puede ser muy importante para ayudar a descifrar los mecanismos moleculares que determinan dicha respuesta interindividual y generar así una serie de biomarcadores de respuesta que permitan conocer con antelación a la intervención dietética, el posible éxito de la misma.

Todavía no disponemos de estos biomarcadores genéticos para aplicarlos con validez en las intervenciones dietéticas destinadas a conseguir una nutrición personalizada, pero muchos grupos de investigación en todo el mundo están trabajando de manera rigurosa en la elucidación de los mismos y en un futuro próximo se espera disponer de paneles de tales biomarcadores para aplicarlos a las distintas intervenciones dietéticas específicas de cada problema de salud.

Resultado de imagen para indice de masa corporal

Generalidades del genoma humano y su aplicación en el estudio de la variabilidad

Aunque antes de la década de 1980 ya se había realizado la secuenciación de genes aislados de algunos organismos, así como de genomas de entidades subcelulares (algunos plásmidos y virus), el conocimiento del genoma humano era tremendamente limitado. Ante esta precariedad de conocimientos y siendo cada vez más reconocida la importancia de la dotación genética en los procesos de salud-enfermedad, no es de extrañar que en 1985 surgiera la iniciativa de secuenciar el genoma humano. A finales de los 80 y principios de los 90, se oficializa el inicio del denominado Proyecto Genoma Humano.

El siglo XXI comenzó con la publicación de los resultados de uno de los proyectos de mayor envergadura, colaboración internacional y potenciales repercusiones sobre la salud que se hayan realizado en todos los tiempos: el Proyecto Genoma Humano, cuya fecha oficial de finalización se dató en abril de 2003 para hacerla coincidir con los 50 años transcurridos desde que en abril de 1953 Watson y Crick describieran la estructura de la doble hélice del ADN.

Resultado de imagen para Watson y Crick
Watson y Crick

De acuerdo con la visión de Collins en la publicación conmemorativa de la finalización del Proyecto Genoma Humano, la secuenciación del genoma humano tan sólo constituye los cimientos de un edificio sobre el cual se tienen que levantar distintas plantas que suponen. En la actualidad, no sólo se ha determinado la secuencia de varios miles de millones de pares de bases en el genoma humano, sino que se han desarrollado instrumentos y técnicas que permiten obtener resultados de análisis genéticos cada vez más rápidos y económicos, al tiempo que se han realizado enormes esfuerzos con impresionantes frutos en el ámbito de la bioinformática con potentes bases de datos de secuencias, de proteínas de vías metabólicas, etc, que ponen a disposición de la comunidad científica una ingente cantidad de información nunca antes generada.

Por tanto cada día son más accesibles los chips que permiten realizar análisis de alta densidad de polimorfismos en el ADN de cada paciente, generando al mismo tiempo información sobre 500.000 (500 K), 1.000.000 (1.000 K) o un número mayor de polimorfismos genéticos. Las variaciones en el genoma no sólo se limitan a los polimorfismos de un solo nucleótido, conocidos como SNP por sus siglas en inglés (sencillo Nucleotide Polymorphism), y entre los que se encontraría por ejemplo el polimorfismo rs9939609 en el gen FTO (fat mass and obesity gene), recientemente relacionado con mayor riesgo de obesidad. En la Figura 2A, se presenta un esquema que contiene el nombre de los diferentes tipos de variaciones en el ADN y el rango de los tamaños de los fragmentos implicados. De acuerdo con el tamaño de los fragmentos, además de los SNP, podemos encontrar inserciones y deleciones de pequeñas secuencias de ADN en cualquier lugar de las distintas aplicaciones de la información generada por el mismo en varios ámbitos con creciente nivel de complejidad. Así, el genoma que pueden dar lugar a cambios de las pautas de lectura.

LINCOGRAFÍA DE REFERENCIA:

Resultado de imagen para GIF NUTRICION

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Aplicaciones de los Ácidos Carboxílicos y sus derivados

Lucía Jaramillo Cando. [1]

Lesly Espinoza Buitrón. [1]

Alejandro Aguirre F. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

INTRODUCCIÓN

Los ácidos carboxílicos son compuestos orgánicos usados en procesos químicos e industriales, que naturalmente provienen de grasas, aceites vegetales, lácteos, frutos cítricos. Se caracterizan por estar formados por un conjunto de átomos unidos entre sí mediante enlaces covalentes carbono-carbono, denominado grupo carboxilo, que cuando se unen a otros elementos como hidrógeno, oxígeno o nitrógeno, integrando una infinidad de compuestos diferentes así lo menciona (Cornejo Arteaga, 2017). Químicamente los ácidos carboxílicos son una serie homóloga en la que los compuestos presentan este grupo funcional (-COOH) mientras que la formula general en la que se muestran dichos ácidos es: CnH2n+1COOH.
Los ácidos carboxílicos son derivados de hidrocarburos en los que uno o más de los átomos de hidrógeno del hidrocarburo han sido reemplazados por un grupo carboxílico. Los primeros cuatro ácidos carboxílicos derivados de los alcanos son el ácido metanoico (HCOOH), el ácido etanoico (CH3COOH), el ácido propanoico (C2H5COOH) y el ácido butanoico (C3H7COOH).
Los ácidos carboxílicos al ser de los compuestos más abundantes en la naturaleza ameritan un estudio minucioso que complemente la formación principalmente del estudiante de la carrera de Química de Alimentos; la función química de los ácidos carboxílicos es de carbono primario que contiene tanto al carbonilo, así como el hidroxilo en sí mismo, se nombran anteponiendo la palabra ácido con el sufijo oico.

Palabras clave: carboxilo, química, carbono, ácido, grupo, carboxílico.

DESARROLLO DE LA INVESTIGACIÓN

Importancia de los ácidos carboxílicos en las industrias.

En términos generales no solamente los ácidos carboxílicos son importantes, sino el grupo carboxilo, del cual se generan una gran cantidad de compuestos que son usados por diferentes sectores industriales como en la industria alimentaria:

• Aditivos, conservantes (ácido sórbico y benzoico), regulador de alcalinidad, agente antimicrobiano, acidulante en bebidas carbonatadas.
• Ayudante a la maduración del queso suizo (ácido propiónico), elaboración de col fermentada y bebidas suaves (ácido láctico).
• Conservantes (Ácido sórbico y ácido benzoico).
• Regulador de la alcalinidad de muchos productos.
• Producción de refrescos.
• Agentes antimicrobianos ante la acción de los antioxidantes. En este caso, la tendencia son los antimicrobianos líquidos que posibiliten la bio-disponibilidad.
• Principal ingrediente del vinagre común (Ácido acético).
• Acidulante en bebidas carbonatadas y alimentos (Ácido cítrico y ácido láctico).
• Ayudante en la maduración del queso suizo (Ácido propiónico).
• Elaboración de queso, chucrut, col fermentada y bebidas suaves (Ácido láctico).

Resultado de imagen para acidos carboxílicos

El ácido fórmico en las agroindustrias y alimentos.

La agricultura es una actividad económica de alto impacto e importancia para el ser humano en las sociedades modernas, y en torno al uso de ácido fórmico este sector representa un porcentaje elevado de consumo por sus propiedades antibacterianas.
El ácido fórmico es un químico irritante presente en el veneno pulverizado de algunas especies de hormigas y en la secreción liberada por algunas ortigas, así lo menciona el portal especializado (ACIDO CLORHIDRICO.org, 2010).

Resultado de imagen para acido formico

El ácido metanoico o ácido fórmico es un conocido conservante antimicrobiano y pesticida, siendo entonces un importante aliado del sector agrícola y alimentario. Sin embargo el mismo es muy peligroso en altas concentraciones; al ser empleado como agente antimicrobiano se puede controlar el aparecimiento de bacterias de origen industrial o agrícola, éste al ser consumido en mínimas cantidades no ocasiona intoxicación alguna en humanos ni animales, por lo tanto es empleado como aditivo en alimentos de animales así como al ensilado producido como producto de la molienda y del cultivo, dicho ensilado es suministrado a animales de corral como vacas y bovinos.

Resultado de imagen para acido formicoTras tratar el ensilado con ácido fórmico, éste actúa como precursor de la fermentación de azucares en el animal, que en el caso de las reses favorece la producción láctea reduciendo el tiempo de producción natural de la misma, sin alterar el valor nutricional ni calidad de la leche para consumo humano.

La fuente afirma que puede ser muy peligroso en concentraciones anormalmente altas, el ácido fórmico es en realidad un aditivo alimentario y un químico industrial muy versátil y extremadamente útil. Cuando se consume a niveles normales, es muy rápida y fácilmente metabolizada por nuestros cuerpos, y eliminada de una manera segura y saludable. Sin embargo, se ha encontrado que ingerir cantidades altamente concentradas de ácido fórmico puede resultar en daño renal y hepático. Como tal, es importante entender tanto los usos como los peligros de este producto químico tan versátil. (ACIDO CLORHIDRICO.org, 2010)

Resultado de imagen para ensilado

Aplicaciones del ácido acético en las industrias de alimentos.

El ácido acético es un aditivo de alta incidencia en las industrias alimenticias por su capacidad de regular la acidez y basicidad en los alimentos, es el principal ingrediente del vinagre. Su nombre se deriva del latín acetum, que significa agrio. Conocido y usado hace bastante tiempo por la humanidad, se emplea como condimento y conservante de alimentos (Fennema, Hablemos Claro: Ácido Acético, 2000).

Resultado de imagen para acido acetico
Entre sus aplicaciones más comunes se encuentran:
• Salsas de mesa y para cocinar.
• Alimentos en conserva.
• Pan y productos de panadería.
• Aderezos y vinagre.
• Condimento para botanas.
• Industria de plástico y aplicaciones químicas de tipo analítico.
• Industria textil, entre otras.

Imagen relacionada
Su principal uso industrial es la preservación de alimentos, principalmente conservas. Tradicionalmente éste ácido era generado como producto de la fermentación de frutos como la manzana, uvas y diversos cereales denominándolo tradicionalmente como vinagre. Con los años y gracias a los avances en torno a la química orgánica la obtención de este ácido se ha ido perfeccionando, siendo posible en la actualidad obtenerlo por fermentación controlada o síntesis química orgánica así lo afirma (Editores “Mestrillo”, 2018).
Dentro de la industria alimenticia, el ácido acético, como se ha mencionado, se emplea para la limpieza y conservación de alimentos. También se le da utilidad en el hogar como aderezo para comidas, y es capaz de regular la acidez de muchos alimentos.

Aplicaciones del ácido cítrico en las industrias de alimentos.

El ácido cítrico es el responsable de la acidez de las frutas cítricas. Para uso industrial, el ácido cítrico es fabricado por la fermentación aeróbica del azúcar de caña (sacarosa) o azúcar de maíz (dextrosa) por una cepa especial de Aspergillus niger. Su mayor empleo es como acidulante en bebidas carbonatadas y alimentos.

En la industria alimenticia el ácido cítrico también es conocido como E330 y es un buen conservante y antioxidante natural que se añade de forma industrial en el envasado de muchos alimentos. En el organismo humano el ácido cítrico ingerido se incorpora al metabolismo normal, degradándose totalmente y produciendo energía en una proporción comparable a los azúcares. Es perfectamente inocuo a cualquier dosis concebiblemente presente en un alimento (BRISTHAR LABORATORIOS C. A. ® , 2010).

Resultado de imagen para acido citrico

Según la fuente anterior el ácido cítrico y sus sales se pueden emplear en prácticamente cualquier tipo de producto alimentario elaborado. El ácido cítrico es un componente esencial de la mayoría de las bebidas refrescantes, (excepto las de cola, que contienen ácido fosfórico) a las que confiere su acidez, del mismo modo que el que se encuentra presente en muchas frutas produce la acidez de sus zumos, potenciando también el sabor a fruta. Con el mismo fin se utiliza en caramelos, pastelería, helados, etc. Es también un aditivo especialmente eficaz para evitar el oscurecimiento que se produce rápidamente en las superficies cortadas de algunas frutas y otros vegetales.
También se utiliza en la elaboración de encurtidos, pan, conservas de pescado y crustáceos frescos y congelados entre otros alimentos. Los citratos sódico o potásico se utilizan como estabilizantes de la leche esterilizada o UHT. En la tabla siguiente se puede encontrar una pequeña guía de aplicaciones del E330 en los alimentos

Resultado de imagen para Aplicación del aditivo E330 (ácido citrico)

El ácido propiónico en las industrias de alimentos.

Resultado de imagen para ácido propiónico
El ácido propiónico es el responsable por el olor característico del queso suizo (Snyder, 1995). Durante el período principal de maduración de este tipo de queso, Propionibacterium shermanii, y microorganismos similares, convierten ácido láctico y lactatos a ácidos propiónico, acético y dióxido de carbono. El CO2 gaseoso generado es responsable por la formación de los “huecos” característicos del queso suizo, así lo afirma (Ing. Netto, 2011).

El ácido propiónico es un componente con propiedades antimicrobianas frente a los mohos y algunas bacterias, también conocido como propanoico, es un ácido graso saturado con una cadena corta integrado por un etano unido a un carboxilo y es precursor de las sales del tipo propionatos. Este ácido carboxílico monoprótico, fue descubierto en el año 1844 por el químico Johann Gottlieb, durante la degradación del azúcar de algunos productos, constituyendo un ácido graso que forma una capa aceitosa cuando se sala en agua, produciendo sal potásica.

Resultado de imagen para ácido propiónico
El ácido propiónico se puede obtener de forma natural por la fermentación de la pulpa de la madera o a través de algunos quesos, como se mencionó. Sin embargo, industrialmente se produce con la oxidación del aire de propanal, mediante el empleo de cationes de cobalto o manganeso en bajas temperaturas. Igualmente se extrae como un subproducto del ácido acético, pero este método está en caducidad.
Biológicamente según menciona (Editores “ACIDOS.INFO”, 2018), el ácido propiónico se genera en el metabolismo de los ácidos grasos con carbonos impares y algunos aminoácidos. Este proceso se inicia cuando las bacterias que se encuentran en los estómagos de los rumiantes catabolizan el sebo secretado por los poros, siendo prácticamente la razón del característico olor del queso suizo y del sudor.

Casi el 80% del consumo mundial de ácido propiónico está destinado a la conservación de alimentos elaborados para animales, cereales y la producción de propionatos de calcio o sodio, que son ingredientes básicos para alimentos humanos como el pan, bizcochos, pasteles y otros productos que son cocinados en horno, debido a su acción inhibidora del hongo.

Imagen relacionada

Existen propionatos de calcio y sodio presentes en los productos de panificación, originados de la leche entre otros ingredientes.

El ácido butírico en las industrias de alimentos.

Resultado de imagen para acido butírico

El ácido butírico (butanóico) deriva su nombre del latín butyrum, que significa mantequilla. Produce un olor peculiar por la rancidez de la mantequilla. Es usado en la síntesis de aromas, en fármacos y en agentes emulsionantes. (Parker, 1997) (Ing. Netto, 2011). Respecto a sus usos, el ácido butírico se emplea en la elaboración de esencias y sabores artificiales de aceite de vegetal. Así, en el caso del butirato de amilo, este es uno de los principales componentes del aceite de albaricoque.

Imagen relacionada
Por otra parte, en el caso del butirato de metilo, este es uno de los ingredientes esenciales del aceite de piña. Éste último es utilizado tanto como agente aromatizante como estimulante del crecimiento óseo y el tratamiento de resfriados.

El ácido butírico se manifiesta en forma de ésteres en ciertos aceites vegetales y en determinadas grasas animales. Se le encuentra en mayores proporciones en productos como la mantequilla rancia, el queso parmesano y la leche cruda. No obstante, también se produce en el colon humano, como producto de la fermentación bacteriana de los glúcidos. En cuanto a sus características, es incoloro, posee olor y sabor fuerte y desagradable, y puede diluirse en agua.

El ácido láctico en las industrias de alimentos.

Resultado de imagen para acido lactico
El ácido láctico se produce por la fermentación bacteriana de lactosa (azúcar de la leche) por Streptococcus lactis. Fabricado industrialmente por la fermentación controlada de hexosas de melaza, maíz y leche, se utiliza en la industria alimentaria como acidulante.

El ácido láctico es un aditivo utilizado ampliamente por su capacidad de regular la acidez de los productos. Dentro de sus principales aplicaciones se encuentran:
• Condimentos y vegetales en conserva.
• Pastillas, gomas de mascar y gomitas.
• Botanas a base de papa.
• Yogur, queso y fermentados lácteos.
• Salsa para pasta.
• Kit para preparar comidas.
• Productos cárnicos madurados.
El ácido láctico también se produce en nuestro propio cuerpo. Por ejemplo, cuando la glucosa es metabolizada por la actividad muscular anaeróbica, el ácido láctico se genera en los músculos y luego es descompuesto (oxidado por completo) a CO2 y H2O (Lehninger et al., 1995). Con el ejercicio intenso, el ácido láctico se forma más rápidamente de lo que puede ser eliminado. Esta acumulación transitoria de ácido láctico provoca una sensación de fatiga y dolor muscular. (Ing. Netto, 2011)

El ácido benzoico en las industrias de alimentos.

Sólido de fórmula C6H5—COOH, poco soluble en agua y de acidez ligeramente superior a la de los ácidos alifáticos sencillos. Se usa como conservador de alimentos. Es poco tóxico y casi insípido.

Resultado de imagen para acido ´benzoico
El ácido benzoico es uno de los conservantes más empleados en todo el mundo. Aunque el producto utilizado en la industria se obtiene por síntesis química, el ácido benzoico se encuentra presente en forma natural en algunos vegetales, como la canela o las ciruelas, por ejemplo, y en la industria se conoce como E210.
El ácido benzoico es especialmente eficaz en alimentos ácidos, y es un conservante barato, útil contra levaduras, bacterias (menos) y mohos. Sus principales inconvenientes son el que tiene un cierto sabor astringente poco agradable y su toxicidad, que, aunque relativamente baja, es mayor que la de otros conservantes.

El ácido fumárico en las industrias de alimentos.

El ácido trans-butenodioico, compuesto cristalino incoloro, de fórmula HO2CCH=CHCO2H, que sublima a unos 200 °C. Se encuentra en ciertos hongos y en algunas plantas, a diferencia de su isómero cis, el ácido maleico (cis-butenodioico), que no se produce de forma natural. Se utiliza en el procesado y conservación de los alimentos por su potente acción antimicrobiana, y para fabricar pinturas, barnices y resinas sintéticas.

Resultado de imagen para acido fumárico

En la industria alimenticia el ácido fumárico es comprendido como un ácido de origen natural que requieren los seres humanos y los animales para vivir. Este ácido se encuentra en las plantas también, y ha sido aprovechado por las compañías de alimentos y científicos por sus propiedades únicas que pueden ayudar a conservar el sabor y otros aspectos de varios alimentos. Dado que el ácido fumárico es seguro, natural y necesario, se encuentra en diversas aplicaciones en el servicio de comida y otras industrias que tienen que ver con la producción y distribución de alimentos.
Utilizado como ácido y estabilizador estructural en una amplia variedad de productos. También es usado como una fuente de ácido en el polvo para hornear.

El ácido linoleico en las industrias de alimentos.

Resultado de imagen para acido linoleico

De contextura líquida, oleoso, incoloro o amarillo pálido, de fórmula CH3(CH2)4(CH=CHCH2)2(CH2)6CO2H, cuyos dobles enlaces presentan configuración cis. Es soluble en disolventes orgánicos y se polimeriza con facilidad, lo que le confiere propiedades secantes. El ácido linoleico es un ácido graso esencial, es decir, es un elemento necesario en la dieta de los mamíferos por ser uno de los precursores de las prostaglandinas y otros componentes de tipo hormonal. Se encuentra como éster de la glicerina en muchos aceites de semillas vegetales, como los de linaza, soja, girasol y algodón. Se utiliza en la fabricación de pinturas y barnices.

Resultado de imagen para aceite de girasol

El ácido oleico en las industrias de alimentos.

Líquido oleoso e incoloro, de fórmula CH3(CH2)7CH=CH(CH2)7CO2H en su configuración cis (la cadena de carbono continúa en el mismo lado del doble enlace). Es un ácido graso no saturado que amarillea con rapidez en contacto con el aire. Por hidrogenación del ácido oleico se obtiene el ácido esteárico (saturado).

Resultado de imagen para acido oleico

Junto con el ácido esteárico y el ácido palmítico se encuentra, en forma de éster, en la mayoría de las grasas y aceites naturales, sobre todo en el aceite de oliva. Se obtiene por hidrólisis del éster y se purifica mediante destilación. Se utiliza en la fabricación de jabones y cosméticos, en la industria textil y en la limpieza de metales. (Ing. Netto, 2011)

El ácido esteárico en las industrias de alimentos.

Sólido orgánico blanco de apariencia cristalina, de fórmula CH3(CH2)16COOH. No es soluble en agua, pero sí en alcohol y éter. Junto con los ácidos láurico, mirístico y palmítico, forma un importante grupo de ácidos grasos. Se encuentra en abundancia en la mayoría de los aceites y grasas, animales y vegetales, en forma de éster-triestearato de glicerilo o estearina y constituye la mayor parte de las grasas de los alimentos y del cuerpo humano.

Resultado de imagen para acido estearico
El ácido se obtiene por la hidrólisis del éster, y comercialmente se prepara hidrolizando el sebo. Se utiliza en mezclas lubricantes, materiales resistentes al agua, desecantes de barnices, y en la fabricación de velas de parafina. Combinado con hidróxido de sodio el ácido esteárico forma jabón (estearato de sodio).

Resultado de imagen para acido estearico en alimentos

 El ácido esteárico se encuentra en buena parte en carnes, embutidos y ahumados.

A pesar de que el ácido esteárico está de igual manera en las grasas de origen vegetal y animal, se encuentra en mayor medida en las segundas, donde tiene alrededor de un 30%, mientras que en la grasa vegetal se encuentra en una menor cantidad al 5%. Sin embargo, existen grasas vegetales que poseen un mayor contenido de este ácido, las cuales son la manteca de karité y la de cacao, ambas teniendo aproximadamente un 28-45% de ácido esteárico.
El ácido esteárico se encuentra en el 2do lugar en cuando a ingesta de grasas saturadas dentro de la dieta, siendo consumido en un 25,8%, después del ácido palmítico, que es ingerido en un 56,3%. Es posible encontrar este ácido en mayor medida en carnes rojas, luego en el pescado, y por último tanto en cereales como en productos lácteos.
Aunque consiste en un ácido graso saturado, este ácido no parece contar con ninguno de los efectos perjudiciales que normalmente son vinculados a esta clase de grasa y de igual forma, parece ser que este ácido produce un efecto neutro en los triglicéridos, al igual que en el colesterol LDL también llamado colesterol “malo”, en el colesterol total o en el colesterol HDL conocido como colesterol “bueno”. (ADMINIDEG, 2017).

El ácido málico en las industrias de alimentos.

Es el ácido hidroxibutanodioico, compuesto incoloro de fórmula HO2CCH2CHOHCO2H. Se encuentra en las manzanas, uvas y cerezas verdes y en otros muchos frutos, así como en los vinos. Se puede obtener de forma sintética a partir del ácido tartárico y del ácido succínico.

Resultado de imagen para acido malico

Ácido Málico.

Al calentarlo se deshidrata y produce ácido fumárico y ácido maleico. Se utiliza como aditivo alimentario por su acción antibacteriana y su agradable aroma. También se emplea en medicina, en la fabricación de ciertos laxantes y para tratar afecciones de garganta.

Resultado de imagen para acido malico

El ácido málico es un aditivo utilizado en la industria de alimentos empleado como acidulante y emulsificante (Fennema, Hablemos Claro, 2000). Entre las aplicaciones más comunes se encuentran:
• Pastillas, gomas de mascar y gomitas.
• Dulces y caramelos duros.
• Bebidas de frutas y de sabores.
• Bebidas de soya.
• Botanas a base de papas.
• Helados, sorbetes y paletas.
• Vino.

El ácido oxálico en las industrias de alimentos.

Resultado de imagen para acido oxalico

ácido oxálico

El ácido etanodioico, sólido incoloro de fórmula HO2CCO2H, que cristaliza con dos moléculas de agua. Se encuentra en muchas plantas en forma de sales (oxalatos) de potasio. Su sal de calcio también aparece en ciertos vegetales y en los cálculos renales. Se utiliza en análisis químico por su poder reductor y en especial en la determinación de magnesio y de calcio. También se emplea en tintorería, en el curtido de pieles, en síntesis, de colorantes y como decapante.
Como es sabido, el ácido oxálico o los oxalatos, son compuestos contenidos en algunos alimentos que inhiben la absorción del calcio al unirse a este mineral y volverlo insoluble en el intestino. Por eso, para prevenir deficiencias de calcio.

El ácido palmítico en las industrias de alimentos.

Resultado de imagen para acido palmitico

Sólido blanco grisáceo, untuoso al tacto, de fórmula CH3(CH2)14COOH. Es un ácido graso saturado que se encuentra en una gran proporción en el aceite de palma, de ahí su nombre. Se encuentra en la mayoría de las grasas y aceites, animales y vegetales, en forma de éster (tripalmitato de glicerilo o palmitina). Por saponificación, es decir, por reacción del éster con un álcali (hidróxido de sodio o potasio) se obtiene la sal alcalina, y a partir de ella se puede obtener el ácido por tratamiento con un ácido mineral. Las sales alcalinas tanto del ácido palmítico como del ácido esteárico son los principales constituyentes del jabón. Se utiliza en aceites lubricantes, en materiales impermeables, como secante de pinturas y en la fabricación de jabón.

Resultado de imagen para acido palmitico

El ácido pirúvico en las industrias de alimentos.

Resultado de imagen para acido piruvico
Es el ácido a-cetopropanoico, líquido incoloro de olor fuerte y picante, soluble en agua y de fórmula H3CCOCO2H. Interviene en numerosas reacciones metabólicas. Por ejemplo, es un producto de degradación de la glucosa que se oxida finalmente a dióxido de carbono y agua. En las levaduras se produce un proceso de fermentación en el que el ácido pirúvico se reduce a etanol. También puede ser transformado en el hígado en el correspondiente aminoácido, la alanina.

Imagen relacionadaHabitualmente se localiza en las frutas fermentadas, vinagre y manzanas, de igual manera, es producido por nuestro cuerpo como resultado del proceso metabólico. Este ácido, que recibe el nombre de piruvato, fue descubierto por el químico sueco Jöns Jacob von Berzelius. (ACIDOS.INFO, 2018)

El ácido tartárico en las industrias de alimentos.

También llamado ácido dihidroxidosuccínico o ácido dihidroxibutanodioico, es un ácido orgánico de fórmula C4H6O6. Este ácido, que se encuentra en muchas plantas, ya era conocido por los griegos y romanos como tártaro, la sal del ácido de potasio que se forma en los depósitos de jugo de uva fermentada.
El ácido tartárico, en sus dos formas racémico y dextrorrotatorio, se emplea como aderezo en alimentos y bebidas. También se utiliza en fotografía y barnices, y como tartrato de sodio y de potasio (conocido como sal de Rochelle) constituye un suave laxante.

Resultado de imagen para acido tartaricoEl ácido tartárico es un ingrediente ampliamente utilizado en la industria de alimentos como regulador de acidez, antioxidante, secuestrante y agente leudante. (Fennema, Hablemos claro: Química de los Alimentos, 2000). Entre las aplicaciones más comunes se encuentran:
• Pastillas, gomas de mascar y gomitas.
• Galletas dulces.
• Pasteles, pastas y otros productos de panificación.
• Caramelos.
• Bebidas con gas.
• Vinos.
• Chocolates.
• Industria textil.
• Industria química y cosmética.

El ácido sórbico en las industrias de alimentos.

El ácido sórbico es el único ácido orgánico no saturado normalmente permitido como conservador en los alimentos. Posee un espectro antimicrobiano interesante ya que es relativamente ineficaz contra las bacterias catalasa-negativas como las bacterias lácticas. El ácido sórbico posee un amplio espectro de actividad contra los microorganismos catalasa-positivos, que incluyen las levaduras, mohos y bacterias y se utiliza, por tanto, para inhibir los contaminantes aeróbicos en los alimentos fermentados o acidificados, así lo manifiesta (BRISTHAR LABORATORIOS C. A. ®, 2010)

Resultado de imagen para acido sorbico
Estos últimos microorganismos resultan generalmente inhibidos por concentraciones de ácido no disociado de 0.01a 0.03%. Este compuesto constituye un eficaz agente antimicrobiano a valores de pH inferiores a 6.
Los sorbatos se utilizan en bebidas refrescantes, en repostería, pastelería y galletas, en derivados cárnicos, quesos, aceitunas en conserva, en postres lácteos con frutas, en mantequilla, margarina, mermeladas y en otros productos. En la industria de fabricación de vino encuentra aplicación como inhibidor de la fermentación secundaria permitiendo reducir los niveles de sulfitos.
Cada vez se usan más en los alimentos los sorbatos en lugar de otros conservantes más tóxicos como el ácido benzoico. Los sorbatos son los menos tóxicos de todos los conservantes, menos incluso que la sal común o el ácido acético (el componente activo del vinagre). Por esta razón su uso está autorizado en todo el mundo. Metabólicamente se comporta en el organismo como los demás ácidos grasos, es decir, se absorbe y se utiliza como una fuente de energía.

Resultado de imagen para acido sorbico
Este compuesto no debe ser utilizado en productos en cuya elaboración entra en juego la fermentación, ya que inhibe la acción de las levaduras. En productos de panadería por lo general se emplea en las masas batidas (magdalenas, bizcochos, etc.), siendo la dosis máxima de uso de 2 g/kg de harina.

El ácido ascórbico en las industrias de alimentos.

Resultado de imagen para acido ascórbico

Conocido como vitamina C, tiene su nombre químico que representa a dos de sus propiedades: una química y otra biológica. En cuanto al primero, es un ácido, aunque no pertenece a la clase de ácidos carboxílicos. Su característica ácida es derivada de la ionización de un hidroxilo y de un grupo enol (pKa = 4,25). Además, según menciona (Ing. Netto, 2011) la palabra ascórbico representa su valor biológico en la protección contra la enfermedad escorbuto, del latín scorbutus (Lehninger et al., 1995).

Resultado de imagen para acido ascórbico

DERIVADOS DE LOS ÁCIDOS CARBOXÍLICOS (en otras industrias químicas)

Aplicaciones de ésteres

Como disolventes de Resinas:

Los ésteres, en particular los acetatos de etilo y butilo se utilizan como disolventes de nitrocelulosa y resinas en la industria de las lacas, así como materia prima para las condensaciones de ésteres.

Resultado de imagen para nitrocelulosa
Nitrocelulosa

Como aromatizantes:

El acetato de etilo y el acetato de butilo son los ésteres más importantes. Los esteres sintéticos son usados como aromatizadores de alimentos. Los más conocidos son: Acetato de amilo (platano), Acetato de octilo (naranja), butirato de etilo (piña), butirato de amilo (albaricoque) y formiato de isobutilo (frambruesa). (IECIUDADDEASIS, 2012)
Algunos ésteres se utilizan como aromas y esencias artificiales. Por ejemplo, el formiato de etilo (ron, aguardiente de arroz), acetato de isobutilo (plátano), butirato de metilo (manzana), butirato de etilo (piña), y butirato de isopentilo (pera).

Resultado de imagen para aromatizantes

Lactonas

Las lactonas son ésteres cíclicos internos, hidroxiácidos principalmente gamma y delta. Estos compuestos son abundantes en los alimentos y aportan notas de aromas de durazno, coco, nuez y miel. Las lactonas saturadas e insaturadas se originan en la gama y delta hidroxilación de los ácidos grasos respectivos. La cumarina también es un éster cíclico (es decir, una lactona) que se aísla del haba tonka y otras plantas. W. H. Perkin sintetizó por primera vez la cumarina en el laboratorio y comercializó el compuesto como el primer perfume sintético, llamándolo Jockey Club y Aroma de heno recién segado.

Resultado de imagen para lactonas

Resultado de imagen para Haba Tonka y la sintetización de la cumerina

 Haba Tonka y la sintetización de la cumerina

Como Analgésicos

En la medicina encontramos algunos ésteres como el ácido acetilsalicílico (aspirina) utilizado para disminuir el dolor. La novocaína, otro éster, es un anestésico local. El compuesto acetilado del ácido salicilico es un antipirético y antineurálgico muy valioso, laaspirina (ácido acetilsalicílico) Que también ha adquirido importancia como antiinflamatorio no esteroide.

Resultado de imagen para aspirina

En la elaboración de fibras semisintéticas

Todas las fibras obtenidas de la celulosa, que se trabajan en la industria textil sin cortar, se denominan hoy rayón (antiguamente seda artifical). Su preparación se consigue disolviendo las sustancias celulósicas (o en su caso, los ésteres de celulosa) en disolventes adecuados y volviéndolas a precipitar por paso a través de finas hileras en baños en cascada (proceso de hilado húmedo) o por evaporación del correspondiente disolvente (proceso de hilado en seco).

Resultado de imagen para seda al acetato

Rayón al acetato (seda al acetato)

En las fibras al acetato se encuentran los ésteres acéticos de la celulosa. Por acción de anhídrido acético y pequeña cantidad de ácido sulfúrico sobre celulosa se produce la acetilación a triacetato de celulosa. Por medio de plastificantes (en general, ésteres del ácido ftálico) se puede transformar la acetilcelulosa en productos difícilmente combustibles (celon, ecaril), que se utilizan en lugar de celuloide, muy fácilmente inflamable.

Síntesis para fabricación de colorantes:

El éster acetoacético es un importante producto de partida en algunas síntesis, como la fabricación industrial de colorantes de pirazolona.

Imagen relacionada

En la industria alimenticia y producción de cosméticos

Los monoésteres del glicerol, como el monolaurato de glicerol. Son surfactantes no iónicos usados en fármacos, alimentos y producción de cosméticos.
En la obtención de jabones

Se realizan con una hidrólisis de esteres llamado saponificación, a partir de aceites vegetales o grasas animales los cuales son esteres con cadenas saturadas e insaturadas (Química Orgánica, 2013).

Resultado de imagen para jabones de acidos grasos

Resultado de imagen para jabon

Aplicaciones de las amidas

Por otra parte, podemos decir que las amidas sustituidas, en general, tienen propiedades disolventes muy importantes.

La dimetilformamida:
Se emplea como disolvente de resinas en la fabricación de cuero sintético, poliuretano y fibras acrílicas, como medio de reacción y disolvente en la extracción de productos farmacéuticos, en disolución de resinas, pigmentos y colorantes. Constituye un medio selectivo para la extracción de compuestos aromáticos a partir del petróleo crudo.

La dimetilacetamida
Se utiliza como disolvente de fibras acrílicas y en síntesis específicas de química fina y farmacia. Tanto la dimetilformamida como la dimetilacetamida son componentes de disolventes de pinturas.

POLIAMIDAS

Los nylons son unos de los polímeros más comunes usados como fibra. En todo momento encontramos nylon en nuestra ropa, pero también en otros lugares en forma de termoplástico. El verdadero éxito del nylon vino primeramente con su empleo para la confección de medias femeninas, alrededor de 1940. Pero antes de eso, el primer producto de nylon fue el cepillo de dientes con cerdas de nylon.

Resultado de imagen para nylon
Los nylons también se llaman poliamidas, debido a los característicos grupos amida en la cadena principal. Las proteínas, tales como la seda a la cual el nylon reemplazó, también son poliamidas. Estos grupos amida son muy polares y pueden unirse entre sí mediante enlaces por puente de hidrógeno. Debido a esto y a que la cadena de nylon es tan regular y simétrica, los nylons son a menudo cristalinos y forman excelentes fibras. (Helena, 2011)

[O=C(CH2)4-C=O-NH-(CH2)6-NH]n

Bibliografía

Resultado de imagen para quimica gif

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

El kaikar, los Incas y las enfermedades por emanación

Alejandro Alfredo Aguirre Flores. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

La civilización Inca, fue sin duda una muy avanzada sociedad prehispánica en América del Sur, llegándose a extender por todo el callejón Interandino, logró importantes avances en distintas áreas del conocimiento; sin embargo poco o nada se ha rescatado de su legado en torno al conocimiento y en la actualidad tampoco se ha realizado un rescate efectivo de las memorias de los pueblos ancestrales que se originaron como rezagos culturales de tan imponente civilización. El presente artículo pone a disposición del lector breves ideas sobre el concepto primitivo de las enfermedades por emanación, las cuales identificaron muy bien los protomédicos Incas y que puede ser un punto de partida para futuras promesas en la investigación histórico-médica.

Los Incas habían clasificado a su macrocosmos en tres submundos, primero el de “ARRIBA” conocido como HANAN PACHA del cual provienen todos los Dioses, el KAI PACHA o el de “MEDIO” en el cual suscita el presente o el mundo de los hombres y finalmente el de “ABAJO” donde reinan los muertos conocido por ellos como UKU PACHA. La salud por su parte tenia un concepto muy armónico entre lo físico perteneciente a este mundo, lo espiritual y lo energético pertenecientes a los otros mundos.

Imagen relacionada

En las denominaciones de las enfermedades emplearon vocablos que hacían referencia a una determinada enfermedad y su pare mística atribuida a cualquiera de los otros mundos y aunque las ideas de este modo pareciéran no ser del todo científicas, esta civilización conocía profundamente muchas enfermedades que aún existen en nuestra era. La medicina aborigen comprendía sin fin de rituales que buscaban el equilibrio entre todos los factores antes mencionados todas estas prácticas eran realizadas por un personaje muy importante e influyente en la comunidad, se trataba del “Kallawaya” personaje que hacia de curandero, chaman, herbolario o básicamente médico; quienes utilizaban múltiples elementos de la naturaleza para sanar a los enfermos, y fueron ellos quienes establecieron sus propios conceptos sobre la enfermedad o kaikar, establecieron conceptos también para diferentes dolencias e incluso determinaron sus orígenes. Tal fue la influencia de sus ideas en torno a la medicina que fueron el punto de partida de investigaciones y expediciones botánicas para beneficio de la corona española que buscaba desesperádamente curas para múltiples enfermedades comunes en occidente; así fue como durante la colonia los virreinatos buscaban en los territorios americanos las posibles respuestas a dichas necesidades un ejemplo de ello fue la expedición de Mutis en el Virreinato de la Nueva Granada (Colombia) o el caso de Pedro Leiva en Malacatos-Ecuador.

PARA MAYOR INFORMACIÓN AL RESPECTO Y SOBRE ESTOS PERSONAJES PUEDES DARLE CLICK A LA SIGUIENTE CATEGORÍA YA QUE SON TEMAS QUE SE HAN TRATADO A PROFUNDIDAD EN ANTERIORES OCASIONES: PRECURSORES DE LA MEDICINA LATINOAMERICANA.

¿QUIENES ERAN LOS QUE EJERCIAN EL OFICIO MÉDICO EN EL IMPERIO?

  • El Watuk: se encargaba de diagnosticar la enfermedad y examinar el estilo de vida del paciente.
  • El Hanpeq: Una especie de Chamán que curaba a los pacientes utilizando hierbas y minerales en ceremonias religiosas y místicas.
  • El Paqo: curaba el alma; los incas creían que el corazón albergaba el alma.
  • El Sancoyoc: Sacerdote cirujano, se ocupaba de extremidades rotas, abscesos y de los dientes.
  • El Hampi Camayoc: Era el químico del estado inca y el encargado del cuidado de los recursos médicos.
  • El Collahuaya: Suministraba plantas medicinales, amuletos y talismanes.

Muchos de los chamanes han prevalecido hasta nuestra época y se han vuelto personajes muy tradicionales en pueblos y comunidades de Ecuador, Perú y Bolivia; tanto que en la actualidad, personas de todo el mundo llegan a pueblos como Pisac u Ollantaytambo en el Valle Sagrado de los Incas, para conocer y disfrutar de la medicina de los Incas. Ellos mencionan que el aire es el medio conductor de las “emanaciones mágicas”, de hecho este factor es determinante en la proliferación de enfermedades, hecho que no suena tan trillado cuando se trata de contagios de enfermedades como la gripe o neumonía. Menciona el autor en el que se basa este artículo el Dr. Ramón Pardal en un pequeño fragmento de la revista “Laboratorio” Nº22 de Colombia, que el aire era determinante en el aparecimiento de enfermedades cutáneas, pulmonares, nerviosas, intestinales, entre otras a tal punto que la palabra HUAIRA que significa aire o viento forma parte de los nombres de muchas de las enfermedades que identificaron, como por ejemplo:

  1. HUSNA HUAIRA: eczema.
  2. JURRA HUAIRA: urticaria o sarpullido.
  3. SULLU HUAIRA: hace referencia a enfermedades de la piel.
  4. CEBO HUAIRA: tétano-lumbago..
  5. AYA HUAIRA: epilepsia.

Y de allí el término KAIKAR, que era un estado particular del ser humano que consistía en decaimiento, dolor de cabeza, depresión, opresión, llegando hasta el desvanecimiento del paciente.  En un sentido más tradicionalista el Kaikar abarca lo que se denomina “mal de la montaña” o denominado de forma común como SOROCHE, o “MAL AIRE”, provocado por permanecer cerca de tumbas lo que los incas identificaban como enfermedades provocadas por los espíritus de los muertos a través del aire, creencia que ha prevalecido hasta la actualidad y que se sigue tratando de forma tradicional en algunos pueblos o comunidades.

Resultado de imagen para mal aire

También denominaban los Incas otras enfermedades como:

  1. ZAMAI PITI: (respiración quebrada) o neumonía.
  2. CHAQUI ONCOY: (morbo que consume) o tuberculosis.
  3. RUPA CHUCCHU: ( calosfríos) o fiebres palúdicas.
  4. UMA NAMAI: cefalalgia o congestión cerebral.
  5. SONCO NAMAI: dolores  y disturbios intestinales.

La medicina inca no solo que supo identificar los síntomas de las enfermedades que los aquejaban, sino que también indagó causas, e integró tratamientos psicológicos  y físicos en e paciente. Se conoce que  se realizaron cirugías con métodos e instrumentos  muy sencillos hasta algo primitivos; el equivalente de bisturí se denominó Tumi con el que se realizaron incluso aberturas craneales y la Vilcachina que sirvió para las extirpaciones.

Resultado de imagen para Vilcachina

Imagen relacionada

La trepanación craneana

Esta complicada operación del cerebro fue llevada a cabo desde el año 1,000 por la cultura pre-inca, Paracas; se trató de una operación de alto riesgo, que fue perfeccionada por los incas hacia el 1,400, logrando la supervivencia de hasta el 90 % de las personas operadas; hoy en día existen procedimientos similares para aliviar la presión del cerebro. Se tiene registro de personas que fueron operadas más de una vez; se sabe de un individuo que fue operado hasta siete veces. Las personas sometidas a esta operación, eran hombres que sufrieron lesiones en combate o para curar la epilepsia o hasta infecciones crónicas en el cráneo.

TOMADO DE: https://www.boletomachupicchu.com/medicina-inca/

Los estudios se han publicado en múltiples revistas médicas que tratan con mayor profundidad del tema donde se mencionan a detalle los procedimientos que éstos realizaban, un blog que puedo recomendarlos por su contenido es el siguiente: CIRUJANOS INCAS.

Lo cierto es que los médicos incas utilizaron las propiedades curativas de diversas plantas y raíces que como se dijo anteriormente  dieron pauta a las escuelas que las estudiaron en el viejo continente.

Según crónicas realizadas en la conquista se conoce que  los Incas tenian nociones de “pulso” afirmación realizada por Molina (1788), quien en su estudio menciona a Garcilaso de la Vega, mismo que narra en cartas y crónicas enviadas a Portugal sobre algunas percepciones y detalles que tuvo del asesinato del rey Inca Atahualpa, Dela Vega menciona:

-Estando Atahualpa en la prisión vinieron a verlo los indios, y que le tomaron el pulso en la “junta de las cejas”.

Dato que sin duda refleja el nivel de conocimiento que poseían en signos vitales y diagnóstico general. Finalmente la paleontología ha hecho lo suyo también, puesto que en diversas excavaciones que se han realizado en ruinas y templos incas se han descubierto grabados en paredes y cerámica donde se manifiestan representaciones pictóricas de chamanes atendiendo enfermos.

Los incas establecieron verdaderos protocolos y jerarquías, como se vio anteriormente existían varios personajes que ejercían la tarea de sanar a los enfermos, sin embargo el diagnóstico tenia que ser realizado por el chamán o watuk quien planteaba los procedimientos en concreto e incluso los correlativos, donde en primera instancias había que determinar el origen del mal que fue ejercido sobre el paciente que para la época en mayor porcentaje era de carácter místico y espiritual.

Resultado de imagen para medicina inca

Posteriormente los primeros cuidados eran realizados por el mismo watuk, estos cuidado y atenciones implicaban rituales  como ayunos, intoxicaciones, trajes especiales, ornamentos mágicos, oración, encantamientos, danzas agotadoras, drogas, estados de trance, hasta que el chamán perdiera el sentido y con ello se considere todo mal espíritu expulsado, permitiendo de esta manera proceder con los tratamientos físicos e intervenciones quirúrgicas. Para tales rituales el watuk utilizaba múltiples plantas y hongos  ilusinógenos y estupefacientes que le permitían conectarse con los otros dos mundos que en estado de éxtasis o epifanía le permitieran dictar diagnóstico irrefutable para el paciente y sus familiares. Dichas drogas  existentes en el cono sur son: la Ayahuasca, Caapi (Banisteria caapí)  o Yagé; el Peyotl (Echinocactus anhakonium Lawinii), la Coca (Erythroxylon coca), la Cahoba, Paricá o Yopo ; finalmente del Ololiuhqui (Ipomoea jalapa)

Resultado de imagen para medicina inca

REFERENCIAS:

  • Molina J. L. Compendio de la historia geográfica, natural y civil del reyno de Chile. Madrid. (1788).
  • Garcilaso de la Vega. Comentarios reales; (Lisboa 1609).
  • Dr. Ramón Pardal. Medicina Aborigen. Teoría de la emanación. Revista LABORATORIO Nº 22. Cesar Uribe Piedrahita. Licencia Nº 1342. Santa Fe de Bogotá-Colombia.

Resultado de imagen para incas gif

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Usos y Aplicaciones de Aldehídos y Cetonas en la Industria de Alimentos

Lucía Jaramillo Cando. [1]

Lesly Espinoza Buitrón. [1]

Alejandro Aguirre F. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

INTRODUCCIÓN

     Los aldehídos y cetonas son compuestos caracterizados por la presencia del grupo carbonilo (C=O) también conocidas como funciones de segundo grado de oxidación según asegura (Cornejo, SN). Los aldehídos presentan el grupo carbonilo en posición terminal mientras que las cetonas lo presentan en posición intermedia como muestra siguiente. El primer miembro de la familia química de los aldehídos es el metanal o formaldehído (aldehído fórmico), mientras que el primer miembro de la familia de las cetonas es la propanona o acetona (dimetil acetona).

Resultado de imagen para aldehidos
Grupos carbonilo aldehído y cetona.

Los aldehídos y cetonas se comportan como ácidos debido a la presencia del grupo carbonilo, esto hace que presenten reacciones típicas de adición nucleofílica así lo afirma (Klein, 2013). Una de las diferencias que presentan entre los aldehídos y cetonas es que los aldehídos se oxidan con facilidad frente a oxidantes débiles produciendo ácidos, mientras que las cetonas sólo se oxidan ante oxidantes muy enérgicos que puedan romper sus cadenas carbonadas. Es así que las reacciones de oxidación permiten diferenciar los aldehídos de las cetonas en el laboratorio de análisis químico. Después de lo dicho antes se puede decir, que muchos aldehídos y cetonas forman parte de los aromas naturales de flores y frutas, por lo cual se emplean en la perfumería para la elaboración de aromas así como también pueden ser empleados como elementos aromatizantes y saborizantes dentro de la industria de alimentos, extraídos de la misma naturaleza, por otro lado, múltiples compuestos de este tipo son empleados en la síntesis de fármacos y productos de cosmética, por esta razón la presente investigación se centra en el sector de las industrias alimentarias y agroindustriales.

Resultado de imagen para aldehidos en industrias

DESARROLLO DE LA INVESTIGACIÓN

Usos y aplicaciones de los aldehídos

Son intermediarios en la síntesis de ácido, fabricación de plásticos, resinas y productos acrílicos como la baquelita, resinas de melamina o melamínico, etc. Industria fotográfica; explosiva y colorante; como antiséptico y preservador; herbicida, fungicida y pesticida. Acelerador en la vulcanización. Industria de alimentación y perfumería; industria textil y farmacéutica.

Se ha aislado una gran variedad de aldehídos y cetonas a partir de plantas y animales; muchos de ellos, en particular los de peso molecular elevado, tienen olores fragantes o penetrantes. Por lo general, se les conoce por sus nombres comunes, que indican su fuente de origen o cierta propiedad característica. A veces los aldehídos aromáticos sirven como agentes saborizantes (Porras., 2013), estas aplicaciones se podrán analizar en una selecta lista de utilidades que se ha investigado y se detalla a continuación para su análisis.

El Benzaldehído en la industria alimenticia

El benzaldehído es un componente de la almendra; es un líquido incoloro con agradable olor a almendra. Según norma técnica para esta sustancia se menciona que dentro de las percepciones sensoriales el benzaldehído posee un olor semejante al de aceite quemado de almendras con un sabor quemante, adicionalmente menciona que su solubilidad depende del solvente siendo alcohol isopropílicos su disolvente más usual y a su vez presenta una reducida solubilidad en agua por otra parte el benzaldehído es miscible en aceites fijados o volátiles y éter (NMX-F-369-S-1980., 1980).

Los aromas son parte esencial de la memoria olfativa de los seres humanos, dicha memoria olfativa se localiza como una función indexada del bulbo olfatorio y es parte de la memoria racional e incluso se asocia a factores emocionales así lo afirma (Veron García & Gaviria Vallejo, 2015), gracias a ello el sistema límbico es capaz de asociar aromas o fragancias a un determinado recuerdo, el estudio que los autores mencionan es que por ejemplo el olor de los dulces es una característica de la memoria olfativa de los niños y se ve estrechamente relacionada a la existencia de benzaldehído en los mismos, esta relación es un estudio realizado por una ciencia algo desconocida llamada aromacología, puesto que todos los olores en el fondo no son más que propiedades organolépticas de las materias es decir son propiedades intrínsecas de las mismas.

Imagen relacionada
PIRULETAS DE CARAMELO

El estudio señala que las piruletas son dulces de alto consumo a nivel mundial principalmente por infantes de entre los 5 a los 12 años edad en la que su memoria olfativa está en pleno desarrollo, dichas piruletas contienen en su composición benzaldehído (C6H5CHO) que dentro de la industria alimenticia en concentraciones adecuadas pertenece al grupo de los aromatizantes; su número CAS es 100-52-7, su número EINECS, 202-860-4; y su fórmula molecular es C7H6O.

Resultado de imagen para benzaldehido
  Estructura y peso molecular del benzaldehído. Fuente: https://www.dyeq.co/fichas/benzaldehido/

Algunos estudios organolépticos menciona al olor del benzaldehído como un olor análogo no sólo a las almendras si no a las cerezas y por esta razón es que es un aditivo aromatizante muy empleado en este tipo de dulces por su correspondencia con los sabores de las piruletas que normalmente el consumidor asume como cereza por la tonalidad rojiza de la mayoría de piruletas y su olor procedente del aditivo antes mencionado, la desventaja y riesgo es el origen del aditivo puesto que normalmente suele ser sintetizado a partir de tolueno que es un compuesto tóxico que eventualmente puede dejar rachas del mismo en el aditivo por esta razón es importante que las industrias alimenticias tengan un control minucioso de esta sustancia (Verón García & Gaviria Vallejo, 2015).

Resultado de imagen para cerezas benzaldehido

De forma natural el benzaldehído es extraído de semillas y frutas como son las almendras, cerezas, albaricoques, ciruelas y melocotones; aunque los estudios fotoquímicos a futuro podrían arrojar especies vegetales que contengan en sus frutos cantidades significativas de benzaldehído, los autores mencionan que las frutas antes mencionadas, contienen cantidades significativas de amigdalinas [glucósido, molécula formada por una parte glucídica y una parte no glucídica (C20H27NO11)]. Cuando las amigdalinas se rompen por catálisis enzimática o por hidrólisis, se obtienen dos azúcares, un cianuro y un benzaldehído.

Resultado de imagen para amigdalina

Resultado de imagen para amigdalina

En la industria alimenticia, el benzaldehído se usa como aditivo alimentario, entendiendo un aditivo como toda sustancia o mezcla que no aporta valor nutricional y que es agregada en la mínima cantidad posible, para crear, modificar mantener o intensificar las propiedades organolépticas y sus condiciones de conservación (Verón García & Gaviria Vallejo, 2015).Uno de los organismos encargados de esta regulación es la FEMA (Flavors and Extract Manufacturing Association), la cual clasifica el benzaldehído con el número FEMA 2127. Según esta asociación, el aldehído puede ser empleado para dar aroma a almendras amargas, azúcar quemado, cereza, pimientos asados y malta. Para asegurarse que el consumo del benzaldehído no es peligroso para la salud humana, han establecido unos límites de ppm que los productos alimentarios finales no pueden sobrepasar. Estos límites son:

Límites permitidos de benzaldehído en alimentos según la FEMA 2127 en ppm.

Fuente: (Verón García & Gaviria Vallejo, 2015).
TIPOLOGÍA DE PRODUCTO PPM MÁXIMO AUTORIZADO
Bebidas no alcohólicas 36 ppm
Helados 42 ppm
Caramelos 120 ppm
Productos horneados 110 ppm
Gelatinas y pasteles 160 ppm
Chicles 840 ppm
Bebidas alcohólicas 60 ppm

 

El Aldehído Vanílico y la vainillina en la industria alimenticia.

El aldehído vanílico tiene diferentes grupos funcionales: unos grupos aldehídos y un anillo aromático, por lo que es un aldehído aromático (Meislich, 1998). La vainilla que produce el popular sabor a vainilla durante un tiempo se obtuvo sólo a partir de las cápsulas con formas de vainas de ciertas orquídeas trepadoras. Hoy día, la mayor parte de la vainilla se produce sintéticamente

Resultado de imagen para aldehído vanílico
Ácido vanílico

La vainillina es una sustancia presente en todas las 110 especies de orquídeas del género Vanilla, su origen está asociado a una especie de orquídea del género antes mencionado nativa de México y que se caracteriza por ser hermafrodita y única capaz de formar una vaina como fruto del cual hoy se extrae la vainilla tal y como se la conoce.

 

Resultado de imagen para orquidea de la vainilla

Dicha denominación fue otorgada por los españoles, quienes decidieron llamarla así por la forma tan especial del fruto de la flor. Sin embargo, ya era conocida por los antiguos tonacas (pueblo ancestral mexicano) con el nombre de Xahanat o flor negra, y por los aztecas con el nombre de Tlixotlil. En estos pueblos, la vainilla era utilizada como aromatizante, a modo de ofrenda y como medicina, dado que cuenta con propiedades antisépticas que la hacen especialmente útil para tratar ciertas infecciones bacterianas, así lo afirma (Departamento de Redacción OV, 2018)

Imagen relacionada
El aldehído vanílico a su vez es un ácido dihidroxibenzoico cuyo nombre IUPAC corresponde al de (4-hidroxi-3- ácido metoxibenzoico) y se trata de una forma oxidativa de la vainillina. Curiosamente en la actualidad la mayor parte de ácido vanílico procede de la raíz de origen chino perteneciente a la planta: Angelica sinensis, conocida en China como dong quai, dang gui o ginseng.

El aldehído vanílico tiene importante presencia en productos para uso de farmacias y cosméticas como son el aceite de azaí y con respecto al aceite de argán, el ácido vanílico es uno de sus principales fenoles visto desde el punto de vista de un grupo funcional alcohol y al poseer dos da ciertas características a este aceite que es comestible con un ligero sabor a nuez y que se obtiene de las semillas sometidas a presión del árbol Argania spinosa, y su valor es relativamente costoso por tener gran cantidad de grasas insaturadas; a su vez tiene presencia en vino y vinagre. Ácido vanílico es uno de los principales catequinas metabolitos que se encuentran en los seres humanos después del consumo de infusiones de té verde (Wikipedia.(s.f.), 2008).

Resultado de imagen para aceite de argan
Aceite de Argán

Por tanto y como se ha dicho anteriormente el ácido vanílico es empleado como agente saborizante y aromatizante en la industria alimenticia, su implicación dentro del campo de los alimentos es el de la repostería, dulces, galletas, aceites y bebidas.

 

La vainillina por su lado es otro compuesto derivado del ácido vanílico; también conocido como vanilina, metil vanilina o 4-hidroxi-3-metoxibenzaldehído; cuya fórmula molecular es (CH3O)(OH)C6H3CHO es un compuesto especial que comprende tres grupos funcionales en su estructura: aldehído, éter y fenol; característica que otorga diversas propiedades a este compuesto.

Resultado de imagen para vainillina molecula
Vainillina

El metil vainillina junto con el etil vainillina con dos compuestos de este tipo de alta incidencia en la industria de los alimentos ya que son compuestos primarios de la vaina de la vainilla siendo el etil el más costoso puesto que confiere notas olfativas más potentes procedentes de su grupo etoxi en comparación del grupo metoxi; estos compuestos son empleados como saborizantes y aromatizantes en alimentos. Por otro lado se emplean también en la síntesis de fragancias artificiales así como en otras industrias como la farmacéutica.

Según afirman (Esposito, y otros, 1997) la primera vez que se sintetizó comercialmente la vanillina comenzó su proceso con un compuesto natural denominado eugenol. En la actualidad la vainillina artificial está elaborada de guaiacol petroquímico, o procedente de lignina, un constituyente natural de la madera lo que le convierte en un subproducto de la industria papelera. La vainillina artificial basada en la lignina se dice que suele tener un perfil de sabores más rico que aquellos procedentes de aceites esenciales. La diferencia es debida a la presencia de acetovanillona en la versión de lignina del producto, una impureza no encontrada en la vainillina sintetizada del guaiacol.

El Glutaraldehído en la industria alimenticia.

El glutaraldehído se usa como desinfectante en frío y en el curtido de pieles (Solomons, 1985). Este compuesto familia del grupo de los aldehídos también conocido 1,5-pentanodial según IUPAC, posee en el mercado varios nombres distintivos como son: glutaral, aldehído glutárico. Los nombres comerciales incluyen Alkacide®, Cidex®, Sonacide®, Sporicidin®, Hospex®, Omnicide®, Metricide®, Surgibac G® Gy Wavicide® Fenomix-Gt®, respondiendo a todos con la fórmula molecular siguiente: OHC(CH2)3CHO o C5H8O2 (siguiendo la fórmula semidesarrollada) su estructura se muestra a continuación:

Resultado de imagen para glutaraldehido

La naturaleza de este compuesto es ser un líquido oleaginoso sin color o en ocasiones con un ligero tono amarillento con un potente olor a acre, es un compuesto estable no polimerizable utilizado también en equipos de laboratorio, médicos y odontológicos como desinfectante e incluso con la misma aplicación en las industrias de alimentos y farmacia así lo afirma (Agency for Toxic Substances and Disease Registry, 2016) menciona también que la razón de su uso radica en que es uno de los poco medios conocidos para la esterilización de instrumentos y superficies que no se pueden o no se deben someter al calor, a lo que se acota adicionalmente que el glutaraldehído es un desinfectante muy potente y en su forma alcalina, en disolución mezclado con agua en concentraciones del 0.1% al 1.0% se utiliza habitualmente como desinfectante en frío, es un importante aliado del sector agroindustrial y zootecnia puesto que permite ser empleado como esterilizante en gallineros, establos y otros animales

Resultado de imagen para esterilizacion de gallineros y establos con glutaraldehido

Otro importante uso está en la investigación de tejidos para el estudio toxicológico, histológico y patológico siendo el glutaraldehído un importante fijador de muestras en ramas como la microbiología, esta rama se relaciona directamente con el sector de los alimentos puesto que éstas técnicas de microscopía son muy utilizados en ramas como la microbiología de alimentos o toxicología de alimentos. Finalmente el glutaraldehído es empleado también por los químicos e ingenieros de alimentos para el tratamiento de aguas o como preservante químico que inhibe y combate el crecimiento de algas en las aguas tratadas y normalmente se suministra como pastillas en tanques de agua. (Agency for Toxic Substances and Disease Registry, 2016).

Resultado de imagen para tratamiento de aguas

 

El Aldehído Cinámico (Bencilidenacetaldehído) en la industria alimenticia.

El cinamaldehído es un compuesto orgánico responsable del sabor y olor característico de la canela, la naturaleza física de este compuesto es ser viscosos con un ligero tono amarillento pálido y se encuentra de manera natural en la corteza del árbol de la canela así como otras especies del género Cinnamomum y de forma general se puede decir que el 90% de la composición del aceite esencial de canela es cinamaldehído, siendo éste su principal elemento, de allí la relación con la industria alimenticia, puesto que es empleado como saborizante y aromatizante a su vez es ampliamente empleado en la fabricación de especias para distintos tipos de alimentos así lo menciona (DIEQ, 2018).

Resultado de imagen para cinamaldehido

El cinamaldehído fue aislado del aceite esencial de canela en 1834 por Dumas and Péligot, y fue sintetizado en laboratorio veinte años más tarde por Chiozza. De forma natural, existe en forma de trans-cinamaldehído. La molécula se compone de un grupo fenilo enlazado a un aldehído insaturado. Como tal, el cinamaldehído puede considerarse un derivado de la acroleína.

Uso Agrícola: para aplicación al follaje, como solución fiable en equivalentes en gramos de ingrediente activo (I.A./kg o L) de: 306. Para agregar aromas orientales en jabón, perfumes y artículos para el hogar. También se utiliza en compuestos aromatizantes para importar un sabor a canela, en el aceite de casia y aceite de corteza de canela. Se utiliza en jabones, detergentes, lociones, perfumes y a concentraciones comprendidas entre 0,01 y 0,8%4 Piperonal (1,3-Benzodioxol-5-carbaldehido): tiene su uso como sinergista de insecticidas y como ingrediente de perfumes y fragancias. Está clasificado entre los insecticidas repelentes como un pesticida. Un repelente para piojos que contiene piperonal está disponible en el mercado (Merck Millipore, 2017).

El cinamaldehído empleado como agente antimicrobiano natural en la conservación de frutas y hortalizas

Según menciona (Rodriguez Sauceda, 2011) en su publicación El aldehído cinámico (3- fenil-2 propenal) es el principal componente antimicrobiano en la canela., éste Exhibe actividad antibacterial y también inhibe el crecimiento de mohos y la producción de micotoxinas, Hitokoto et al., (1978).

Imagen relacionada

Reportan que la canela tiene un fuerte efecto inhibitorio en mohos, incluyendo Aspergillus parasiticus, Bullerman (1974) también observa un efecto inhibitorio de la canela en Aspergillus parasiticus, reporta que de 1 a 2% de concentración de canela puede permitir algún crecimiento de Aspergillus parasiticus, pero también puede disminuir la producción de aflatoxinas en un 99%.

Resultado de imagen para Aspergillus parasiticus

Resultado de imagen para Aspergillus parasiticus
Aspergillus parasiticus

Los japoneses reportaron el uso de aldehído cinámico como un agente antimicrobiano en pasta de pescado. Estudios hechos por Lock y Borrad, en la universidad de Bath en el Reino Unido sobre las propiedades antimicrobianas del ácido cinámico en el laboratorio, han demostrado que el aldehído cinámico es particularmente efectivo contra mohos y levaduras a pH ácidos.

Resultado de imagen para  Pasta de pescado
Pasta de pescado japonés empleado en platillos de consumo inmediato como el Sushi Tempura, entre otros.

El aldehído cinámico es usado para sumergir o rociar, extiende la vida de anaquel de duraznos, peras, manzanas, chabacanos y nectarinas enteras, así como rebanadas de tomate, mango, melón, manzana, sandía, limón y kiwi. Sin embargo el tratamiento de algunas frutas con altas concentraciones de ácido cinámico causaron oscurecimiento en nectarinas, limas y peras (Roller, 1995). Se ha reportado según la cita de la autora del artículo (Rodriguez Sauceda, 2011) que el aldehído cinámico contiene un antimicótico natural, inhibiendo la producción de aflatoxinas (Hitokoto, 1978), el ácido cinámico y los derivados del aldehído cinámico provienen de plantas y frutas, y son formados como una protección natural contra infecciones y microorganismos patógenos (Mazza, et. al., 1993; Davidson, 1997).

Por otro lado el aldehído cinámico fue muy efectivo para prolongar la vida de anaquel de algunos productos de frutos importantes. Por ejemplo menciona la autora (Rodriguez Sauceda, 2011) que la vida de anaquel de rebanadas de tomate fresco almacenado a 4ºC fue extendida de 42 a 70 días mientras que las rebanadas almacenadas a 25 ºC tuvieron el doble de vida de anaquel de 21 a 42 días (Roller, 1995).

Imagen relacionada

Uso del aldehído anísico en la industria alimenticia

El 4-anisaldehido es un compuesto orgánico correspondiente a la formula molecular C8H8O2, usado comúnmente en fragancias naturales y sintéticas, consta de un anillo de benceno sustituido con un aldehído y un grupo metoxi. Es un líquido transparente con un fuerte aroma y posee dos isómeros afines. Está estructuralmente relacionada con la vainillina, anisaldehído es ampliamente utilizado en la industria de la fragancia y el sabor.
Es usado en la síntesis de otros compuestos orgánicos incluidos los farmacéuticos (especialmente antihistamínicos), agroquímicos, solventes y aditivos para plásticos. Es un importante intermediario de la fabricación de perfumes y saborizantes (COSMOS MX., 2010).

Resultado de imagen para aldehído anísico

 

Otros aldehídos importantes empleados en industrias varias

Formaldehído:

Se usa en fabricación de plásticos y resinas, industria fotográfica, explosivo y colorantes, como antiséptico y preservador (conservación de animales muertos).
El aldehído más simple, el formaldehído, es un gas incoloro de olor irritante. Desde el punto de vista industrial es muy importante, pero difícil de manipular en estado gaseoso; suele hallarse como una solución acuosa al 40 % llamada formalina; o en forma de un polímero sólido de color blanco denominado para-formaldehído (Porras., 2013).
Si se caliente suavemente, el para-formaldehido se descompone y libera formaldehído:

Resultado de imagen para formaldehido estructura
La formalina

Se usa para conservar especímenes biológicos. El formaldehído en solución se combina con la proteína de los tejidos y los endurece, haciéndolos insolubles en agua. Esto evita la descomposición del espécimen. La formalina también se puede utilizar como antiséptico de uso general. El empleo más importante del formaldehído es en la fabricación de resinas sintéticas. Cuando se polimeriza con fenol, se forma una resina de fenol formaldehído, conocida como baquelita. La baquelita es un excelente aislante eléctrico; durante algún tiempo se utilizó para fabricar bolas de billar (COSMOS MX, 2014).

Resultado de imagen para formalina

Acetaldehído:

El acetaldehído es un líquido volátil e incoloro, de olor irritante. Es una materia prima muy versátil que se utiliza en la fabricación de muchos compuestos. Si el acetaldehído se calienta con un catalizador ácido, se polimeriza para dar un líquido llamado paraldehído.

Resultado de imagen para Acetaldehído
Paraldehído

El paraldehído se utilizó como sedante e hipnótico; su uso decayó debido a su olor desagradable y al descubrimiento de sustitutos más eficaces.

Resultado de imagen para Paraldehído

Usos y aplicaciones de las Cetonas

Las cetonas se encuentran ampliamente distribuidas en la naturaleza. El importante carbohidrato fructuosa, las hormonas cortisona, testosterona (hormona masculina) y progesterona (hormona femenina) son también cetonas, así como el conocido alcanfor usado como medicamento tópico. Constituyen importantes fuentes medicinales y biológicas; son utilizadas como disolventes orgánicos, removedor de barniz de uñas (acetona). Obtención de resinas sintéticas, antiséptico, embalsamamiento, desodorante, fungicidas; obtención de Exógeno o Ciclonita (explosivos), preparación de pólvoras sin humo. Son aprovechadas para la obtención de Cloroformo y Yodoformo (Meislich, 1998). Algunas cetonas naturales y otras artificiales se emplean en cosmetología como aromatizantes y perfumes. Entre las cetonas más importantes tenemos:
Metil-etil-cetona:
El principal uso de la metiletilcetona (MEK) es en la aplicación de adhesivos y revestimientos protectores, lo que refleja sus excelentes características como disolvente. Se utiliza también como disolvente en la producción de cintas magnéticas, el desparafinado de aceites lubricantes y el procesamiento de alimentos. Es un componente habitual de barnices y colas, así como de muchas mezclas de disolventes orgánicos (Profesionseg, 2014).
La acetona:
Utilizado para la fabricación de metil metacrilato de metilo, ácido metacrílico, metacrilatos, bisfenol A, entre otros. Distribución del acetileno en cilindros y la nitroglicerina. Limpieza de microcircuitos, partes electrónicas, etc. Limpieza de prendas de lana y pieles. Cristalización y lavado de fármacos. Como base para diluyentes de lacas, pinturas, tintas, etc. En la vida doméstica, es el disolvente por excelencia para las pinturas de uñas y una mezcla de ambas se usa como disolvente-cemento de los tubos de PVC (Profesionseg, 2014).

Ciclopentanona

Se utilizan como disolvente y en gran medida para la obtención de la caprolactama, un monómero en la fabricación del Nylon 6 y también por oxidación del ácido adípico que se emplea para fabricar el Nylon 66.

Resultado de imagen para Ciclopentanona
La butano-2,3-diona:

Imagen relacionada
Es un ingrediente fundamental del aroma de la margarina.

Metadona

Este psicofármaco empezó a utilizarse como sedante y como remedio contra la tos, sin mucho éxito. Actualmente se emplea en los programas de desintoxicación y mantenimiento de los farmacodependientes de opiáceos, tales como la heroína.

Alcanfor

Es una cetona que se encuentra en forma natural y se obtiene de la corteza del árbol del mismo nombre. Tiene un olor fragante y penetrante; conocido desde hace mucho tiempo por sus propiedades medicinales, es un analgésico muy usado en linimentos. Otras dos cetonas naturales, beta-ionona y muscona, se utilizan en perfumería. La beta ionona es la esencia de violetas.

Resultado de imagen para Alcanfor

Muscona

Es obtenida de las de las glándulas odoríferas del venado almizclero macho, posee una estructura de anillo con 15 carbonos.
Muscona y la civetona: que son utilizados como fijadores porque evitan la evaporación de los aromas además de potenciarlos por lo cual se utilizan en la industria de la perfumería.
Es importante mencionar que las cetonas son fuente de energía que casi todas las células del cuerpo humano pueden utilizar, las cetonas son en realidad un subproducto de la oxidación de las grasas y lípidos de nuestro organismo, es decir que al quemar grasa haciendo actividad física inmediatamente las cetonas son producidas para proporcionar energía a las células que las van oxidando hasta convertirlas en CO2 y agua y aunque los alimentos NO poseen cetonas, los alimentos que poseen altos contenidos grasos que posteriormente se convierten en adipocitos quedarán a la espera de ser degradados y dichos alimentos pueden promover un mecanismo denominado cetosis que implica la utilización de las mismas en diferentes funciones biológicas así lo afirma (Delgado Mendoza, 2016).

DISCUSIONES Y CONCLUSIONES

Como se ha demostrado los compuestos del tipo aldehídos y cetonas son de importante uso industrial, sin embargo en la industria alimenticia las cetonas no tienen un papel fundamental ya que no se encuentran en los alimentos a lo que se puede acotar lo mencionado por (Delgado Mendoza, 2016), las cetonas no se encuentran en los alimentos a su vez se producen al interior de los organismos vivos, en los seres humanos las cetonas se producen en cantidades bajas cuando el individuo posee una dieta baja en carbohidratos, lo que sí se debe tener en cuenta es que la presencia de cetonas en un alimento según el autor es signo negativo en el control de calidad del mismo y el objetivo del profesional de Alimentos es la pronta eliminación de los mismos por métodos instrumentales, sin embargo los aldehídos son sustancias importantísimas en sector agroindustrial por sus implicaciones esterilizantes y de control de calidad en galpones y granjas, a su vez en torno a la producción de alimentos, los aldehídos son empleados principalmente como agentes saborizantes y aromatizantes, mejorando así las propiedades organolépticas de un determinado producto alimenticio, por esta razón es importante saber identificar ambos grupos para su posterior aplicación en distintos campos industriales de la química.

Bibliografía

Agency for Toxic Substances and Disease Registry. (06 de mayo de 2016). Agency for Toxic Substances and Disease Registry-Division of Toxicology and Human Health Sciences. Obtenido de Resúmenes de Salud Pública – Glutaraldehído (Glutaraldehyde): https://www.atsdr.cdc.gov/es/phs/es_phs208.html
Cornejo, P. M. (SN). UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO. Obtenido de Cetonas y aldehídos: https://www.uaeh.edu.mx/scige/boletin/prepa3/n8/m8.html#refe1
COSMOS MX. (2010). Usos del Aldehido Anisico. . Obtenido de http://www.cosmos.com.mx/producto/ddpy/aldehido-anisico 6 Profesionseg. (2014).
Delgado Mendoza, P. (03 de 11 de 2016). Las Cetonas No Se Encuentran en Los Alimentos. Obtenido de SCRIBD: https://es.scribd.com/document/329915386/Las-Cetonas-No-Se-Encuentran-en-Los-Alimentos
Departamento de Redacción OV. (27 de 07 de 2018). EL ORIGEN DE LA VAINILLA Y SU HISTORIA. Obtenido de https://www.vainilla.info/origen-historia/
DIEQ. (2018). Aldehído Cinámico. Obtenido de DIEQ: https://www.dyeq.co/fichas/aldehido-cinamico/
Esposito, L., Fromanek, K., Kientz, G., Mauger, F., Maureaux, V., Robert , G., & Truchet, F. (1997). Vanillin. En Kirk-Othmer Encyclopedia of Chemical Technology, 4th edition (págs. 812-825). New York: John Wiley & Sons.
Klein, D. (2013). Química Orgánica. Cuarta edición. Buenos Aires: Panamericana .
Meislich, H. ,. (1998). Química Orgánica. Tercera Edición. Bogotá Colombia.: Mc Graw Hill.
Merck Millipore. (2017). Aldehído cinámico. Obtenido de http://www.merckmillipore.com/INTL/en/product/Cinnamic-acid,MDA_CHEM-800235?ReferrerURL=https%3A%2F%2Fwww.google.com.ec%2F
NMX-F-369-S-1980. (1980). NMX-F-369-S-1980. BENZALDEHÍDO (GRADO ALIMENTARIO). Obtenido de https://www.colpos.mx/bancodenormas/nmexicanas/NMX-F-369-S-1980.PDF
Porras., S. (2013). Aldehídos y Cetonas. Obtenido de http://sergioporras12.blogspot.com/2013/08/utilidades-en-laindustria-de-aldehidos.ht
Profesionseg. (2014). El principal uso de la metilcetona. Obtenido de http://profesionseg.blogspot.com/2014/01/el-principal-uso-de-la-metiletilcetona.html
Rodriguez Sauceda, E. N. (2011). USO DE AGENTES ANTIMICROBIANOS NATURALES EN LA CONSERVACIÓN DE FRUTAS Y HORTALIZAS. Ra Ximhai enero-abril Vol. 7 Número 1. Universidad Autónoma de México , 153-170.
Solomons, T. G. (1985). Química orgánica. . México, D.F.: Limusa.
Veron García, A., & Gaviria Vallejo, J. M. (23 de 12 de 2015). Triple enlace. Obtenido de EL BENZALDEHIDO EN LA INDUSTRIA ALIMENTARIA: https://triplenlace.com/2015/12/23/usos-industriales-del-benzaldehido/
Wikipedia.(s.f.). (2008). Benzaldehido. Obtenido de https://es.wikipedia.org/wiki/Benzaldeh%C3%ADdo 4 Dyeq.(s.f.).

Resultado de imagen para gif quimico

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Leeuwenhoek y el descubrimiento de los microorganismos

 

Alejandro Alfredo Aguirre Flores. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

     La realidad entendida como aquello que acontece de manera verdadera y demostrada termina siendo una verdad irrefutable ante lo que usted mi estimado lector, es capaz de palpar mediante sus sentidos en este mismo instante, puesto que existe (lo que es capaz de observar a simple vista)  en el macrocosmos; sin embargo para ciertos seres vivos que por su extrema pequeñez quedan fuera del alcance del ojo humano, el macrocosmos podría entenderse como un basto espacio lleno potenciales ecosistemas, por ejemplo en este mismo instante si comparamos el ombligo de una persona con el Archipiélago de Galápagos probablemente se encuentren en él más especies de microorganismos que de especies en “Las Islas Encantadas”; estos “seres” fueron denominados como MICROBIOS y partiendo desde su análisis epistemológico esta palabra es una derivación de dos vocablos griegos “mikro”, pequeño y “bio”, vida; entendiéndose por tanto como una pequeña, muy pequeña forma de vida no necesariamente simple como algunos autores mencionan y mucho menos poco importante; verlos no es posible si no mediante un instrumento óptico denominado “microscopio” y es gracias a este importante invento que el estudio de los microbios ha sido posible formando en sí mismo toda una rama de la biología moderna denominada MICROBIOLOGÍA.

Resultado de imagen para gifs microorganismos

En torno a dicho invento, el microscopio compuesto, es un instrumento conformado por dos sistemas de lentes, el uno es denominado sistema de lentes ocular y el segundo sistema como objetivo. Actualmente existen diversos tipos de microscopios más avanzados tales como el electrónico de barrido mismo que siendo capaz de captar imágenes con mayor resolución a nivel tridimensional y con facilidades que permiten obtener imágenes en formatos aptos para distinto software, aunque actualmente los microscopios poseen una  amplia diversidad como muestra la red conceptual siguiente:

Resultado de imagen para tipos de microscopio

Resultado de imagen para tipos de microscopio

De manera general el microscopio compuesto, por ser más asequible y práctico, para el estudio de la microbiología básica o general, permite un aumento suficiente para la apreciación de estructuras microcelulares, de forma análoga existe el microscopio monocular simple formado por un solo lente con radio de curvatura muy pequeño, en consecuencia, una  buena capacidad de aumento, dada su capacidad focal de corto alcance.Resultado de imagen para microscopio compuestoUna de las limitantes que presentó el monocular es que al estar acompañado de una sola lente de gran poder de convergencia según afirmó en 1970 el investigador Norberto J. Palleroni del Departamento de Bacteriología e Inmunología de la Universidad de California, Estados Unidos; los monoculares presentan condiciones de observación pobres y con capacidad de enfoque limitada, por lo que de apoco han empezado a ser considerados como obsoletos, en comparación con el microscopio compuesto capaz de superar estas limitantes mediante a combinación de distintas lentes de diferente poder de convergencia a fin de amplificar y esclarecer la nitidez de las muestras observadas, y es en este punto donde nace la pregunta ¿QUIÉN Y CÓMO HIZO NACER TAN IMPORTANTE INVENTO? Para contestar dicha interrogante es importante introducirnos en un contexto histórico en el cual un hombre brillante tuvo genialidad de observar por primera vez microrganismos, dicho hombre es Antoni van Leeuwenhoek  a continuación su historia.

La genialidad de la obra de Antonie Philips van Leeuwenhoek

Imagen relacionada

     Considerando las diversas vicisitudes antes mencionadas propias del microscopio monocular, los microbios fueron descubiertos con un dispositivo de este tipo y todo fue gracias al holandés Antonie van Leeuwenhoek, quien en pleno siglo XVII construyó sus propios microscopios rudimentarios dado su oficio de fabricante de lentes, utilizó su conocimiento para el diseño de diversas estructuras cristalinas de aumento, que resultaron ser muy eficientes para la época, el trabajo de Leeuwenhoek fue tan magnífico que sus observaciones marcaron un antes y un después en la ciencia del micromundo.

Nacido en Delft, Países Bajos, un 24 de octubre de 1632 fue sin duda el PRIMER ser humano en observar microorganismos (bacterias y protozoarios) cuyas descripciones constituyen una de las obras más notables de las ciencias biológicas, lastimosamente  su trabajo se vio imposibilitado de replicarse dada la dificultad de reproducir las lentes que inventó, algunos investigadores afirman que Leeuwenhoek fue egoísta al no difundir el modo de fabricación de sus lentes, otros como Palleroni defienden su proceder dada la tremenda dificultad de la época para la realización de múltiples dispositivos con las mismas características adicionalmente y considerando la cantidad de tiempo suponemos invirtió en su obra y en la ilustración que realizó de sus observaciones, quizás fueron condiciones que dificultaron la divulgación de sus métodos y técnicas.

Leeuwenhoek queda huérfano de padre (Philips Antonisz van Leeuwenhoek)  a los cinco años, posibilitando a su madre, Margaretha van den Berch, contraer un segundo matrimonio con un hábil pintor llamado Jacob Jansz Molijn, de quien posiblemente aprendió técnicas para la ilustración científica que desarrollará posteriormente.Actualmente es considerado como padre de la biología celular y microbiología. 

Se conoce que Antonie a los 16 años se trasladó hasta la ciudad Holandesa de Amsterdam donde aprendió el oficio de textilero desempeñándose como aprendiz de tratante de telas y finalmente desarrollando diversas tareas hasta llegar a puestos  como cajero y contable, según mencionan Víctor Moreno, María E. Ramírez, Cristian de la Oliva, Estrella Moreno. (2018). Su vida se vio rodeada de tragedias, por ejemplo en 1666 muere su esposa tras haber contraído matrimonio en 1654 con Bárbara de Mey, una de las hijas del dueño de la empresa textilera donde trabajó por seis años, cuatro de sus cinco hijos murieron siendo infantes finalmente en 1671 contrae un segundo matrimonio con Cornelia Swalmius, con quien no tuviera hijos y 23 años más tarde también falleciera.

Imagen relacionada
DELFT-HOLANDA

En 1669 se convirtió en agrimensor (antigua rama de la topografía que consistía en la medición de territorios, terrenos o superficies destinadas para la agricultura), su vida fue definitivamente multifascética ya que en 1679 desempeñó el puesto de inspector y control de calidad en vinos en su poblado, Delft de que nunca saliera, habiendo sido siempre un personaje notable de dicha ciudad.

ANÁLISIS DE LA OBRA DE ANTONIE VAN LEEUWENHOEK

Fuera de la ciudad que lo viera nacer, nada se hubiera sabido de este magnífico hombre de ciencia, si no es porque Leeuwenhoek tuvo una gran habilidad para el manejo de cristales ya que mientras fue fabricante de lentes aprendió el oficio de moler las defectuosas, factor que marcó un antes y un después en la biología; Antonie poseía una gran habilidad en el pulido de lentes pequeñísimas biconvexas; muchos autores mencionan que en realidad Antonie creo dichas lentes como respuesta a su aburrimiento, obviamente cosa que no se a desmentido ya que se conoce el momento exacto en el que Leeuwenhoek creó su microscopio, estas diminutas lentes fueron montadas sobre platinas de latón como muestra la imagen siguiente: 

Imagen relacionada

Pues bien y antes de fantasear con tan fabuloso dispositivo es importante mencionar que la relación de tamaño del mismo era tal que cabía en la palma de una mano, sin embargo éstas al sostenerse muy cerca del ojo humano, al observar a través de ellas se podía apreciar objetos que eran montados sobre la cabeza o soporte similar al de un alfiler, dichas lentes ampliaban las muestras hasta unas 300 veces el tamaño original de las muestras, consiguió de esta forma lentes de entre 70 a 250 aumentos; apreciemos por tanto el tamaño original del dispositivo.

Imagen relacionada
El único instrumento fabricado por el naturalista holandés cuya autenticidad está certificada con técnicas modernas. Este objeto único pasó 300 años en el fondo de un canal en Delft y terminó en las manos de un coleccionista gallego.

Este diminuto dispositivo definió con mayor claridad las muestras que cualquier otro microscopio de la época, muchos importantes investigadores han aclarado que este dispositivo debería ser clasificado como una lupa puesto que sigue el mismo principio de observación.

Se conoce que la técnica utilizada por Antoni era bastante compleja, principalmente porque el montaje de la muestra podía ser un verdadero dolor de cabeza, en el mejor de los casos, de ser sólida era sostenida por la punta de su dispositivo mientras que si fuera una muestra líquida la debía montar sobre una lámina de talco o vidrio. El mérito especial no radica en su habilidad con las lentes sino más bien su técnica de observación y todo lo registrado en ella. Todo ello se conoce gracias al biólogo investigador inglés Clifford Dobell (1886-1949), quien mencionó que la clave del método de observación de Leeuwenhoek reside en la iluminación del campo oscuro, fundamente utilizado hasta la actualidad en los microscopios binoculares y monoculares, dicha iluminación consistía en iluminar lateralmente los objetos dándoles contraste con un fondo oscuro. La iluminación normal consiste en poder observar los objetos oscuros contra un fondo más claro, sin embargo el método de Leeuwenhoek obedece al principio del campo oscuro efecto análogo al efecto Tyndall, de tal manera que objetos muy diminutos pueden verse mientras reflejen la luz.

Resultado de imagen para microscopio de leeuwenhoek

En 1668, realizó importantes descubrimientos en torno a la red de capilares propuesta por el Fisiólogo italiano Marcello Malpighi, ilustre personaje quien descubriese los glóbulos rojos de la sangre y demostrando que son estas células las responsables del color rojo característico de la sangre, esto no se podría haber logrado sin Leeuwenhoek quien realizó observaciones de los capilares de las orejas de los conejos y la membrana intersticial de una pata de una rana, hasta que en 1674 realizara la primera descripción de los glóbulos rojos de la sangre.

Con mérito de sobra, Antonie Van Leeuwenhoek es considerado el fundador de la MICROMETRÍA, ciencia que estudia y mide todo lo observable a través de una lente o microscopio; los investigadores César Urtubia Vicario & Joan Antó i Roca en su artículo titulado: En el 350 aniversario  del nacimiento de Antoni van Leeuwenhoek (y ll.) Su obra.; mencionan un interesante experimento realizado por Leeuwenhoek y con el explican por qué se le considera como padre de la micrometría también: 

Calculó primero la dimensión aproximada de una gota de agua, misma que intentó separar el equivalente a  su centésima parte y la introdujo en un tubo de vidrio transparente mismo que había sido calibrado en unas 25 a 30 gotas. Posteriormente colocó el tubo bajo su microscopio y contó los infusorios (protozoarios) presentes en cada de sus partes, la palabra infusorios actualmente es un término no científico y hoy en día se les da el nombre propio filogenético. Con este dato calculó el número total de microorganismos presentes en la muestra sentando de esta manera el principio moderno de “cámara de recuento” y allí demostrada su incursión en la micrometría.

Resultado de imagen para microorganismos en una gota de agua
GOTA DE AGUA DE MAR AMPLIADA 25 VECES.

Posteriormente al experimento de la gota, observó el agua de lluvia y saliva humana, y en estas muestras encontró lo que llamaría animálculos o infusorios, mismos que actualmente se conocen como protozoos, algas  y bacterias.

Resultado de imagen para animalculos de leeuwenhoek

De esta manera descubrió que existen múltiples aplicaciones de la micrometría, otro experimento que realizó fue calcular el diámetro de un grano de arena gruesa como de 1/30 de pulgada, lo comparó con un grano de arena fino de aproximadamente 1/80 de pulgada y otro de 1/100 de pulgada ¿cuál fue la implicación biológica de este comparativo? pues enorme, dicha comparación permitió a futuro comprender la relación de tamaño entre estructuras inertes con bióticas, por ejemplo haciendo equivalencias descubrió que diámetro de un grano de arena fina con respecto a 2.5 veces el diámetro de un pelo de su barba determinó que el equivalente eran 600 de éstos en su peluca o barba.

Sus observaciones se remontan a la química, desde la cristalografía, Leeuwenhoek  fue el primero en afirmar que los cristales (de sal por ejemplo) vienen dados por un ordenamiento de átomos.

Resultado de imagen para cristales de leeuwenhoek
Cristales de azúcar descritos por Leeuwenhoek.

Las observaciones continuaron y así en 1677 descubrió los ESPERMATOZOOS  de los insectos y espermatozoides de los humanos, se opuso rotundamente a la teoría de generación espontánea casi 150 años antes que Luis Pasteur, demostrando por ejemplo que animales como los gorgojos no surgían espontáneamente de los granos de trigo y arena sino que se desarrollaban a partir de huevos diminutos, examinó también plantas, tejidos musculares, polen, y describió tres tipos de bacterias; bacilos, cocos y espirilos.

Imagen relacionada

Observó también  la constitución de diversos mohos y la morfología de diversas especies de insectos como pulgas, moscas, garrapatas y escarabajos como muestra la ilustración siguiente:

Resultado de imagen para animalculos de leeuwenhoek
PULGA DE LEEUWENHOEK

Por otro lado realizó descripciones de observaciones correspondientes al aparato bucal  y ojos de abejas. Realizó comprobaciones de sus propias deducciones, después de los análisis capilares en las patas de las ranas, complementó sus observaciones con las colas de los renacuajos de las mismas. Se sabe por su obra que observó las diferentes formas que presentaban los espermatozoides de especie a especie y los comparó en morfología.

Resultado de imagen para animalculos de leeuwenhoek
ESPERMATOZOIDES

Realizó y analizó observaciones de células de fermento llegando así al límite de su ampliación de lentes observando así en 1680 levaduras, y cuatro años antes reportó observaciones de gérmenes (microbios) lo que hoy en día se conoce como bacterias, sin embargo y como se mencionó antes, jamás describió el cómo realizó la fabricación de sus lentes.

Por todas estas observaciones exactamente un año después de haber escrito una carta dirigida a la Royal Society se publican por primera vez sus observaciones en las afamadas Philosophical Transactions, revistas de gran renombre en Londres – Inglaterra. En ellas describe los “animálculos” que observó procedentes de una laguna cercana a Delft, seres que hoy en día se clasificarían como protistas. Un 9 de octubre de 1676 describe las observaciones realizadas en 1675 donde afirma haber tinturado el agua de azul lo que pone en manifiesto la necesidad de colorearlos para poder observarlos, principio utilizado hasta la actualidad en microbiología. Adicionalmente describió  comparaciones, movilidad y comportamiento de ciertos protozoarios, en unos de sus artículos menciona: 

“Descubrí más animálculos en el agua de lluvia, así como unos pocos que eran ligeramente más grandes; e imagino que diez centenares de miles de estos animálculos muy diminutos no tenían el tamaño de un grano de arena común. Si se compararan estos animalillos microscópicos con los gusanillos del queso (que podemos distinguir a simple vista cuando se mueven), yo establecería la proporción en los términos siguientes: el tamaño de una abeja respecto al de un cabello, pues la circunferencia de uno de estos pequeños animálculos no es tan grande como el espesor del pelo de un gusanillo”. Antonie Philips van Leeuwenhoek (1676).

Imagen relacionada

Un dato muy curioso es que pensó que el calor o la sensación picante del agua de pimienta era causada por alguno de estos animáculos o alguna estructura que así lo permitiera y evidentemente no encontró nada; dicha suposición no fue tan descabellada como se pensaría en la actualidad puesto que en uno de sus últimos artículos mencionó microorganismos presentes en agua de jengibre, vinagre, clavo de olor y nuez moscada a los que describió como anguilillas con movimientos tipo oscilaciones tal como las anguilas en el agua.

Finalmente la pregunta es: ¿Cuantos dispositivos creó leeuwenhoek?

En 1774, tras la muerte de María la única de los 5 hijos que tuvo, los microscopios fueron subastados, Van Setters (1933) concluye que Leeuwenhoek fabricó al menos QUINIENTOS SESENTA Y SEIS (566) dispositivos, y en otro recuento se afirma fueron 543 de las cuales 26 se fabricaron en plata. Existen autores que mencionan tan solo 419 dispositivos lo cierto es que en la actualidad tan solo se conoce de la existencia de 9 y se sabe que muchas de ellas constituían hasta 270 aumentos. De la fabricación de las mismas no se sabe mucho más que eran pulidas meticulosamente y que debieron haber sido fabricadas mediante una técnica de soplado. 

Imagen relacionada

Los microscopios simples conservados actualmente son seis constituidos en bronces entre los que destacan como propietarios el Museo de la Universidad de Utrecht y el Deutsches Museum de Munich, y otros tres más constituidos en plata uno de los mismos se puede observar en el Museo de Munich antes citado. Uno de los datos más asombrosos es que una de las lentes descubiertas no contiene ni un solo rayón propio de la pulidura del vidrio, puesto que solo en la actualidad mediante técnicas modernas se puede lograr semejante cometido, sin embargo si se han determinado la presencia burbujas en las lentes puesto que Antonie utilizó técnicas de soplado que demuestra su gran habilidad con las mismas su espesor variaba entre los 10-20mm de diámetro. Dadas las condiciones de su fabricación y considerando que el siglo XIX existía una escasa cantidad de microscopios de Leeuwenhoek, Jhon Mayal Jr. secretario de la Royal Microscopical Society, usando el microscopio en posesión de la Universidad de Utrecht realizó tres copias de él, una de ellas guardada en Oxford  y otras dos en Cambridge. 

Resultado de imagen para microscopio de leeuwenhoek  de la Universidad de Utrecht
Imagen de diatomeas obtenida con una lente de Leeuwenhoek en el Museo de la Universidad de Utrecht. Las manchas oscuras las producen burbujas de aire en la lente. Fuente: Fig. 5 en “The microscope in the Dutch Republic: The shaping of discovery”, por Ruestow EG.

Trágicamente Antonie falleció un 26 de agosto de 1723 en su ciudad natal Delft a los 90 años, marcando así un ayer y un mañana en la ciencia microbiológica. El 31 de agosto fue enterrado en la Oude Kerk (Iglesia Vieja) de la ciudad; y quien continuará su legado posteriormente fuera Christiaan Huygens para su propia investigación sobre microscopía mejorando los dispositivos creados por Leeuwenhoek.

COMENTARIO DEL AUTOR:  la información existente sobre Leeuwenhoek difícilmente le hacen justicia a su labor, lastimosamente son muchos los artículos en los que he notado pesimismo, a mi juicio incomprensible, sobre lo que diversos autores consideran como EGOÍSMO o CELO, actitud que no es muy ajena de algunos científicos en la actualidad, sin embargo considero que Leeuwenhoek fue un microbiólogo e ilustrador naturalista nato, que ante las circunstancias propias de la época no podía darse el lujo de utilizar su tiempo para difundir sus métodos a detalle cuando ante sus ojos el mundo microscópico se mostraba amplio y lo suficientemente basto como para ser ignorado, tiempo que invirtió ilustrando y describiendo cada muestra que llegó a sus manos y plasmarlo en sus obras posteriormente publicadas, cosa que no puede ni DEBE ser INVISIBILIZADA por los autores que en su nombre tratamos de interpretar su trabajo, un trabajo asombroso pese a las dificultades de la época; los científicos NO ESTAMOS para emitir JUICIOS DE VALOR a razón del trabajo de grandes pioneros de las ciencias como lo fue Leeuwenhoek, los científicos estamos para construir positivamente los pilares del conocimiento, me atrevo a decir que nuestra actitud debe parecerse a un automóvil 4×4 todo terreno capaces de aportar y brillar con luz propia antes que criticar y opacar el trabajo de grandes mentes como la de Antoni van Leeuwenhoek.

Alejandro Aguirre F. 18/11/2018

https://youtu.be/g7dS0NBsORc 

REFERENCIAS:

  • César Urtubia Vicario & Joan Antó i Roca en su artículo titulado: En el 350 aniversario  del nacimiento de Antoni van Leeuwenhoek (y ll.) Su obra. Tomado de: https://upcommons.upc.edu/bitstream/handle/2117/754/En_el_350_aniversario_del_nacimiento_de_Anton_van_Leeuwenhoek_(II).pdf  
  • Norberto J. Palleroni.(1970) Principios Generales de Microbiología. Departamento de Bacteriología e Inmunología de la Universidad de California (Estados Unidos). Programa Regional de Desarrollo Científico y Tecnológico. Departamento de Asuntos Científicos. Secretaría General de la Organización de Estados Americanos. Washington, D.C. pp. 1-3.

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Usos y Aplicaciones de los Compuestos Aromáticos en la industria de Alimentos

Lucía Jaramillo Cando. [1]

Lesly Espinoza Buitrón. [1]

Alejandro Aguirre F. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

INTRODUCCIÓN

Los hidrocarburos aromáticos son parte de la gran familia del Benceno, puesto que tienen por núcleo uno o más anillos bencénicos, al presentar una estructura cíclica insaturada por esta razón se les denomina también arenos así lo menciona (Claramount, y otros, 2013); y son precisamente dicha característica que confiere aromaticidad a este tipo de compuestos debido a un traslape efectivo entre sus electrones π (pi) puesto que la presencia del anillo bencénico hace que su molécula presente tres pares de electrones deslocalizados en un ciclo plano adicionalmente el cumplimiento de los principios de Hückel. En definitiva estas características confieren cierta reactividad a este tipo de compuestos en los que reside una gran estabilidad proveniente de la deslocalización electrónica existente que en muchos casos incita a la resonancia, dando lugar a que las nubes electrónicas se encuentre en una relativa mayor “comodidad” como resultado de sus repulsiones débiles que si estuvieran localizadas en tres enlaces π.

Entorno a la investigación se han tomado en cuenta múltiples compuestos aromáticos derivados del Benceno así como compuestos heterocíclicos aromáticos que se relacionan con la industria de alimentos y derivados; tomando como factor común la “degeneración” de orbitales (con la misma energía) que tiene lugar en el núcleo del anillo bencénico, a su vez la presente investigación relaciona los aspectos negativos que pueden tener respecto a la industria alimentaria en efecto, su relación con la salud humana.

DESARROLLO DE LA INVESTIGACIÓN

 

Aplicaciones del benceno

El benceno desde su descubrimiento por parte de Michael Faraday en 1825, tras lograr aislarlo desde una sustancia oleosa extraída de una lámpara común de queroseno y su posterior formulación (C6H6) demostrando que posee seis átomos de carbono equidistantes y equivalentes, propuesta por Eilhard Mitscherlich en 1834; el benceno es por sí mismo el principal representante de los compuestos orgánicos aromáticos (Wade, 2011).

Tiempo después fueron múltiples los estudios realizados entorno a su síntesis y presencia en la naturaleza, así Hoffman en 1845 lo aísla a partir de la hulla, levantando así un indicio de su presencia en el petróleo. Pero no fue hasta que el Nobel de Química Linus Pauling consiguiera encontrar el verdadero origen de su comportamiento, la resonancia o mesomería en la cual ambas estructuras de Kekulé se sobreponen.

Resultado de imagen para anillo bencenico
Ilustración 1 Comportamiento del anillo bencénico.

De manera general el benceno es utilizado en la fabricación de tintas, detergentes, explosivos, caucho, plásticos y fármacos. Sin embargo y a pesar de presentar riesgos para la salud ya que normalmente según la FDA posee en sus etiquetas frases tales como la R45 que menciona riesgo para la salud y causa de aparecimiento de cáncer y sus respectivas R48/23/24/25 que lo consideran como un compuesto del tipo tóxico capaz de representar riesgo de efectos graves para la salud en caso de exposición prolongada por inhalación, contacto con la piel e ingestión (Documentacion Ideam, 2003). Las industrias alimenticias en algunos países lo siguen utilizando como solvente para la extracción de esencias y concentrados a continuación algunos ejemplos.

Especias y condimentos-determinación de humedad en pimienta gorda. Método de prueba.

 

Según la publicación mexicana cuyo título original fue publicado como: Spices and condiments-determination of moisture content of all spice method of test (1988). Menciona al benceno como solvente indicado para la determinación de la humedad en pimienta gorda, lo importante del artículo radica en que no atenta contra la salud de los consumidores puesto que el método propuesto es únicamente para el análisis laboratorial de la pimienta mas no para su consumo inmediato.

Resultado de imagen para pimienta negra
Ilustración 2 Pimienta Negra (gorda)

El método desarrollado por Secretaría de Agricultura y Recursos Hidráulicos de México menciona que el benceno por su punto de ebullición e insolubilidad en agua permite una adecuada destilación continua del agua presente en una muestra de 30 a 35 g de semillas de pimienta gorda en 75 a 100 cm3 de benceno, la investigación sugiere la ecuación siguiente para el cálculo de la humedad (Secretaría de Agricultura y Recursos Hidráulicos, 1988):

Donde:                                                   Humedad %=(A* ρ)/M*100

A= Volumen de agua (cm3)

ρ = Densidad del agua (g/cm3)

M= Peso de la muestra (g)

 

Benceno como contaminante de los alimentos, fuentes hídricas y agua potable

 

Por otra parte el benceno ha sido uno de los principales contaminantes del agua potable en comparación con otros compuestos según menciona (Echeverry, 2016), alimentos como café, pan comercial, agua potable y envasada, frutas, verduras, bebidas isotónicas, chicles, derivados cárnicos, alimentos con saborizantes, helados, yogurt e incluso cosméticos en todo el mundo han presentado trazas de benceno, que como se mencionó anteriormente es altamente tóxico, el origen de dicho mal puede deberse a malas prácticas de manufactura en las industrias no alimenticias, mismas que desechan sus aguar residuales sin un adecuado control de sustancias contaminando de esta manera los recursos hídricos, la norma técnica internacional establecida por la FDA menciona que no se excederá la cantidad de 1μg/l de agua caso contrario se considera como muestra contaminada y requiere tratamiento emergente, a su vez la OMS (Organización Mundial de la Salud) y la Agencia para la Protección del Medio Ambiente (EPA), clasifica al benceno como parte de la lista de compuestos emergentes en el tratamiento de aguas por su persistencia y sus efectos negativos para la salud humana así lo afirma (Barceló & López de Alda, 2010).

Benceno como producto residual en la síntesis de benzoatos presentes en alimentos

Alimentos tales como las salsas de tomate (Kétchup), sodas y aquellos que presenten benzoato de sodio o potasio en general pueden tener mayor incidencia de trazas de benceno, y aunque el benzoato puede parecer inofensivo las industrias alimenticias y químicas en general sintetizan este compuesto a partir del benceno, a su vez y al no existir un proceso ciento por ciento efectivo, nada puede frenar el aparecimiento de rachas de reactivo en los productos finales así lo afirma (Echeverry, 2016). A continuación la síntesis comúnmente utilizada para la formulación del benzoato sódico:

Resultado de imagen para sintesis del benzoato de sodio
Ilustración 3 Síntesis del Tolueno, Benzoato sódico y ácido benzoico. Fuente: https://es.wikipedia.org/wiki/%C3%81cido_benzoico

En relación al tema la Administración de Alimentos y Drogas de los Estados Unidos (FDA) por sus siglas en inglés, menciona que las sales de benzoato al ser expuestas a la luz y al calor en presencia de vitamina C (común en ciertos alimentos tales como gaseosas y fármacos) al reaccionar pueden causar cantidades residuales de benceno, este factor entorno a la industria de bebidas ha sido muy criticado por que normalmente las bebidas gaseosas son transportadas en vehículos con exposición directa a la luz solar creando el factor adecuado para su transformación y en consecuencia convertirse en un factor nocivo para la salud de los consumidores (Echeverry, 2016).

Imagen relacionada
Ilustración 4 Las gaseosas carbonatadas, por factores de estabilidad presentan benzoatos de sodio y potasio que al reaccionar con la luz y el calor pueden formar rachas de benceno.

 

Aplicaciones de otros compuestos aromáticos

 

Uso de las Quinolinas e Isoquinolinas en la industria alimenticia

Las quinolinas e isoquinolinas con compuestos cíclicos en los que un anillo bencénico y uno de piridina se hallan fusionados y eso aplica también para su correspondiente catión quinazolinio; aunque el criterio de carácter aromático de Hückel predice aromaticidad en compuestos mono cíclicos se conoce que este tipo de compuestos conservan sus propiedades aromáticas así lo considera (Dep. Fquím. UNAM, 2015); es así como muchos de sus derivados son utilizados en múltiples sectores industriales tales como el actinoquinol utilizado en la fabricación de pantallas UV, benzoquinolina utilizada en la fabricación de desinfectantes, lotrifen que es un derivado de las quinolinas ampliamente usado como abortivo o el dimetisoquin potente anestésico y finalmente la papaverina en la fabricación de relajantes musculares.

 

Amarillo de quinoleína (E E104) o amarillo de quinolina

 

El amarillo de quinolina es un importante ingrediente sintético para la industria de alimentos como agente colorante entre sus aplicaciones más destacadas están:

 

  • Dulces de azúcar y golosinas.
  • Repostería de naranja, vainilla y chocolate.
  • Panadería.
  • Bebidas alcohólicas y no alcohólicas hidratantes, energizantes, bebidas electrolíticas.
  • Heladería.
  • Snacks y botanas.
  • Salsas y condimentos.
  • Bebidas Carbonatadas.
  • Quesos en polvo.
  • Frituras y otros.

Según afirma (Badui, 2013), el color de los alimentos es muy importante para el consumidor a razón de ser el primer contacto e impresión que tiene un potencial comprador en respuesta de lo que visualmente aprecia del producto, lo que es determinante para la aceptación o rechazo del mismo.

Resultado de imagen para Alimentos que contienen colorante E E104 (Amarillo de quinolina)

Ilustración 5 Alimentos que contienen colorante E E104 (Amarillo de quinolina) Fuente: http://hablemosclaro.org/ingrepedia/amarillo-de-quinolina/#1502293691178-e5ac3059-a00b

La síntesis del compuesto parte del sulfonato 2-(2-quinolil)-1,3-indadiona, consiste principalmente de las sales sódicas de mezclas de sulfonatos, monosulfonatos, tiosulfonatos como agentes colorantes con la presencia de cloruro de sodio y/o sulfato de sodio como sustancias no colorantes.

Resultado de imagen para Alimentos que contienen colorante E E104 (Amarillo de quinolina)
Ilustración 6 Estructura Química del Amarillo de Quinolina. Fuente: http://hablemosclaro.org/ingrepedia/amarillo-de-quinolina/

El amarillo de quinolina es empleado en la industria de alimentos como agente colorante, lastimosamente estudios han demostrado riesgos para la salud ante este aditamento alimenticio, a tal punto que según menciona (Pliskin, 2017) ha sido prohibido en muchos países tales como: Estados Unidos, Australia, Finlandia, Noruega y Austria; y en muchos se ha sugerido evitar su consumo. Esta sustancia es soluble en agua y dentro de las industrias de mayor tendencia a su utilización son las de fabricación de fideos y pastas; así como también en marcas como HARIBO que fabrican dulces y gomas del tipo masticable (gomitas) y con respecto a las bebidas lácteas en diversas cremas y postres, de las bebidas más populares en las que se puede ubicar dicho colorante está la gaseosa FANTA de Coca Cola Spring Company. Entre los daños para salud más notables están la hipersensibilidad a la sustancia o su intolerancia (Pliskin, 2017).

 

Aplicaciones de las pirazinas en los alimentos

 

La pirazina es un compuesto orgánico aromático heterocíclico. Su molécula presenta una simetría con grupo puntual D2h. Es un sólido de apariencia cerosa o cristalina. Presenta un fuerte olor similar al de la piridina. Es volátil con vapor de agua (UDEA, 2010).

Imagen relacionada
Ilustración 7 Estructura de la Pirazina.

Las pirazinas normalmente son factores de control en la industria vinícola y su síntesis ha evolucionado de la siguiente manera:

  • Síntesis de Staedel-Rugheimer (1876): Reacción de 2-cloroacetofenona con amoniaco para obtener la 2- aminocetona, la cual se condensa para formar la dihidropirazidina, y se forma la aromaticidad por oxidación posterior.
  • Síntesis de Gutknecht (1879): Ciclización de α-aminocetonas, producidas por reducción de isonitroso cetonas, para obtenerse las dihidropirazinas. Estas son posteriormente deshidrogenadas con óxido de mercurio (I) o sulfato de cobre (II), e inclusive con oxígeno atmosférico: 34
  • Síntesis de Gastaldi (1921): Se requiere de (4-N-sulfonilamino)cianometil cetonas.

Imagen relacionada
Ilustración 8 Pirazinas en Alimentos Fuente: https://lanocheenvino.com/2017/03/28/que-son-las-pirazinas/

Las pirazinas actúan como descriptores aromáticos en ciertos alimentos como el pimiento verde, las mismas se distribuyen en diferentes alimentos y verduras (espárragos y arvejas), por otro lado, las pirazinas forman parte de las uvas blancas y tintas mismas que confieren notas olfativas al vino así lo afirma (Cabeller, 2018).

Resultado de imagen para vino blanco
Ilustración 9 Uvas Blancas (verdes) para la elaboración de vino blanco. Fuente: https://lanocheenvino.com/2017/03/28/que-son-las-pirazinas/

Según la autora la concentración de pirazinas disminuye a medida que madura la uva por lo que en ocasiones los niveles altos de esta molécula en el vino es asociado con la falta de maduración de las uvas; a su vez de encontrarse en este estado (muy concentrado) es indicador negativo en la calidad del vino.

Resultado de imagen para pirazinas
Ilustración 10 Pirazinas comunes en las uvas para vinos. Fuente: http://vinospasini.blogspot.com/2012/07/aromas-verdes-del-vino.html

Por esta razón la necesidad de exhaustivos controles en el viñedo antes y después de la cosecha en este proceso entra en juego el profesionalismo y experiencia del enólogo por encima del mismo agricultor, la dificultad radica en el momento de la cosecha, puesto que la madurez de la uva es un fenómeno asincrónico puesto que maduran en diferentes tiempos los racimos de una misma cepa, cada unidad (granos) del racimo madura de forma independiente y la pulpa, piel y semilla de los granos también es asincrónica razón por la cual es dificultoso determinar el momento óptimo de la cosecha.

Por los motivos expuestos en el párrafo anterior el momento de la cosecha es crucial para condicionar las características sensoriales del vino; factores externos como el clima, la temperatura ambiental durante el periodo de la maduración, agentes químicos presentes en insecticidas son principalmente los influencian de forma directa la concentración de pirazinas en las uvas. Por ejemplo entorno a la temperatura tenemos la siguiente relación: Las temperaturas bajas durante la maduración inducen a producir uvas con nieles mayores de pirazinas (maduración rápida incompleta, no natural o acelerada), las temperaturas cálidas a su vez generan uvas con menores niveles de pirazinas acompañado de tiempos óptimos de maduración.

Resultado de imagen para grados brix

Ilustración 11 El uso de polarímetros es indispensable para la obtención de índices de refracción que permitan identificar la presencia de compuestos como la pirazina. Fuente: http://agriculturers.com/que-son-los-grados-brix/

Finalmente las técnicas de vinificación, menciona la autora, impactan también con la concentración de pirazinas en el producto final y entorno a su detección se considera bajo siempre y cuando existan de 2 a 8 ng/l para vinos blancos y de 2 a 16 ng/l en los tintos.

Presencia de la piridina en industria alimenticia

La piridina fue descubierta por Thomas Anderson en 1849 y su nombre proviene del vocablo griego Pyros que significa fuego, en efecto este líquido incoloro presenta una alta inflamabilidad y de forma natural puede identificarse como un aceite (incoloro) de olor desagradable al calentar huesos de animales, la forma natural más común de este compuesto es el NAD, vitaminas B3, B6, B12, etc; es allí donde radica su importancia en la industria alimenticia.

Resultado de imagen para piridina
Ilustración 12 Piridina, azabenceno o azina. Fuente: https://www.ecured.cu/Piridina

Su síntesis parte del alquitrán crudo y es utilizada como solvente en la producción de muchos productos, los más comunes en el sector alimenticio es la producción de condimentos y vitaminas utilizadas en suplementos alimenticios, así lo afirma (Seco, 2014), es importante mencionar que la forma pura de la piridina es mortal, cancerígena, capaz de producir infertilidad se la puede encontrar en especies vegetales como la Belladona (Atropa belladona).

Resultado de imagen para Atropa belladona
Ilustración 13 Ilustración Naturalista de la Belladona. 

De manera general la formación de piridina en los procesos industriales de los alimentos se asocia a toxicidad salvo los casos en los que se contribuya con el aroma y el sabor cuyos derivados no son tóxicos así lo afirma (Seco, 2014).

Muchos de los alimentos de consumo diario contienen aromatizantes como resultado de la adición de compuestos que contienen piridina y de forma análoga por la adición de productos naturales en el medio ambiente. Una de las formas más conocidas de esta sustancia como derivado es la PIRIDOXINA, esta sustancia es conocida comúnmente como Vitamina B6, nutriente esencial con propiedades beneficiosas para el metabolismo y sistema nervioso del cuerpo humano, estudios han demostrado que es capaz de estimular energéticamente a un individuo motivo por el cual es ingrediente principal en muchas suspensiones orales y jarabes para niños y demás suplementos alimenticios (B. Pavlov, 1970).

Resultado de imagen para PIRIDOXINA

Resultado de imagen para PIRIDOXINA

Ilustración 14 Piridoxina (Vitamina B6)

Entre los valores más importantes en (mg/100g de muestra) de esta importante vitamina en alimentos podemos mencionar la siguiente lista:

  • Pistachos: 1.7mg.
  • Hígado de pavo: 1.0mg.
  • Atún: 0.9mg.
  • Semillas de girasol: 0.8mg.
  • Sésamo: 0.8mg.
  • Salmón: 0.6mg.
  • Maíz: 0.6mg.
  • Avellanas: 0.6mg.
  • Carne roja: 0.5mg.
  • Lentejas: 0.5mg.
  • Duraznos: 0.5mg.
  • Plátanos: 0.3mg.

 

Incidencia del ácido benzoico en industria alimenticia

El ácido benzoico pertenece al extenso grupo de los compuestos aromáticos y es por sí mismo uno de los compuestos orgánicos más utilizados en la industria alimenticia. Su uso más común es como conservante alimenticio, de forma natural el ácido benzoico puede obtenerse de arándanos, ciruelas, canela, frambuesas, clavos de olor entre otros.

Resultado de imagen para acido benzoico
Ilustración 15 Estructura molecular del ácido benzoico.

Este compuestos tiene especial eficacia en alimentos del tipo ácido, la razón de su popularidad en la industria radica en su costo, puesto que no es elevado y resulta muy útil para controlar y frenar el aparecimiento y propagación de levaduras, bacterias (en casos muy específicos) y mohos (MILKSCI, 2003).

 

Sin embargo no todo es beneficio, uno de los principales problemas de este compuesto es su sabor astringente y de cierta forma desagradable, por otra parte presenta ciertos niveles de toxicidad, que aunque es relativamente baja pero mayor en comparación con otros conservantes, puede producir intolerancia a algunas personas, y por este motivo es que su control es muy importante.

Resultado de imagen para acido benzoico
Ilustración 16 El ácido benzoico en la industria de alimentos es identificado como aditivo-conservante E210.

El Conservante E210 (Ácido Benzoico) es utilizado principalmente en el continente europeo como conservante en bebidas refrescantes (gaseosas carbonatadas) como sucede en España así lo afirma (MILKSCI, 2003); entorno a la misma industria de bebidas es utilizado en la fabricación de zumos; productos lácteos utilizados en repostería y galletería así mismo en la elaboración de conservas de vegetales tales como tomates (Cherrys especialmente), pepinillos o pimiento envasados en grandes recipientes para uso de grandes cadenas de restaurantes de consumo masivo; crustáceos frescos o congelados y derivados de pescado; margarinas, salsas (especialmente en su forma de benzoato de sodio o potasio (E211 y E212 respectivamente) como es el caso de la salsa de tomate (MILKSCI, 2003).

Resultado de imagen para acido benzoico en alimentos
Ilustración 17 Ácido benzoico en los alimentos.

El mencionado conservante industrial se obtiene de al menos 3 formas diferentes en la industrial según menciona (Aditivos Alimentarios, 2016)

  • Oxidación de Naftaleno de anhídrido ftálico con óxido de Vanadio.
  • Oxidación de la mezcla de Tolueno y ácido nítrico.
  • Hidrólisis del clorobenceno.

De forma adicional este conservante está siendo empleado en la fabricación de gelatinas, humus, champiñones, miel, aceitunas, caviar, mermeladas, bebidas de malta y energizantes polos de helado, tortillas de trigo y patatas, frutas en almíbar, alimentos pre cocidos, licores y salsas picantes.

La OMS considera como aceptable una ingestión de hasta 5 mg por Kg de peso corporal y día. Con la actual legislación española esté límite se puede superar, especialmente en el caso de los niños. Otras legislaciones europeas son más restrictivas. En Francia sólo se autoriza su uso en derivados de pescado, mientras que en Italia y Portugal está prohibido su uso en refrescos. La tendencia actual es no obstante a utilizarlo cada vez menos sustituyéndolo por otros conservantes de sabor neutro y menos tóxico, como los sorbatos. El ácido benzoico no tiene efectos acumulativos, ni es mutágeno o carcinógeno (MILKSCI, 2003).

 

Incidencia del benzaldehído (C6H5CHO) en industria alimenticia

El benzaldehído (C6H5CHO), figura como un compuesto orgánico aromático perteneciente a los aldehídos y cetonas, y aunque el presente documento no tiene por finalidad centrarse en aldehídos y cetonas puesto que se abordará en la siguiente unidad de estudio, se considera al benzaldehído un compuesto aromático de alta importancia en la industria de alimentos. El benzaldehído es un compuesto químico que pertenece al extenso grupo de aldehídos aromatizantes, que consiste en un anillo de benceno con un sustituyente aldehído así lo afirma (Gavira Vallejo, 2015). A nivel organoléptico es un líquido incoloro con variaciones hasta tonalidades amarillas (dependerá de su pureza), se identifica por un olor frutal potente a cerezas y almendras amargas.

Resultado de imagen para Benzaldehído,
Ilustración 18 Benzaldehído, bencenal, fenilmetanal o aldehído benzoico.

En torno a sus propiedades químicas, el benzaldehído es ligeramente soluble en agua, miscible en alcohol y éter; se recomienda su almacenaje en envases cerrados en lugares frescos, ventilados y protegidos de la luz solar puesto que tiende a oxidarse rápidamente en presencia de aire por tanto es recomendable también su almacenaje en frascos ámbar.

Imagen relacionada
Ilustración 19  Semillas que contienen Benzaldehído de forma natural.

El método de obtención natural es desde las semillas de almendras, ciruelas, cerezas, duraznos, melocotones entre otros; estas semillas poseen cantidades significativas de amigdalinas [glucósido, molécula formada por una parte glucídica y una parte no glucídica (C20H27NO11)], cuando las amigdalinas se rompen por catálisis enzimática o por hidrólisis se obtienen dos tipos de azucares, un cianuro y un benzaldehído formando así benzaldehído de forma natural (Gavira Vallejo, 2015).

Según el autor a nivel industrial, el benzaldehído también puede obtenerse, entre otros métodos, a través de la oxidación del tolueno [hidrocarburo aromático (C6H5CH3)]

En la industria alimenticia, el benzaldehído se usa como aditivo alimentario, entendiendo un aditivo como toda sustancia o mezcla que no aporta valor nutricional y que es agregada en la mínima cantidad posible, para crear, modificar mantener o intensificar las propiedades organolépticas y sus condiciones de conservación.

Todos los productos empleados como aditivos alimentarios están altamente regulados para que su consumo no sea perjudicial para el ser humano.

Sea cual sea su origen, el benzaldehído, es un producto considerado peligroso por el CLP (clasificación, etiqueta y envasado de productos químicos), con la siguiente clasificación, ya que puede provocar reacciones alérgicas en la piel y reacciones en el hígado (no llega a categoría de mortal, mutagénico o cancerígeno), en la industria de alimentos se identifican las siguientes 4 especies numeradas:

  • H302: Nocivo en caso de ingestión
  • H319: Lesiones oculares graves o irritación ocular
  • H332: Nocivo en caso de inhalación
  • H335: Toxicidad específica en determinados órganos.

Y a pesar de ser considero peligroso, forma parte de determinado alimentos, como las piruletas.

Imagen relacionada
Ilustración 20 Piruletas de caramelo.

Uno de los organismos encargados de esta regulación es la FEMA (Flavors and Extract Manufacturing Assosiation), la cual clasifica el benzaldehído con el número FEMA 2127. Según esta asociación, el aldehído puede ser empleado para dar aroma a almendras amargas, azúcar quemado, cereza, pimientos asados y malta.

Para asegurarse que el consumo del benzaldehído no es peligroso para la salud humana, han establecido unos límites de ppm que los productos alimentarios finales no pueden sobrepasar A continuación la tabla de concentraciones límites en ppm para alimentos que contengan benzaldehído con la finalidad de asegurarse que el consumo del benzaldehído no es peligroso para la salud humana (Gavira Vallejo, 2015).

TIPOLOGÍA DE PRODUCTO PPM MÁXIMO AUTORIZADO
Bebidas no alcohólicas 36 ppm
Helados 42 ppm
Caramelos 120 ppm
Productos horneados 110 ppm
Gelatinas y pasteles 160 ppm
Chicles 840 ppm
Bebidas alcohólicas 60 ppm

 

Aplicación del estireno y poliestireno en el envasado de los alimentos

 

El poliestireno es un plástico versátil usado para fabricar una amplia variedad de productos de consumo. Se sabe que cerca del 50-60% de estireno producido a nivel industrial está destinado a la fabricación de envases de poliestireno para comestibles (Roque Marroquín, 2016).

Dado que es un plástico duro y sólido, se usa frecuentemente en productos que requieren transparencia, tales como envases de alimentos y equipos de laboratorio.

Cuando se combina con varios colorantes, aditivos y otros plásticos, el poliestireno se usa para hacer electrodomésticos, electrónicos, repuestos automotrices, juguetes, macetas y equipamiento para jardines, entre otros a su vez el poliestireno en espuma puede tener más de 95 % de aire.

(Roque Marroquín, 2016) Menciona en su artículo que dados los efectos nocivos para la salud del estireno reportados por el Programa Nacional de Toxicología y su reciente clasificación como “agente carcinógeno racionalmente anticipado” y conocido la factibilidad de la migración de monómeros de estireno a partir de los envases de alimentos hacia su contenido, se considera importante la determinación de esta sustancia como advertencia y prevención de futuros perjuicios contra la salud humana.

Imagen relacionada
Ilustración 21 Bandejillas fabricadas con poliestireno para el envasado de alimentos.

El envasado para el servicio de alimentos de poliestireno suele ser mejor aislante, mantiene los alimentos frescos por más tiempo y cuesta menos que las otras alternativas (Chemical Safety Facts, 2010).

Resultado de imagen para sintesis del poliestireno
Ilustración 22 Polimerización del estireno.

Existen 2 clases de poliestirenos utilizados en industrias varias estos son:

  • poliestireno expandido (EPS)
  • poliestireno extruido (XPS)

Con respecto al estireno se puede decir que es la molécula de partida del polímero antes mencionado, el estireno (C8H8) también conocido como VINILBENCENO etenilbenceno, cinameno o feniletileno. Se utiliza en la fabricación de una amplia gama de polímeros (como el poliestireno) y elastómeros copolímeros, como el caucho de butadieno-estireno o el acrilonitrilo butadieno-estireno (ABS), que se obtienen mediante la copolimerización del estireno con 1,3-butadieno y acrilonitrilo.

El estireno se utiliza ampliamente en la producción de plásticos transparentes y se ve relacionado con la industria alimenticia porque se considera como contaminante de diferentes alimentos, como frutas, hortalizas, nueces, bebidas y carnes. (Chemical Safety Facts, 2010)

DISCUSIONES Y CONCLUSIONES

Como se ha demostrado los compuestos aromáticos tienen una amplia incidencia en la industria alimenticia, sea por estar presentes en la fabricación de múltiples alimentos así como en los procesos de envasado; la identificación de los mismos permite tener una mayor prevención entorno al consumo de alimentos que pueden estar relacionados a compuestos aromáticos tóxicos o persistentes y en lo que respecta a la formación académica del profesional químico de alimentos permite conocer de forma efectiva las múltiples fuentes de contaminación de alimentos lo que en definitiva aporta en el mejoramiento y aseguramiento de la calidad dentro de la industria garantizando alimentos inocuos para el consumo humano, por otra parte es recomendable la socialización tanto de la presencia, utilidad, beneficios y riesgos de los diversos compuestos aromáticos y derivados del benceno con la sociedad misma que se relaciona directamente con el patrón de consumo de los alimentos mencionados en el presente informe investigativo.

Bibliografía

Aditivos Alimentarios. (01 de 2016). Aditivos Alimentarios . Obtenido de Ácido Benzoico E210: https://www.aditivos-alimentarios.com/2016/01/E210.html

Pavlov, A. T. (1970). Curso de Química Orgánica. En A. T. B. Pavlov, Traducido por Victoria Valdéz Mendoza. (pág. 589). Moscú: Editorial MIR. . Obtenido de Curso de Química Orgánica. Traducido por Victoria Valdéz Mendoza. Editorial MIR. Moscú. 1970 – Pág. 589

Badui, S. (2013). Hablemos Claro: Amarillo de Quinolina. Obtenido de Química de los Alimentos: http://hablemosclaro.org/ingrepedia/amarillo-de-quinolina/#1502293691178-e5ac3059-a00b

Barceló, L., & López de Alda, M. J. (2010). El Agua Potable.com. Obtenido de Contaminación y calidad química del agua: El problema de los contaminantes emergentes : http://elaguapotable.com/Contaminaci%C3%B3n%20y%20calidad%20qu%C3%ADm%20del%20agua-los%20contaminantes%20emergentes.pdf

Cabeller, C. (28 de Marzo de 2018). La Noche en Vino. Obtenido de ¿Qué son las Pirazinas?: https://lanocheenvino.com/2017/03/28/que-son-las-pirazinas/

Chemical Safety Facts. (2010). Chemical Safety Facts. Obtenido de Poliestireno. : https://www.chemicalsafetyfacts.org/es/poliestireno/

Claramount, R. M., Cornago, M., Esteban Santos, S., Farrán Morales, M., Pérez Torralba , M., & Sanz del Castillo, D. (2013). Principales Compuestos Químicos. Madrid: Universidad Nacional de Educación a Distancia.

Dep. Fquím. UNAM. (14 de 03 de 2015). depa.fquim.unam.mx. Obtenido de Quinolinas e isoquinolinas: http://depa.fquim.unam.mx/amyd/archivero/06QuinolinaseIsoquinolinas_24315.pdf

Documentacion Ideam. (2003). Documentacion Ideam. Obtenido de FICHA TÉCNICA DEL BENCENO: http://documentacion.ideam.gov.co/openbiblio/bvirtual/018903/Links/Guia7.pdf

Echeverry, N. (5 de Agosto de 2016). BENCENO EN LOS ALIMENTOS. Obtenido de Prezi: https://prezi.com/8lehb7sm4cgh/benceno-en-los-alimentos/

Gavira Vallejo, J. M. (23 de Diciembre de 2015). TRIPLENLACE. Obtenido de EL BENZALDEHIDO EN LA INDUSTRIA ALIMENTARIA: https://triplenlace.com/2015/12/23/usos-industriales-del-benzaldehido/

MILKSCI. (2003). MILKSCI. Obtenido de UNIZAR: http://milksci.unizar.es/adit/conser.html

Pliskin. (11 de 06 de 2017). ImparaTudos. Obtenido de E104 Quinolina amarilla : http://imparatudos.com/article/e104-quinolina-amarilla

Roque Marroquín, M. S. (2016). ALICIA. Obtenido de El estireno en envases de alimentos: http://alicia.concytec.gob.pe/vufind/Record/UNIJ_522fb2a0e25c7cf78d3b95d03f8ef4d1

Seco, M. G. (6 de Octubre de 2014). UNAM. Obtenido de Piridinas en Alimentos: http://depa.fquim.unam.mx/amyd/archivero/PIRIDINAS_28867.pdf

Secretaría de Agricultura y Recursos Hidráulicos. (1988). COLPOS. Obtenido de ESPECIAS Y CONDIMENTOS-DETERMINACIÓN DE: http://www.colpos.mx/bancodenormas/nmexicanas/NMX-FF-064-1988.PDF

UDEA. (2010). QuimicaOrganica III. Obtenido de Aromaticidad: http://docencia.udea.edu.co/cen/QuimicaOrganicaIII/paginas/aromaticidad/sesion18/heteroaromaticidad.html

Wade, L. G. (2011). Química Orgánica: Capítulo 16 Compuestos Aromáticos. México : Mc. Grow Hill.

Si te ha gustado este artículo o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Características de la harina de trigo y los leudantes

Espinoza B. Lesly M. (1)

Aguirre F. Alejandro A. (1)

(1) Facultad de Ciencias Químicas-Universidad Central del Ecuador- Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

Características de la harina de trigo

Según menciona (Dr. Escalona , 2001) la harina de trigo  provine del cereal del genero Triticum del cual sobresalen dos especies: Triticum aestivum que es el trigo harinero panificable y el Triticum durum que es un tipo de trigo cristalino utilizado para la producción de sémolas y pastas.

Resultado de imagen para Triticum aestivum
Triticum aestivum

El trigo utilizado para harinas, es decir el Triticum aestivum, presenta varios tipos de proteínas siendo las más importantes las que se encuentran en el endospermo del grano estas son:

-Glutenina, misma que es soluble en ácidos y álcalis diluidos.

Gliadina, soluble en alcohol.

Resultado de imagen para Glutenina

Estas proteínas al entrar en contacto con el agua y por el trabajo ejercido por el amasado desarrollan una red tridimensional llamada gluten que retiene el gas producido por el proceso de la fermentación durante la elaboración del pan así lo manifiesta (Dr. Escalona , 2001).

Resultado de imagen para Glutenina

Calidad de la harina de trigo

Resultado de imagen para composicion de la harina

  • CONTENIDO DE CENIZAS (0.5 A 0.6 %).

            Indica una eficiente separación del salvado

  • CONTENIDO DE PROTEÍNAS (8-12%)

            Depende de la variedad de trigo

  • CALIDAD DEL GLUTEN.

Depende de la variedad del trigo y eficiencia en molienda

 Resultado de imagen para composicion de la harina

Influencia De Los Agentes Leudantes En La Panificación

En la industria panificadora quizás uno de los puntos más cruciales en la elaboración del pan, sea la incorporación de agentes leudantes a la masa, leudar según menciona (D’Santiago de Baptista, 2012) significa producir o incorporar gases en el producto de panadería para aumentar su volumen dándole de esta manera forma y textura. La finalidad de los agentes leudantes es en definitiva es hacer que los gases le proporcionen a la masa firmeza suficiente hasta que las proteínas procedentes del gluten y el huevo coagulen adecuadamente mientras se produce un proceso de gelatinización de los almidones para mantener su forma.

Resultado de imagen para agentes leudantes

Según la autora mencionada es importante se midan con alta precisión las cantidades de leudante utilizado pues estos ante cambios pequeños pueden producir efectos graves cuando se trata de productos de panadería por tanto es fundamental comprender las características y funciones de la levadura que se utilizará porque adicionalmente es este elemento el que nos ayuda a controlar los factores que influyen en la fermentación de las masas.

 Resultado de imagen para agentes leudantes

Agentes Leudantes para productos de panadería

No todos los agentes leudantes son levadura, la diferencia principal entre un agente leudante que no sea levadura como puede ser un determinado polvo de hornear de la levadura misma es que las levaduras suelen ser de origen orgánico mientras que los polvos de hornear son de origen inorgánico así lo manifiesta (Equipo editorial Iquimicas S.A., 2011).

 Resultado de imagen para Agentes Leudantes para productos de panadería

¿Cuál es el mecanismo de acción de los leudantes?

Los agentes leudantes son utilizados para ablandar la masa en el mundo de la panificación un alimento sea en este caso un pan con alta porosidad favorece la masticación mientras que el aumento de superficie que se obtiene tras el leudo mejora la digestibilidad de los polisacáridos que constituyen la harina en conjuntos con muchos otros componentes que lo constituyen tales como grasas, proteínas y azucares presentes provenientes de los otros ingredientes. (Equipo editorial Iquimicas S.A., 2011)

Resultado de imagen para pan horneado gif

Durante el horneado los agentes leudantes  producen dióxido de carbono (CO2) mismo que al aumentar se expande y requiere salir de la masa sin embargo y debido a la viscosidad de la misma este gas queda encerrado dentro logrando así que la masa de expanda, es a lo que en panificación se denomina “Leudo”.  Las sustancias utilizadas para este propósito se pueden clasificar de la siguiente manera:

-Leudantes biológicos biogénicos: en este grupo se enmarca la levadura, y es de tipo biológica por contiene microorganismos capaces de fermentar los azucares de la masa produciendo así CO2.

Levaduras y otros agentes leudantes 02

-Leudantes químicos: en este grupo se enmarca el polvo de hornear y el carbonato de amonio, amabas son sales del ácido carbónico (H2CO3) mismas que al someterse al calor desprenden CO2.

 Imagen relacionada

Resultado de imagen para H2CO3

Presentación de la levadura

Resultado de imagen para Levadura Instantánea

La levadura puede conseguirse en varias presentaciones: comprimida o prensada, (Levadura Fresca), Seca, Instantáneas, Químicas y Natural (Masa Madre). Además de su acciones leudantes también contribuyen a dar sabor al pan así lo afirma (D’Santiago de Baptista, 2012).

Imagen relacionada

Levadura Fresca: de manera industrial el microorganismo es reproducido de manera  genérica por lo general es utilizado el microorganismo conocido como Saccharomyces cerevisiae esta bacteria es utilizada para levaduras que tienen por fin la elaboración de cerveza, vino, hidromiel, pan y algunos tipos de antibióticos. La levadura fresca es una materia viva que debe conservarse en el frigorífico (a unos 4ºC), pues es un producto perecedero con una vida útil de una o dos semanas, a veces puede durar más, pero siempre será mejor comprobar su actividad antes de añadirla a la masa (D’Santiago de Baptista, 2012).

Resultado de imagen para Levadura Fresca

Levadura Seca: Es el equivalente deshidratado de la levadura fresca y debe mezclarse con agua templada antes de usarla. Debe guardarse en un lugar frío y seco. La levadura seca rinde, el doble que la fresca así lo afirma (D’Santiago de Baptista, 2012).La seca extra fina obtenida a partir de cultivos puros de “Sacharomyces cerevisiae” para la elaboración de masas leudadas. Levadura apta para ser usada en procesos de elaboración de productos para Celíacos.

Resultado de imagen para Levadura Seca

Levadura Instantánea: Se obtiene a través de un proceso de secado de la levadura fresca, se forman micro gránulos y se empaca al vacío. Excelente alternativa en lugares donde, por las condiciones climáticas, es difícil conservar la levadura fresca. Existen dos versiones según la formulación que se trabaje: masa salada para panes con 0% – 5% de azúcar y  masas dulces para para panes con más de 5% de azúcar.

Levadura Química: Es un producto químico que permite dar esponjosidad a una masa debido a la capacidad de liberar dióxido de carbono al igual que las levaduras en los procesos de fermentación alcohólica. Se trata de una mezcla de un ácido no tóxico (como el cítrico o el tartárico) y una sal de un ácido o base débil, generalmente carbonato o bicarbonato, para elevar una masa (harina más agua), confiriéndole esponjosidad. (D’Santiago de Baptista, 2012): Normalmente sigue la siguiente reacción química para liberar CO2:

Leudantes Químicos

Bicarbonato de Sodio

El bicarbonato de sodio es el nombre químico de la sosa (soda) para hornear. Si se encuentran presentes humedad y ácido, el bicarbonato libera bióxido de carbono gaseoso, que hace aumentar el volumen del producto. Para esta reacción no es importante el calor (aunque el gas se libera más a prisa a altas temperaturas). Por esta razón, los productos leudados con bicarbonato deberán hornearse de inmediato; de otra manera, los gases escapan y se pierde la capacidad leudante.

Imagen relacionada

Entre las sustancias ácidas que reaccionan con el bicarbonato en las masas o pasta se incluyen miel de abeja, melaza, leche agria, jugos y purés de frutas y chocolate. La cantidad de bicarbonato que se utiliza en una fórmula es, por lo general, la cantidad necesaria para equilibrar el ácido. Si se requiere mayor poder leudante, se utiliza polvo de hornear, en lugar de más bicarbonato. (D’Santiago de Baptista, 2012)

Polvos de Hornear

Los polvos de hornear son mezclas de bicarbonato de sodio más un ácido con el que reaccionan. También contienen almidón, que impide el apelmazamiento y mantiene la capacidad leudante en un nivel estándar. Los polvos de hornear son más versátiles porque no dependen de los ingredientes ácidos de cada fórmula para mantener su capacidad leudante. El polvo de hornear de acción única requiere sólo humedad para liberar gases. Al igual que el bicarbonato de sodio, solo se puede utilizar cuando el producto se va a hornear inmediatamente después de amasarlo. (D’Santiago de Baptista, 2012)

Resultado de imagen para Polvos de Hornear

Amoniaco para Hornear 

El amoniaco para hornear es una mezcla de carbonato de amonio, bicarbonato de amonio y carbamato de amonio. Se degrada rápidamente durante el horneado para formar bióxido de carbono gaseoso, gas de amoniaco y agua. Para que actúe, sólo requiere calor y humedad. No hacen falta ácidos. Si se utiliza de la manera adecuada, se degrada por completo, sin dejar residuos que afecten el sabor. Sin embargo, sólo se puede utilizar en productos pequeños que se hornean hasta secar, como las galletas, pues sólo en estos productos los gases de amoniaco se disipan por completo. (D’Santiago de Baptista, 2012)

Resultado de imagen para Amoniaco para Hornear 

Bibliografía

Dr. Escalona , H. (04 de 05 de 2001). Panificación. Características de materia prima: trigo. Importancia del proceso de molienda principales tipos de productos derivados del trigo.

D’Santiago de Baptista, E. (30 de 09 de 2012). LaChefPanadera. Obtenido de Los Ingredientes en el Pan (Agentes leudantes): http://lachefpanadera.blogspot.com/2012/09/agentes-leudantes-en-la-panificacion.html

Equipo editorial Iquimicas S.A. (2011). Iquimicas. Obtenido de La química de la Levadura y de los productos leudantes: https://iquimicas.com/levadura-del-pan/

Resultado de imagen para pan horneado gif

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Somos Mi Septiembre Rojo TODOS LOS DERECHOS RESERVADOS © Copyright 2018

 

Usos y Aplicaciones de los Éteres, Epóxidos y sulfuros en la industria alimenticia

Autores:

Espinoza B. Lesly M. (1)

Jaramillo C. Ana L. (1)

Aguirre F. Alejandro A. (1)

(1) Facultad de Ciencias Químicas-Universidad Central del Ecuador- Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

INTRODUCCIÓN

     Los éteres, epóxidos y sulfuros son tres grandes grupos de compuestos que pueden estudiarse como si se tratara de una  sola familia por sus características físicas  y químicas en común. La característica más notable entre ellos es que sus grupos sustituyentes (R o Ar), se encuentran unidos por un heteroátomo; que en el caso de los éteres y epóxidos se trata del oxígeno, estos últimos los epóxidos, son éteres cíclicos diferenciándose así de los éteres comunes que se presentan como moléculas abiertas, por otro lado los sulfuros del tipo tioéteres presentan como heteroátomo al azufre que une los sustituyentes (R o Ar) entre sí; los sustituyentes R representan radicales alquilo mientras que los Ar representan radicales aromático o arilo (Carey F. , 1997). El presente trabajo de investigación pretende recopilar los usos y aplicaciones de éteres, epóxidos y sulfuros, entorno a la industria alimenticia y agroindustrial con la finalidad de fortalecer el estudio de los éteres, epóxidos y sulfuros temas comprendidos dentro de la primera unidad de la cátedra de Química Orgánica II de la carrera de Química de Alimentos.

DESARROLLO DE LA INVESTIGACIÓN

Aplicaciones de los éteres

     Los éteres no forman puentes de hidrógeno por lo tanto sus puntos de ebullición son bajos así lo manifiesta  (Armendaris, 2009), ésta característica permite que los éteres sean utilizados como disolventes de grasas y aceites; adicionalmente los éteres poseen una muy baja reactividad y uno de los usos más populares que se dio a uno de sus representantes más comunes, el éter dietílico , fue dentro de la medicina como anestésico sin embargo en la actualidad se ha determinado que la exposición prolongada puede ser tóxica para el ser humano conllevando a una toxicomanía denominada eteromanía (adicción al consumo de éter). A continuación, presentamos algunas investigaciones recientes para el potencial uso de los éteres en el campo alimenticio.

 

Diseño de emulsiones con éteres de celulosa para reemplazar la grasa en alimentos: estabilidad, estructura y digestión in vitro.

 

     En marzo del 2017 la tesista Berta Pons Vidal para la obtención de su título de Ciencia y tecnología de alimentos de la Universidad Politécnica de Valencia propone como opción para reducir la ingesta calórica que en consecuencia se relaciona directamente con el sobrepeso la reformulación de alimentos en base al diseño de emulsiones capaces de reemplazar la grasa convencional de alimentos de baja digestibilidad lipídica reduciendo así la cantidad de grasas absorbibles por organismo como por ejemplo cremas y mantecas de relleno de galletas entre otros.

Las pruebas desarrollaron emulsiones aceite/agua (O/W) utilizando como emulsionantes  los éteres de celulosa, metilcelulosa e hidroxipropil celulosa, la tesis manifiesta que se analizaron factores como la estabilidad, estructura y digestibilidad in vitro de las soluciones dando como resultado una baja digestibilidad lipídica de las emulsiones diseñadas aperturando la posibilidad de sustituir de esta manera parte de las grasas presentes en diversos alimentos manufacturados así lo menciona (Pons Vidal, 2017 ), para soportar esta información presentamos la reacción de esterificación para la formación de éteres de celulosa véase la ilustración 1.

Ilustración 1 Esterificación de la celulosa en éteres de celulosa, Tomado de: http://www.quimicoshalter.com/eteres-de-celulosa

 

Un estudio experimental de ácidos grasos poliinsaturados, provenientes de R. fruticosus, por éter etílico

 

     Por las mismas propiedades nombradas anteriormente los éteres actúan y son ampliamente utilizados como disolventes para la extracción de aceites, sea por sus puntos de ebullición bajos o por su capacidad baja reactividad; cualquiera sea la razón los éteres se relacionan con la industria alimenticia como medios ideales para la extracción de aceites alimenticios.

(Ortiz, García, & Chávez, 2018) mencionan al estado de Michoacán- México como potencial productor de zarzamora (mora), la producción de este fruto de forma normal no es tan eficiente debido a que es un fruto muy delicado por ende en el proceso de aseguramiento de la calidad se descartan muchos frutos que no cumplen las especificaciones causando pérdidas económicas al sector agroindustrial y de igual forma un desperdicio de alimento. Estos jóvenes proponen recuperar aceites esenciales de la zarzamora mediante extracción de estos por arrastre de vapor usando solventes conocidos como éter etílico y pentano.

Resultado de imagen para zarzamoras

Ilustración 2 Zarzamoras (moras) (Rubus fruticosus). Fuente: http://mamiverse.com/es/10-recetas-con-zarzamora-2-63942/

La propuesta pretende aprovechar los residuos de la fruta sometiéndolas a un proceso previo de secado, esta propuesta pretende reducir perdidas económicas en los aspectos de producción de la semilla ya que de esta forma se busca aprovechar la totalidad del fruto incluido aquel que se encuentre en malas condiciones para ser vendido fresco del cual se pretende recuperar aceites esenciales que pueden ser utilizados no solo en el campo alimenticio si no también en la cosmética.

Las semillas se sometieron a extracción lipídica mediante Soxhlet recuperando de esta manera el aceite, se determinó por tanto que la zarzamora es fuente de ácidos grasos presentes en sus semillas del tipo C:18 poliinsaturados como son el ácido linoleico y linolénico, sin embargo considerando la cantidad de agua que presenta el fruto el rendimiento de extracción con éter etílico fue del 15.18% y con pentano del 12.40%; el estudio propone mayor investigación para la determinación de mejores solventes o métodos como el microonda, sin embargo de manera general es una propuesta que busca frenar el desperdicio de recursos en producción que puede acogerse en Ecuador puesto que también es ampliamente un gran productor de moras principalmente en la provincia de Tungurahua que en la actualidad presenta aproximadamente 840 Ha del cultivo, le siguen Cotopaxi con 430 Ha, Pichincha 220 Ha y Azuay con 50 Ha de producción del cotizado fruto de distintas variedades según lo afirma (EL COMERCIO, 2011) de las cuales se podría recuperar los ácidos antes mencionados reduciendo así las perdidas innecesarias de materia prima.

 

Aplicación de la Monensina sódica en la industria alimenticia

Resultado de imagen para Charles Pedersen

Ilustración 3 Charles Pedersen 1967.

ssssdsdf

Ilustración 4 monensina sódica, en amarillo el ión Na+.  (Carey & Giuliano, 2006)

     La Monensina sódica está clasificada dentro del grupo de los éteres corona, aunque en su estructura tienda a parecerse más a un epóxido. Algunos autores clasifican a este compuesto como un complejo de coordinación cuando ha pasado de Monensina a Monensina sódica. En el campo de los éteres corona se clasifica como un podando así lo menciona (Grupo de polímeros (Polymer Research Group), 2011).

Su descubrimiento se remonta a 1967 de la mano del Nobel de Química, Charles Pedersen, quien entonces siendo empleado de DuPont descubre un método sencillo para sintetizar un éter corona con la esperanza de desarrollar un agente quelante de cationes divalentes como puede ser el Ca2+, sin embargo y tras la experimentación quedó sorprendido al aislar un complejo como subproducto fuertemente complejado con iones potasio (K+) en 16-corona-4.

Posteriormente y con la finalidad de no trabajar con un elemento tan reactivo en agua como los es el potasio realiza la misma experimentación para la obtención de un derivado con sodio (Na+) obteniendo así la monensina de sodio; misma que dispone sus grupos alquilo hacia el exterior de complejo y los oxígenos polares se encuentran hacia el interior en estructura se asemeja a los hidrocarburos, esta estructura le permite llevar al ion sodio a través de la membrana celular para fines médicos veterinarios en la agro industria (Carey & Giuliano, 2006). A continuación, se puede observar en la ilustración 4 la estructura molecular monensina antes y después de formar el complejo.

Mecanismo de acción de la monensina

     La monensina posee un carácter ionóforo poliéter y es producto natural de la fermentación de la bacteria Streptomyces cinnamonensis. Los ionóforos pueden alterar el potencial de membrana mediante la conducción de iones a través de una membrana lipídica en ausencia de un poro proteínico, y por lo tanto tienen propiedades citotóxicas (Pisa Agropecuaria, 2015).

Resultado de imagen para Streptomyces cinnamonensis

Ilustración 5 Streptomyces cinnamonensis. Fuente: https://es.wikipedia.org/wiki/Streptomyces

Es una molécula indicada para utilizarse en ganado bovino cárnico y lechero, en caprinos y aves de corral, concretamente pollo de engorda y pavos donde se ha utilizado como coccidiostato. El mecanismo de acción puede describirse en la ilustración 6.

Dicho mecanismo favorece en 2 sentidos según la fuente mencionada:

  1. Interfiriendo con procesos celulares en la respiración celular, liquidando de esa manera a microorganismos patógenos.
  2.  Fijando los mismos iones que aportan a la nutrición del animal en cuestión.

mecanismo

Ilustración 6 Mecanismo de acción de la Monensina de a través de la membrana plasmática. (Pisa Agropecuaria, 2015)

De esta manera la monensina sódica es empleada como antiparasitario, antibiótico y adicionalmente como medio de fijación de iones alcalinos en la industria ganadera puesto que es un potente aliado para la modificación y manejo de la flora bacteriana rumiante y en el caso de aves de corral actúa como bactericida para el control de coccidiosis.

Ilustración 7 Uso de la monensina sódica como moléculas desarrolladas para combatir la coccidiosis en aves de corral (Pisa Agropecuaria, 2015)

Aplicaciones de los Epóxidos

 

     Los epóxidos al tener una estructura cíclica presentan en su forma cavidades que pueden ser aplicadas en la fabricación de espumas aislantes, la industria alimenticia emplea este tipo de materiales en diversas áreas que van desde el control microbiano hasta el recubrimiento del suelo como se realiza en la industria del pavimento.

 

Adhesivos y recubrimientos con resinas epóxicas

 

     Las resinas epóxicas son unidades polimerizadas de moléculas de epóxidos sintetizadas a partir de la epiclorhidrina y di o polihidroxifenoles, véase la ilustración 8; en la industria y no solo alimenticia suelen ser empleados como adhesivos y recubrimientos del tipo aislante así lo menciona (Blancas M., 2014). Según su aplicación estas sustancias pueden ser abrasivas, materiales de fricción, textil, fundición, filtros, lacas y adherentes.

res.jpg

reac.png

Ilustración 8 SUP. Presentación de 0.63 y 0.31 Kg de Resina epóxica comercial. INF. Reacción entre la epiclorhidrina y Bisfenol A, para la obtención de la masa epóxica bis fenólica.

Su naturaleza inerte similar a los policarbonatos lo hace un gran aliado de la industria alimenticia puesto que garantiza inocuidad, es empleada como aislante en zonas frigoríficas optimizando de esta manera las temperaturas y la compartición de calor con el medio ambiente, aunque su uso es más difundido en la industria de la construcción se emplea para el recubrimiento de pavimentos esta opción también es aprovechada en las fabricas de alimentos porque su presencia mejora los ambientes de manufacturación ya que inhibe el aparecimiento humedad desde el suelo sin embargo su principal beneficio radica en la fuerza que es capaz de soportar igual o aproximadamente de 65 N por esta razón es que se emplea en el recubrimiento de los suelos industriales debido al constante desgaste ocasionado por efecto humano y maquinaria de transporte interno.

Epóxido de etileno (ETO) como agente esterilizador en la agroindustria.

     Como se expresó anteriormente otro de los potenciales usos de los epóxidos es como bactericida por su capacidad oxidativa. El epóxido de etileno (ETO) dentro de la industria alimenticia tiene como función la esterilización puesto que tiene la capacidad de lisar casi a la mayoría de microorganismos incluyendo esporas y virus; estos esterilizantes se pueden presentar como gases comprimidos en cilindros o cámaras que mediante sofisticados sistemas de difusión son conducidos por cañerías hasta verdaderas estancias cerradas en donde se esterilizan diversos materiales empleados en el sector agroindustrial, como por ejemplo gavetas y canastillas usadas en el sector avícola para el transporte de pollos, en estas puede proliferar una gran cantidad de microorganismos por estar al contacto de sangre, heces fecales y demás restos biológicos (Puello Cabarca, 2016).

Resultado de imagen para camara de esterilizacion

Ilustración 9 Cámara de esterilización.

Mecanismo de acción del ETO.

     Phillips, en 1977, sugirió que la actividad microbicida de ETO se debe a la capacidad de alquilación de grupos sulfhídricos, amino, carboxílicos, fenoles e hidroxilos de las esporas o células vegetativas. La alquilación es el reemplazo de un átomo de hidrógeno por uno de un grupo alquilo. En la ilustración 10 se puede observar la alquilación de una célula viva con óxido de etileno, esta sustitución puede causar lesión y/o muerte en una bacteria o espora así lo menciona (ESTÉRICAL, SN).

ceñl.png

salmo.png

Ilustración 10 SUP. Alquilación de una célula viva mediante ETO. INF. Salmonella senftenberg

Existe evidencia experimental que indica que la reacción de ETO con ácidos nucleicos es la principal causa de su actividad bactericida y esporicida. La alquilación del trifosfato de guanosina de ADN en Salmonella senftenberg realizada por Michael y Stumbo en 1970 causó que las células perdieran el poder de reproducción (ESTÉRICAL, SN).

Estudios acerca de la resistencia de bacterias y esporas a la actividad bactericida y esporicida del óxido de etileno muestran que la espora de Bacillus subtilis var. niger presenta una resistencia más alta la exposición de ETO que las esporas de Clostridium sporogenes, Bacillus stearothermophilus o B. Pumilus.

 

Producción de epóxido de soya con ácido peracético generado in situ mediante catálisis homogénea.

 

     En la actualidad en relación con los epóxidos existen diversos estudios que proponen extraer epóxidos de ciertas semillas que contienen estas sustancias para el uso industrial, no precisamente en el campo alimenticio, pero sí a partir de él. Por ejemplo, la producción de epóxidos provenientes de la soya común con ácido peracético generado in situ mediante procesos de catálisis homogénea (Boyacá, 2010).

Los epóxidos obtenidos a partir de estos aceites se utilizan ampliamente como plastificantes y estabilizantes del PVC y como materia prima en la síntesis de polioles para la industria del poliuretano.

81128

Ilustración 11 Reacción de epoxidación de aceite de soya.

Heptacloro y Epóxido de heptacloro en alimentos

 

     El heptacloro es una sustancia química manufacturada usada en el pasado para matar insectos en el hogar, en edificios y en cosechas de alimentos. Desde el año 1988 no se usa para estos propósitos. No existen fuentes naturales de heptacloro o de epóxido de heptacloro. Algunas marcas registradas del heptacloro son: Heptagran®, Heptamul®, Heptagranox®, Hepatmak®, Basaklor®, Drinox®, Soleptax®, Gold Crest H-60®, Termide® y Velsicol 104®.

El epóxido de heptacloro también es un polvo blanco que no se inflama fácilmente. No es una sustancia manufacturada y, a diferencia del heptacloro, no se usó como plaguicida. Las bacterias y los animales degradan al heptacloro a epóxido de heptacloro. Este resumen describe a los dos compuestos simultáneamente ya que aproximadamente un 20% del heptacloro es transformado a epóxido de heptacloro en el ambiente y en el cuerpo en unas horas.

Usted puede encontrar heptacloro o epóxido de heptacloro en el suelo o en el aire de viviendas tratadas para controlar termitas, disuelto en agua de superficie o subterránea o en el aire cerca de sitios de desechos peligrosos. También se puede encontrar heptacloro o epóxido de heptacloro en plantas y animales cerca de sitios de desechos peligrosos. El heptacloro ya no puede ser usado para matar insectos en cosechas o en viviendas y edificios. Sin embargo, la EPA aun permite el uso del heptacloro para matar hormigas en transformadores bajo tierra, aunque no está claro si aún se usa con este propósito en Estados Unidos.

Son por tanto sustancias altamente peligrosas para el ser humano catalogados así según la Agencia de Protección del Medio Ambiente de EE. UU., misma que ha identificado a industrias manufactureras florícolas, agroindustriales y agrícolas como principales sitios de exposición a los mismos. Sostiene que la exposición prolongada, inhalación y consumo en alimentos y bebidas, así como el contacto con la piel puede provocar enfermedades como cáncer, daños en el sistema nervioso factor tumorante entre otras.

De forma adicional se ha determinado que estas sustancias pueden afectar al sector ganadero por las mismas causas expuestas debido a que los animales pueden desarrollar diversas enfermedades ocasionando enormes pérdidas al sector.

Lastimosamente no hay ninguna información acerca de los niveles de heptacloro y epóxido de heptacloro que ocurren comúnmente en el aire. En un estudio, los niveles de heptacloro en el agua potable y el agua subterránea en Estados Unidos oscilaron entre 20 y 800 partes de heptacloro en un trillón de partes de agua (ppt) así lo manifiesta (Agency for Toxic Substances and Disease Registry, 2016). También se han determinado contaminaciones en lechos y riveras de ríos y arroyos de uso agrario y de consumo humano.

eppp.gif

Ilustración 12 Heptacloro y Epóxido de heptacloro.

Aplicaciones de compuestos sulfurados (Tioéteres)

Compuestos azufrados volátiles en vino

 

     El vino es una de las bebidas alcohólicas de mayor distribución en el mundo, el mismo suele presentarse como vino tinto y blanco. Los compuestos sulfurados tienen un papel sumamente importante en las industrias vinícolas siempre y cuando sean ligeros y no se trate del DMS (dimetil sulfuro) ya que éste último es un indicador de mal sabor, es un compuesto tóxico y eliminarlo es el propósito de las vinícolas (Armas, Bolaños , & et all, 2015).

Como factor organoléptico puede entenderse como un vector de defecto que al superar el umbral de la detección olfativa confieren notas olfativas agradables al ser humano, hasta la fecha se ha determinado más de 100 compuestos sulfurados de los cuales los tioles y mercaptanos son los más apestosos.

En torno al costo que ciertos vinos pueden alcanzarse puede decir que el factor costo se ve claramente relacionado con el tipo de tratamiento que se dé a los sulfuros provenientes del viñedo y en especial con respecto al origen del sulfuro de hidrógeno en los mismos.

El origen puede ser natural o tradicional cuando procede de cepas de levaduras que pueden ser del tipo Advantage, Platinum Distinction o de origen laboratorial que abarata costos a la industria vinícola, pero puede afectar al producto por poseer trazas e impurezas generadas en la síntesis. Estos tratamientos pueden hacer que un vino tenga costos elevadísimos por su calidad artesanal, las levaduras forman dicho compuesto a través de procesos metabólicos que transforman compuestos inorgánicos como sulfatos y sulfitos e incluso orgánicos como la cisteína y el glutatión de la uva así lo manifiesta (Armas, Bolaños , & et all, 2015).

Imagen relacionada

Ilustración 13 Sulfuros como el DMS pueden afectar el sabor del vino.

Mercaptanos y dimetil sulfuro como indicadores de GLP (gas licuado de petróleo)

 

     El dimetil sulfuro (70%) y el tercburtilmercaptano (30%), son industrialmente utilizados como odorizantes del Gas Licuado de Petróleo o GLP, que no es más que el gas de uso doméstico el mismo que al carecer de olor de forma natural debido a su peligrosidad requiere ser olorizado con estas sustancias para alcanzar un olor fuerte como indicador de fuga. Las industrias alimenticias de forma indirecta en ciertos procesos de cocción aún utilizan el GLP como combustible puesto que diversos detectores de fugas de gas responden a estímulos de vectores organolépticos de olor producido por el VIGILEAK 7030 que es el nombrecomercial de la mezcla antes mencionada (Esteves, 2015).

Resultado de imagen para dimetil sulfuro

Resultado de imagen para GAS LICUADO DE PETROLEO

Ilustración 14 GPL odorizado con mercaptanos y sulfuros. (vigileak 7030). (Esteves, 2015)

Con respecto a los mercaptanos se puede decir que sus potentes olores se encuentran presentes como bases de olores desagradables tales como la carne podrida, heces fecales, la orina de animales como el zorrillo, este último factor requiere ser eliminado en la industria de la perfumería, también pueden ser los causantes del mal olor en la boca (halitosis), también se encuentran en productos naturales como ajo, cebolla o semillas de mostaza.

Sulfuros de origen fitoquímico y sus fuentes

 

     Algunos compuestos sulfurados se pueden encontrar de forma natural en ciertos alimentos que presentan olores fuertes, a este tipo de compuestos se les denomina organo sulfurandos y su principal representante es el alilsulfuro por su potente olor así lo afirma (Palencia Mendoza, SN) quien menciona que vegetales del superorden Liliflorae dentro de la familia Alliaceaes que contienen al género Allium cuyos principales representantes son el ajo, cebollas, puerro y cebollín, cabe mencionar que de ellos el ajo y las crucíferas presentan grandes cantidades de sulfuros.

La autora menciona que la incidencia e importancia de estos compuestos tienen la acción de bloquear y suprimir la carcinogénesis, alteran lípidos séricos y la agregación plaquetaria (cicatrizantes). En algunos estudios de puerro, ajo y cebollas o suplementos de ajo, no se observaron efectos sobre el cáncer de mama o pulmón en humanos. En otros se sugiere que el grupo de vegetales Allium puede inducir pemphigus (Palencia Mendoza, SN).

Muchos organosulfurados se han considerado como aditivos alimentarios reconocidos como seguros (GRAS, siglas en inglés), entre ellos: el alil isotiocianato, alil mercaptano, bencil disulfuro, bencil mercaptano, bencil sulfuro, butil sulfuro, dialil disulfuro, dialil sulfuro, dimetil mercaptano, furfuril mercaptano, metil mercaptano, metil 2- metiltiopropionato, propil disulfuro, 2-tienil mercaptano, 2- tieniltiol.

Resultado de imagen para Dialil disulfuro

Resultado de imagen para ajo

Ilustración 15 Dialil disulfuro presente en ajo y cebollas.

La autora afirma que se demostró la importancia de los grupos alilo en oposición a los grupos propil saturados para los efectos de los compuestos organosulfurados sobre la carcinogénesis en el consumo de alimentos que los contenían. Varios compuestos organosulfurados fueron examinados por su capacidad de inhibir la carcinogésis inducida por nitrosodietilamina, y el más potente fue el dialil-disulfuro el cual redujo los tumores de estómago hasta un 90%. El dialil disulfuro dietético también disminuyó el número de adenocarcinomas de colon inducidos por azoximetano en ratas. Parece ser que los compuestos que tienen el grupo alilo son más efectivos en la quimio-prevención del cáncer que los que no presentan este grupo (Palencia Mendoza, SN).

 

DISCUSIONES Y CONCLUSIONES

 

     El presente informe de investigación ha abarcado desde un eje aplicativo la importancia de la presencia de los éteres, epóxidos y sulfuros que se relacionan con la industria alimenticia y sus derivados. Se ha identificado que pueden estos compuestos relacionarse de forma directa al encontrarse intrínsecamente en los alimentos como es el caso de sulfuros en vinos y cebollas, o a su vez que pueden estar relacionados desde otros ámbitos industriales como lo es el uso de plaguicidas, como el caso del éter de heptacloro causante de múltiples enfermedades y de tipo carcinogénico; por otro lado, se ha mencionado el potencial uso del dialil disulfuro como agente anticancerígeno. Sin duda el conocimiento de este tipo de compuestos aperturan la comprensión de estos en el sector alimenticio y agroindustrial puesto que se encuentran en gran parte de los procesos de control y aseguramiento de la calidad

 

REFERENCIAS

Agency for Toxic Substances and Disease Registry. (2016, mayo 6). Resúmenes de Salud Pública – Heptacloro y epóxido de heptacloro (Heptachlor and Heptachlor Epoxide). Retrieved from Agency for Toxic Substances and Disease Registry: https://www.atsdr.cdc.gov/es/phs/es_phs12.html

Armas, C., Bolaños , A., & et all. (2015, 02 25). issuu.com. Retrieved from Éteres y compuestos azufrados aplicaciones industriales y reacciones de utilidad en la industria: https://issuu.com/azucena22060/docs/eteres_y_compuestos_azufrados

Armendaris, G. G. (2009). Éteres. In G. G. Armendaris, Química Orgánica 3 (pp. 125-126). Quito: Maya Ediciones C. LTDA.

Blancas M., P. S. (2014, Abril 22). El mundo de los polímeros. . Retrieved from es.slideshare.net: https://es.slideshare.net/LittleQuimicos/el-mundo-de-los-polmeros-33830219

Boyacá, L. A. (2010). Producción de epóxido de soya con ácido peracético generado in situmediante catálisis homogénea. INGENIERÍA E INVESTIGACIÓN VOL. 30, 136-140.

Carey , F. A., & Giuliano, R. M. (2006). Capítulo 16: Éteres, epóxidos y sulfuros. . In F. A. Carey, & R. M. Giuliano, Química Orgánica (p. 656). México: 9º Ed. Mc. GrawHill.

Carey, F. (1997). Epóxidos, éteres y sulfuros 6°edición. In F. Carey, Química orgánica. (p. 668). Madrid: Prince Hall Andersen.

EL COMERCIO. (2011, 12 31). El Comercio. Retrieved from Cuatro tipos de moras tiene el país: https://www.elcomercio.com/actualidad/negocios/cuatro-tipos-de-moras-pais.html

ESTÉRICAL. (SN, Santiago de Chile). ESTÉRICAL . Retrieved from https://www.esterical.cl/proceso.htm

Esteves, R. (2015). Aplicaciones comunes e industriales de tioles y sulfuro. Retrieved from prezi.com: https://prezi.com/gsmrpdzrgo7e/aplicaciones-comunes-e-industriales-de-tioles-y-sulfuros/

Grupo de polímeros (Polymer Research Group). (2011, Enero 28). Desarrollo histórico y aplicaciones de los compuestos corona (éteres corona – coronandos -,criptandos, podandos, entidades supramoleculares). . Retrieved from Univerdidad de Burgos (University of Burgos): https://es.slideshare.net/grupodepolimeros/compuestos-corona-6730199

Ortiz, R., García, M., & Chávez, R. (2018, Enero). Un estudioexperimentalde ácidos grasos poliinsaturados, provenientes de R. fruticosus, por tecnologías alternativas a los solventes orgánicos. REMAI,Revista Multidisciplinaria de Avances de Investigación ISSN: 2448-5772, vol. 3 núm. 3,septiembre-diciembre 2017, México. REMAI,Revista Multidisciplinaria de Avances de Investigación ISSN: 2448-5772, vol. 3 núm. 3,septiembre-diciembre 2017, Méxi 2018, 1-2. Retrieved from http://www.remai.ipn.mx/index.php/REMAI/article/view/36/35

Palencia Mendoza, Y. (SN). SUSTANCIAS BIOACTIVAS EN. Retrieved from http://www.unizar.es: http://www.unizar.es/med_naturista/bioactivos%20en%20alimentos.pdf

Pisa Agropecuaria. (2015). Efecto del uso de Ionóforosen Bovinos y alguna particularidades de la Adición de Monensina. . Retrieved from http://www.ganaderia.com: https://www.ganaderia.com/micrositio/Pisa-Agropecuaria/Efecto-del-uso-de-Ion%C3%B3forosen-Bovinos-y-alguna

Pons Vidal, B. (2017 , 03 10). Universidad Politécnica de Valencia. Retrieved from Diseño de emulsiones con éteres de celulosa para reemplazar la grasa en alimentos: estabilidad, estructura y digestión in vitro. : http://hdl.handle.net/10251/78622.

Puello Cabarca, V. (2016, Agosto 29). Epóxidos y sus aplicaciones Industriales. Retrieved from http://www.prezi.com: https://prezi.com/lboblu9t7r8y/epoxidos-y-sus-aplicaciones-industriales/

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Usos y Aplicaciones de los Éteres, Epóxidos y sulfuros.

ÉTERES Y EPÓXIDOS

Definición: Los éteres son el producto de la unión de dos radicales alquílicos o aromáticos a través de un puente de oxígeno -O-; es decir de manera general y según menciona (Ardila, 2013) los éteres son compuestos que tienen un átomo de oxígeno unidos a dos radicales hidrocarbonados. La mayoría de los éteres son líquidos volátiles, ligeros e inflamables, solubles en alcoholes debido a tener una gran similitud en su estructura; son compuestos inertes y estables desde el punto de vista químico. Por sus radicales pueden clasificarse como:

  • Alifáticos: R-O-R, siendo ambos R radicales alquílicos.
  • Aromáticos: Ar-O-Ar´, siendo Ar y Ar´ radicales arílicos.
  • Mixtos: R-O-Ar, posee en uno de sus extremos un radical alquílico y en otro un radical arílico.

Adicionalmente y dependiendo de sus radicales, el éter puede ser considerado simétrico si dichos radicales con iguales o asimétrico si sus radicales son distintos; en la Ilustración 1 podrá identificar algunos ejemplos de éteres.

Resultado de imagen para ejemplos de eteres
Ilustración 1 Ejemplos de éteres. Fuente: https://es.wikipedia.org/wiki/Nomenclatura_de_funciones_org%C3%A1nicas_con_ox%C3%ADgeno

 

Son múltiples las aplicaciones que pueden tener los éteres la más utilizada es como solventes orgánicos de aceites y grasas; así como analgésicos. El presente trabajo de investigación profundiza las diversas aplicaciones y usos de los Éteres.

Usos y Aplicaciones Industriales de los Éteres

  1. Disolventes industriales: (Armas, Bolaños , & et all, 2015) mencionan que los éteres son sustancias capaz de disolver gran cantidad de sustancias polares y no polares esto se debe a que poseen puntos de ebullición muy bajos lo que otorga

    Resultado de imagen para Etilen Glicol Etil (EGE) éter
    Ilustración 2 Etilen Glicol Etil (EGE) éter. Solvente de resinas. Fuente: (Produk Perusahaan Tender S.A., 2015)

    cierta facilidad la separación de productos mediante evaporación. Por las características que presenta tanto en sus propiedades químicas como físicas, es empleado principalmente como disolventes para la fabricación de polímeros de celulosa, sin embargo existe cierto nivel de peligrosidad principalmente con el dietil éter por ser inflamables, motivo que ha llevado a las industrias a buscar nuevos disolventes. Los éteres como disolventes son empleados en la síntesis de reactivos de Grignard. Adicionalmente en la industria de acabados y maderas los éteres son empleados como disolventes y catalizadores de resinas y ceras como muestra la lustración 2.

  2. Medio para condensar: uno de los usos más difundidos según (Ardila, 2013) es la utilización de éteres para concentrar ácido acético y otros ácidos, principalmente en procesos químicos que requieren ácido acético en altos niveles de pureza y no precisamente para consumo humano. La utilidad radica en que aumenta la concentración de cualquier sustancia ácida por condensación.
  3. Resultado de imagen para utilización de éteres para concentrar ácido acético y otros ácidos
    Ilustración 3 Condensación de sustancias (ácidos) en éter.
  • Medio de arrastre: para la deshidratación de alcoholes etílicos e isopropílicos. Ya que interactúa con el Hidrógeno del radical hidroxilo, permitiendo su deshidratación. Desde otra perspectiva de arrastres, los éteres son ampliamente usados como medios de arrastre para la extracción de principios activos de plantas y animales(Armas, Bolaños , & et all, 2015), debido a su fácil eliminación como muestra la ilustración 4.

    Resultado de imagen para soxhlet
    Ilustración 4. Equipo de extracción Soxhlet
  1. Hacia el año 1842, fueron usados como los primeros analgésicos principalmente el éter di etílico, aunque en la actualidad ha sido sustituido por hidrocarburos fluorados que presentan menos riesgos de exposición.(Armas, Bolaños , & et all, 2015)
  2. Polímeros diversos: los éteres presentan alta resistencia a altas temperaturas pese a que sus puntos de ebullición tienden a ser bajos (Wade, 2004). Esta característica permite que sean retardadores de llama, sin comprometer su fuerza que en términos generales permite que sea utilizado como un retardante de llama. Su estabilidad a la hidrólisis permite su uso en aplicaciones médicas que requieren autoclave así como en procesos que comprenden manipulación de microorganismos autoclavables o mecanismos que incluyan arrastre de vapor, lo que en definitiva los hace claves para la formación de polímeros.

Sus principales representantes son las poliétersulfonas o PES, representadas en la ilustración 5. Este tipo de polímeros son utilizados como termoplásticos donde el producto más popular es el Udel fabricado por la corporación Union Carbide, este se comporta como los policarbonatos siendo muy resistible y estable en altas temperaturas. El uso más frecuente de este tipo de polímeros es la fabricación de émbolos y filtros de jeringa. Según mencionan (Armas, Bolaños, & et all, 2015) este tipo de polímeros presentan una subunidad aril –SO2-arilo lo que identifica como tal una sulfona. Sin embargo su alto costo hace que tengan usos especializados normalmente para reemplazo superior de policarbonatos, recubrimientos e insumos médicos.

xqwscw.png

Ilustración 5 En la parte sup. Estructura del polímero poli éter sulfona. En la zona Inf. Se aprecia filtros de jeringa elaborados con dicho polímero. Fuente: (Interempresas, 2012)

Finalmente cabe mencionar con respecto a las poliétersulfonas que son capaces de formar en conjunto verdaderas membranas que industria son reproducibles y controlables con pequeños poros de hasta 40 nanómetros. Se usan para conducir flujos de sustancias en hemodiálisis, recuperación de aguas residuales, procesamiento de alimentos, bebidas y separación de gases; ya que soportan grandes presiones sin gran deformación en sus poros.

Resultado de imagen para Recubrimiento de un frente de camión con resina de poliester fenolico y fibra de vidrio.

Ilustración 6 Recubrimiento de un frente de camión con resina de poliéter fenólico y fibra de vidrio. Fuente: (Mariano N., 2011)

  • Poliéteres fenólicos: al igual que los anteriores, estos polioxifenólicos, familia de los éteres; son plásticos resistentes a altas temperaturas con la particularidad de ser muy buenos aislantes térmicos y eléctricos por lo que son muy utilizados en planchas de diversos electrodomésticos y automóviles como muestra la ilustración 6.
  1. Éter fenílico: este compuesto presenta alto punto de ebullición a diferencia de otros éteres y no deja de ser estable. Esta característica hace que sea usado como calefactor de fluidos o líquido calefactor en diversas industrias como sustituyente de vapor de agua a presión, principalmente en aquellas donde el vapor de agua puede presentar un riesgo si reacciona con otras sustancias como es el caso de la fabricación de ácidos a escala industrial; dicho de manera simple, cumple la función opuesta a la de un refrigerante, es decir, es un anticongelante. (Armas, Bolaños, & et all, 2015). Se recomienda su almacenamiento en frascos o contenedores plásticos  por evitar su deterioro por la fricción, vibraciones y golpes.

 

  1. Según (Vollhardt, 1994) el tetrahidrofurano o THF por sus siglas es un compuesto orgánico heterocíclico, se presenta como un líquido transparente de baja viscosidad, presenta un olor característico parecido al de dietil éter. Se clasifica como éter siendo uno de los más polares de su grupo. El THF es un solvente dipolar aprótico protofílico (capaz de aceptar protones, dados los pares de electrones no compartidos del átomo de oxígeno que le dan características de base de Lewis), con una constante dieléctrica de 7,6 (a 25 °C). El THF es el análogo completamente hidrogenado del compuesto aromático furano.

                   8.1 APLICACIONES Y USOS

  • Solvente de polaridad de carácter aprótico.
  • Sustituyente del dietil éter cuando se requiere incrementar puntos de ebullición.
  • Usado en procesos de hidroboración de alquenos.
Resultado de imagen para thf

Ilustración 7 INF. Una representación 3D del THF, SUP. Se muestra el THF comercial como pegamento de tubos PVC. Fuente: (Pérez, 2011)

Resultado de imagen para pegatuboResultado de imagen para thf

  • Disolvente para reactivos de Grignard.
  • Disolvente del caucho por lo cual es importante en la industria de polímeros.
  • Disolvente de resinas, plásticos en tintes, pinturas, barnices, pegamentos, recubrimientos.
  • En la industria de alimentos es utilizado en la fabricación de envases.
Imagen relacionada

Ilustración 8 Éter metil ter butílico en gasolinas producidas por Petropar (Paraguay). Fuente: (Grupo AJ Viersi, 2014)

  • Éter Metil terc Butílico: muy toxico para los seres humanos y otros seres vivos, sin embargo tiene un poderoso uso industrial mezclándose con isobutileno y metanol desde los años 80`s se ha usado como aditivo sintético para incrementar o mejorar el octanaje de la gasolina sin plomo(Grupo AJ Viersi, 2014).
  1. Éter Corona: Son los compuestos orgánicos que tienen varios éteres en su estructura y forman un ciclo. Los éteres corona imitan el comportamiento de las enzimas; estos reconocen los iones alcalinos dependiendo del tamaño de su cavidad oxigenada, que atrae la carga positiva del metal. Esto implica que funciona como un catalizador; hace posible algunas reacciones, e incrementa el rendimiento de otros. Son catalizadores de transferencia de fase. Se usan para transferir compuestos iónicos a una fase orgánica o de una fase orgánica a una fase acuosa, Este éter puede usarse para anestesiar garrapatas antes de eliminarlas de un cuerpo animal o humano. La anestesia relaja a la garrapata y evita que mantenga su boca debajo de la piel. (Daiza, 2016)

Resultado de imagen para calcimicina

Ilustración 9 CALCIMICINA usada para enfermedades parasitarias en ganado vacuno. Fuente: (Aguirre, 2018)

Uso de epóxidos en la industria de los alimentos

La mayoría de las sustancias antimicrobianas en los alimentos tienen un efecto más inhibidor que letal, hay excepciones con los óxidos de etileno y propileno. Los epóxidos son ésteres cíclicos reactivos que destruyen todas las formas de microorganismo, incluyendo esporas y virus, es decir, son esterilizantes químicos usados en alimentos de baja humedad y en los materiales de envasado aséptico, para lograr el contacto directo con los microorganismo son utilizados en estado de vapor; después de una exposición adecuada, el epóxido residual no reaccionante se elimina por medio de una corriente de aire (Puello Cabarca, 2016)

  1. Resinas epoxídicas; La polimerización de un epóxido con un dialcohol o difenol produce un poli éter. Las resinas epoxis utilizados en la industria se obtienen por polimerización de la epiclorhidrina en el bisfenol en medio básico. El grado de polimerización (n) depende de la relación epiclorhidrina /bisfenol (con un exceso de epiclorhidrina n aumenta). Con la reacción propuesta en la ilustración 10, se obtiene prepolímeros de PM no muy alto (líquidos viscosos o sólidos) que tienen grupos epoxi terminales y grupos OH en la cadena. Los polímeros se convierten en resinas duras mediante el “curado”. El curado consiste en la polimerización cruzada mediante reactivos bio trifuncionales, llamados endurecedores, que al reaccionar con los grupos epoxi terminales y con los grupos –OH interiores forman puentes entre las cadenas. De este modo se producen, al azar, redes macromoleculares tridimensionales muy resistentes. Los reactivos o endurecedores más utilizados son Dietilentriamina (DETA), Trietilentetraamina (TETA), Anhídrido ftálico.
Resultado de imagen para Reacciones de obtención de prepolímeros epóxidos.

Ilustración 10  polímeros epóxidos.

Las resinas epoxi tienen propiedades técnicas muy valiosas: resistencia química, térmica y mecánica y son buenos aislantes eléctricos. Se utilizan para lacas y esmaltes, para recubrimiento de metales y de pisos de laboratorio y fábricas químicas; por colada, se fabrican piezas eléctricas, y algunas compañías las utilizan, con rellenos de sílice, en sustitución de la porcelana para los aisladores de líneas eléctricas; también se usan para fabricar láminas para circuitos impresos y placas reforzadas con fibras de vidrio. Además, son el adhesivo más eficaz para cerámica, vidrio, metales,etc. (Araldit) y por ello se usan en la construcción y en pequeños dosificadores, en el hogar; en general, el prepolímero y el endurecedor se venden separados y se mezclan en el momento de su aplicación. Es un producto caro y su uso se limita a casos de especial exigencia. Algunas Industrias utilizan tetrabromo-bisfenol como copolímero para obtener resinas epoxi resistentes al fuego. (Yúfera, 1996)

  1. Los alcoholes alílicos se convierten en epóxidos por oxidación con hidroperóxido de terc butilo en presencia de ciertos metales de transición. El aspecto más importante de esta reacción, que se llama epoxidación de Sharpless, es su alta enantioselectividad cuando se hace usando una combinación de hidroperóxido de ter-butilo, isopropóxido de titanio(IV) y tartrato de dietilo. La epoxidación Sharpless se ha adaptado para la preparación, en gran escala, de la hormona sexual (+)-disparlure, que se usa para controlar infestaciones de polilla, y de (R)-glicidol, intermediario en la síntesis de fármacos con actividad cardiovascular, llamados beta-bloqueadores. (Carey, 1997)
  2. En la actualidad en relación con los epóxidos existen diversos estudios que proponen extraer epóxidos de ciertas semillas que contienen estas sustancias para el uso industrial, no precisamente en el campo alimenticio. Por ejemplo la producción de epóxidos provenientes de la soya común con ácido per acético generado in situ mediante procesos de catálisis homogénea. Esta investigación indexada publicada en 2010 propone el uso de aceites vegetales que se ha convertido en una excelente alternativa para la sustitución de productos de origen petroquímico. Los epóxidos obtenidos a partir de estos aceites se utilizan ampliamente como plastificantes y estabilizantes del PVC y como materia prima en la síntesis de polioles para la industria del poliuretano. Este trabajo presenta la obtención del epóxido de soya utilizando un catalizador homogéneo en un reactor agitado mecánicamente, a condiciones isotérmicas. Se obtiene como mejor resultado un contenido máximo de oxígeno oxirano de 6,4 %, usando concentraciones de peróxido de hidrógeno (25%de exceso molar), ácido acético (5% p/p) y ácido sulfúrico (2% p/p) a 80°C.(Boyacá & Beltrán, 2010)

81128.jpg

Ilustración 11 Epóxidos recuperados de la soya. Imagen tomada de (Boyacá & Beltrán, 2010)

Aplicaciones industriales de compuestos sulfurados (Tioéteres)

Resultado de imagen para Composición química del vino.

Ilustración 12 Composición química del vino. Fuente: (DeVinoenVino, 2016)
  • Adsorción de azufrados del petróleo utilizando nanopartículas de oro soportadas en fique: de manera general se sabe que el petróleo presenta rachas de azufre presentado en diversas estructuras dado su polimorfismo que representa un 0% a 2% de su composición total en peso, sin embargo su presencia causa verdaderos problemas en las refinerías por lo que se requiere sean retirados previamente a la refinación petrolera para cumplir con los estándares ambientales requeridos (Armas, Bolaños , & et all, 2015). Los Mercaptanos (H-SR), sulfuros (R-S-R) y polisulfuros (R-S-S-R) son capaces de eliminar rachas de azufre presentes en el petróleo, y su estabilidad permite extraerlos fácilmente por fraccionamiento he hidrotratamiento.
  1. Compuestos azufrados volátiles en vino: estos compuestos azufrados tienen un papel importante en la industria vinícola, debido a que son quienes le dan aroma característico a la sustancia, siempre y cuando sean ligeros por eso se exceptúa el DMS por su nivel tóxico, éstos son simplemente vectores de defectos organolépticos que al superar el umbral de la detección olfativa
Resultado de imagen para Oenococcus oeni

Ilustración 13 https://www.sciencedirect.com/science/article/pii/S0963996917308864

  • confieren notas olfativas agradables al ser humano. (Armas, Bolaños , & et all, 2015). En la ilustración 12 se puede apreciar la composición del vino donde efectivamente se demuestra la existencia de azufre en el vino cuya utilidad es dar su particular aroma, especial los tioles varietales ya que aportan al frescor del vino al contrario el DMS es indicador de mal sabor y reducirlo es el propósito de las vinícolas. Y entornos al costo elevado de vinos sofisticados puede deberse al tratamiento de H2S que se le dé, porque dicho sulfuro de hidrógeno puede tener dos orígenes uno sintetizado en laboratorio no recomendado para vinícolas por costos en comparación a una forma más tradicional de obtención de sulfuro de hidrógeno que es por medio de cepas de levaduras Advantage, Platinum Distinction; mismas que hacen del vino un producto más artesanal y fino; aunque no precisamente más barato; las levaduras forman dicho compuesto a través de procesos metabólicos que transforman compuestos inorgánicos como sulfatos y sulfitos e incluso orgánicos como la cisteína y el glutatión de la uva.(Armas, Bolaños , & et all, 2015)

Referencias Bibliográficas

Aguirre, A. (9 de 04 de 2018). MiSeptiembreRojo. Obtenido de Poliéteres, una historia detrás de los antibióticos: https://miseptiembrerojo.wordpress.com/2018/04/09/polieteres-una-historia-detras-de-los-antibioticos/

Ardila, J. S. (22 de 07 de 2013). quimicaguanenta.blogspot.com. Obtenido de Éteres: http://quimicaguanenta.blogspot.com/2013/07/trabajo-eteres.html

Armas, C., Bolaños , A., & et all. (25 de 02 de 2015). issuu.com. Obtenido de Éteres y compuestos azufrados aplicaciones industriales y reacciones de utilidad en la industria: https://issuu.com/azucena22060/docs/eteres_y_compuestos_azufrados

Boyacá, L. A., & Beltrán, Á. A. (2010). Producción de epóxido de soya con ácido peracético generado in situmediante catálisis homogénea. INGENIERÍA E INVESTIGACIÓN VOL. 30 No. , 136-140.

Carey, F. (1997). Epóxidos, éteres y sulfuros 6°edición. En F. Carey, Química orgánica. (pág. pág 668). Madrid: Prince Hall Andersen.

Copro.com. (2013). copro.com.ar. Obtenido de http://copro.com.ar/Extractor_Soxhlet.html

Daiza, M. (15 de 05 de 2016). ETERES. Obtenido de Usos de los Eteres en la vida Cotidiana: http://ihu8hyygh7yhh.blogspot.com/2016/05/usos-de-los-eteres-en-la-vida-cotidiana.html

DeVinoenVino. (29 de 08 de 2016). @devinoenvino. Obtenido de Bodegas Valdelana: https://twitter.com/devinoenvino

Grupo AJ Viersi. (10 de 03 de 2014). PARAGUAY.COM. Obtenido de Petropar compra combustible con alto potencial cancerígeno: http://www.paraguay.com/nacionales/petropar-compra-combustible-con-alto-potencial-cancerigeno-104082/pagina/2

Interempresas. (2012). http://www.interempresas.net. Obtenido de Filtros jeringa: realizados con membranas de poliestersulfona: https://www.interempresas.net/Laboratorios/FeriaVirtual/Producto-Filtros-jeringa-Serie-G-(Pes)-114321.html

Mariano N. (11 de 07 de 2011). tecnologiadelosplasticos.blogspot.com. Obtenido de Materiales compuestos: http://tecnologiadelosplasticos.blogspot.com/2011/07/materiales-compuestos.html

Pérez, Y. (2011). pe.melinterest.com. Obtenido de http://pe.melinterest.com/?r=site/search&seller_id=242469478&seller_nickname=YOVANAFELICES

Produk Perusahaan Tender S.A. (2015). http://www.indotrading.com. Obtenido de Etilen Glicol Etil Éter: https://www.indotrading.com/product/ethylene-glycol-monoethyl-p386734.aspx

Puello Cabarca, V. (29 de 08 de 2016). http://www.prezi.com. Obtenido de Epóxidos y sus aplicaciones Industriales: https://prezi.com/lboblu9t7r8y/epoxidos-y-sus-aplicaciones-industriales/

UrbinaVinos S.A. (7 de 3 de 2016). urbinavinos.blogspot.com. Obtenido de Técnicas de Control Microbiológico en Enología: http://urbinavinos.blogspot.com/2016/03/tecnicas-de-control-microbiologico-en.html

Vollhardt, P. K. (1994). Química Orgánica. Barcelona: Omega S.A.

Wade, L. G. (2004). Química Orgánica. Barcelona: McGrawHill.

Yúfera, E. (1996). Química orgánica básica y aplicada: de la molécula a la industria.Páginas 377-379. Obtenido de https://books.google.com.ec/books?id=4eX-mdTjyHcC&pg=PA367&dq=epoxidos+aplicaciones&hl=es&sa=X&ved=0ahUKEwiYkvGSl-jaAhWS0FMKHQU4AY0Q6AEINTAD#v=onepage&

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Precursores de la Medicina Latinoamericana (PARTE III. José María Vargas Ponce)

     El turno es para la querida República Bolivariana de Venezuela, en esta entrega descubriremos el importante aporte del médico caraqueño José María Vargas Ponce; considerado como médico precursor de Venezuela, quien viviendo convencido de que la ciencia era el camino hacia la verdadera independencia y desarrollo del naciente país llanero. Como es de costumbre a continuación dejo un pequeño documental de resumen que espero contribuya y sustente esta pequeña biografía.

José María Vargas

(1786-1854)

Imagen relacionada

      Médico cirujano, científico, catedrático, escritor, político e investigador. José María Vargas Ponce; nace en La Guaira un 10 de marzo de 1786, sus padres de origen  canario (español) los señores José Antonio de Vargas Machuca y Ana Teresa Ponce. Sus estudios primarios los realizó en el Seminario Tridentino y posteriormente en la Universidad de Caracas donde finalmente se tituló de médico, después de haber sido bachiller en filosofía.

     Su ejercicio profesional lo realizó en Cumaná hasta 1812, al llegarle la fatal noticia del terrible terremoto que azotó su natal La Guaira se trasladó sin demora alguna donde se destacó su arraigada vocación, atendió y brindó auxilio a múltiples personas heridas; fue tal la importancia de su intervención que la comunidad lo gratificó nombrándolo como Diputado a la Asamblea del Estado, demostrando así que a Vargas no le incomodaba la idea de prestar servicios a su patria no sólo como médico ya que losResultado de imagen para jose maria vargas problemas políticos y sociales era también de su interés, un ejemplo de dicho interés fue la traducción que realizó del “Contrato Social” de Rousseau. En el mismo periodo de tiempo se produce la insurrección de Cumaná contra la corona Española, siendo Vargas prácticamente el alma del movimiento independentista en el que participaron jóvenes patriotas como Antonio José de Sucre, Acve y Avendaño; sin embargo, el intento fracasó y en 1813 los realistas encarcelan a Vargas y a muchos más miembros del poder Legislativo con ideas independentistas. Finalmente y ante este hecho Vargas es enviado en forma de exilio hasta Europa, lo que le permitió especializarse como médico quirúrgico en Edimburgo; además fortaleció sus estudios en química, botánica, odontología y anatomía; estos esfuerzos por mejorar comienza a rendir frutos  cuando es nombrado como miembro del Real Colegio de Cirujanos de Londres, donde logró hacer contacto con sus compatriotas venezolanos que continuaban la lucha.

     Domiciliado en Puerto Rico tras su regreso en 1819 logra reunirse con sus hermanos y madre quienes huyeron también a razón de la guerra independentista que se estaba suscitando en su natal Venezuela, prestó servicios en Puerto Rico y desarrolló múltiples artículos y estudios en especial algunos temas referentes ala botánica en colaboración con la Junta de Sanidad de la Isla. En cuanto a su regreso en Caracas en 1825 fue nombrado cirujano del Hospital Militar y fue allí donde su naciente y prolífica carrera dio inicio. Entre 1826-1827 después de la derogación del entonces Estatuto Universitario que prohibía que los médicos ejerzan la rectoría de instituciones de educación superior, por parte de Simón Bolívar es nombrado como rector de la Universidad de Caracas, que actualmente se conoce como Universidad Central de Venezuela.

Resultado de imagen para universidad central de venezuela

Es en ese cargo donde concentró muchos de sus esfuerzos y aportes científicos, su experiencia en hospitales y universidades inglesas fue de valiosa ayuda para dar rumbo a la Universidad y comenzó creando su nuevo estatuto.

Abre entonces la nueva Facultad de Medicina en dicha universidad y fue docente de múltiples cátedras como anatomía, botánica, mineralogía y química (ramas que hasta ese entonces eran desconocidos dentro la sociedad venezolana), así pues la cátedra de anatomía se abre un noviembre de 1826 para la cual preparó inclusive un texto completo, en 1832 funda la cátedra de cirugía, la primera en la historia de Venezuela, tradujo diversas obras médicas para el ejercicio de la docencia entre ellas las de Tissot; creó compendios de otros textos como los de Ducamp, Beddoes y Armstrong. Organizó la “Sociedad Médica de Caracas” y participó también en la “Sociedad Económica de Amigos del País”.

Es a partir de esta época en la que Vargas empieza a tener reconocimiento público, en diversos sectores de la reciente sociedad caraqueña, principalmente por su éxito como administrados de tan importante institución para la naciente país llanero. Sin embargo su aporte también trascendió en otras facultades ya que  reorganizó y creo numerosas cátedras, financió obras dentro de la institución como la reparación de aulas, salones, bibliotecas y sectores administrativos; y en el ámbito de las relaciones públicas vinculo a la universidad a otras instituciones con el afán de brindar apoyo y conocimiento; actualmente la Universidad Central de Venezuela se perfila como un prestigioso centro de estudios superiores.

Imagen relacionada

Otro de sus importantes aportes como precursor médico venezolano fue  introducir en la Facultad de Medicina el método EXPERIMENTAL, que hasta entonces era un privilegio de las grandes escuelas anatómicas de Europa. Como escritor e investigador escribió diversas memorias, informes médicos y trabajos de investigación entre los que se puede destacar:

  • Memorias sobre el mal de Lázaro.
  • Cólera morbus y otras enfermedades.
  • Epítodomo sobre las vacunas.
  • Folleto sobre las enfermedades de los ojos.
  • Memoria sobre higiene pública.
  • Úlcera perforante.
  • El Asma y su tratamiento.
  • Aneurisma de la Aorta.
  • Descripción de los nervios cervicales de un loco.
  • Hidropesía en Venezuela.
  • Tumores.
  • Elefantiasis.
  • Tuberculosis.

Entre los múltiples reconocimientos que se dio a su labor tenemos que:

De Candolle, uno de los más grandes botánicos de la época, bautizó algunas plantas con el nombre de “Vargasia” en homenaje a los trabajos realizados en la materia por Vargas como por ejemplo su obra “Prodromus” de De Candolle.

Resultado de imagen para De Candolle

Con ello podemos confirmar que Vargas hizo importantes aportes en múltiples áreas, se conoce que organizó un laboratorio privado de Química que posteriormente obsequió a la Universidad, en el que realizó múltiples análisis de aguas, minerales y plantas. Preparó un importante informe sobre los minerales de Venezuela en el que analizó el asfalto de Orinoco; enseñó también la fabricación de velas esteáricas de aceites y ácido nítrico. No contento únicamente con la medicina y la química, dedicado a  la botánica organizó su propio Herbario.

En el campo educacional fue innovador y por ello fue nombrado también como Director Nacional de Instrucción Pública, preparando a  futuro el proyecto del Código de Instrucción Pública  en 1840.

Vargas anteriormente había tomado parte en las actividades políticas, asistiendo al Congreso Constituyente de 1830, donde desplegó una gran actividad en las comisiones de trabajo, en las sesiones plenarias y en muchas oportunidades salvó su voto al estar en desacuerdo con algunos planteamientos del Libertador, lo que no obstante, no le impidió ser nombrado ese mismo año como albacea testamentario de Bolívar.

Por esta razón en 1832 es nombrado como senador y en 1834 desempeñó la Vicepresidencia de la República.

El 6 de Febrero de 1835 fue elegido como Presidente de la República de Venezuela (7º en la historia de Venezuela) por el Partido Conservador tras una dura contienda que tenía por fín sustituir a José María Carreño quien terminaba su mandato, sin embargo el verdadero poder fáctico al que debía vencer o convencer era el poder militar quienes desde el principio se perfilaron como sus detractores; gobernó con sapiencia y honestidad sin embargo el militarismo siempre actuó en su contra.

Posteriormente el 8 de julio de 1835 estalló la Revolución de las Reformas, dirigidos por Pedro Carujo, quienes lo apresan y exilian el 9 de julio a Saint Thomas.

Del episodio concerniente a su detención es de donde surgió el famoso diálogo entre Pedro Carujo, militar alzado, y el presidente:

“¡Señor Doctor! –grita Carujo- El mundo es de lo valientes.

¡Señor Carujo! –replica Vargas- El mundo es del hombre justo y honrado.

Al poco tiempo José Antonio Páez, al mando del ejército constitucional, derrotara a los rebeldes, restituyendo el mandato del doctor. Vargas vuelve el 20 de Agosto para continuar como Presidente de la República hasta el 24 de abril de 1836, fecha en la que renunció irrevocablemente a dicho cargo encargándose el vicepresidente Andrés Narvarte.

Presidió también la comisión encargada de exhumar en Santa Marta los restos del Libertador y conducirlos a la Patria, misión que fue completada en diciembre de 1842. En agosto de 1853 enfermó y viajó a Estados Unidos, donde residió primero en Filadelfia y luego en Nueva York, donde, finalmente, murió el 13 de julio del año de 1854, a los sesenta y ocho años de edad.

En 1877, sus cenizas fueron traídas a Caracas y sepultadas en el Panteón Nacional el 27 de abril de ese mismo año concluyendo así con el eterno descanso de uno de los más famosos médicos de Venezuela y de América.

BIBLIOGRAFÍA

  • Naranjo Plutarco. (1978) Precursores de la Medicina Latinoamericana. Academia de Medicina del Ecuador. Editorial Universitaria. Quito-Ecuador.

 

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios y seguirnos en redes.

Generación de Hidrógeno a partir de residuos de Banano

Objetivo General.-

Generar fuentes ilimitadas de energía, dando valor agregado a nuestros recursos naturales, a partir de la biomasa proveniente de los residuos del banano.

Objetivos Específicos.-

-Evaluar la actividad del hidrógeno y sus efectos en la naturaleza.

-Caracterizar los residuos de banano evaluando su composición nutricional.

RESUMEN

Las bananas son una fuente importante de ingresos para más de cien países. Pero porResultado de imagen para platano cada tonelada que se cosecha, se producen diez toneladas de desperdicios. Una investigación de la Universidad de Cuenca en Ecuador busca crear hidrógeno a partir de los residuos de la fruta.

El proyecto consiste en optimizar la biomasa proveniente de los residuos de las plantas de banano sometiéndolos en agua a una temperatura súper crítica, es decir a temperaturas mayores a los 374 grados Celsius y a una presión mayor a los 22,1 mega pascales y luego estos residuos pasan a través de un catalizador que permitirá gasificar el hidrógeno. La importancia del hidrógeno radica en la versatilidad de este elemento como medio de almacenamiento y transporte de energía.

La obtención de hidrógeno significa la generación del producto energético del futuro, que reemplazará los combustibles provenientes del contaminante petróleo responsable del cambio climático y el calentamiento global. Generar fuentes ilimitadas de energía, dando valor agregado a los recursos naturales, es un gran aporte para el cambio de la matriz productiva de cualquier país.

No es la primera vez que investigadores desarrollan técnicas para obtener combustible a partir de los residuos de banano, por ejemplo investigadores ingleses proponen usarlo como sustituto de la madera. Un grupo de agricultores frutícolas de Australia busca convertir los residuos de banano en electricidad o combustible. Alex Livingstone, gerente de Growcom, entidad desarrolladora del proyecto, señala que “si el producto es ampliamente comercializado, éste podría reducir los costos de operación y beneficiar a los países productores de banano en vía de desarrollo.”

Estructura y características del hidrógeno:

El hidrógeno es la forma más simple de un átomo y se cree que el más abundante, ya Resultado de imagen para hidrógeno gifdesde los primeros momentos después del Big Bang. Descubierto en el año 1766, por el físico-químico británico Henry Cavendish, fue nombrado a partir del griego Hydro (agua) y Gen (generador), pues como todos sabemos, al combinarse con oxígeno forman agua. Se trata de un elemento químico incoloro, inodoro, de tipo gaseoso y no metálico, además, su masa atómica es tan ligera (1,00797) que no existe ningún otro elemento químico más liviano que el hidrógeno.

Además de representar las tres cuartas partes de la materia del universo, se estima que el hidrógeno reŕesenta más del 90% de los átomos de nuestro planeta. El hidrógeno juega un papel fundamental en la alimentación del universo, tanto a través de la reacción protón-protón como en el ciclo carbono-nitrógeno. En los procesos de fusión de hidrógeno estelar, se liberan cantidades masivas de energía a través de la combinación del hidrógeno para formar helio.

Júpiter, al igual que muchos otros planetas gaseosos de gran tamaño, están compuestos mayoritaria y especialmente por hidrógeno. A una profundidad determinada, en el interior del planeta, la presión es tan grande que el hidrógeno molecular sólido se convierte en hidrógeno metálico sólido. Aunque el hidrógeno en estado puro es un gas sumamente liviano, hay un poco de éste en la atmósfera, éste es tan ligero que si no se combina, alcanza en sus colisiones las velocidades suficientes como para ser expulsadas de la atmósfera fácilmente.

Las estrellas, al nacer, se componen de hidrógeno en forma de plasma , pero éste es muy escaso en nuestro planeta. Aquí en la Tierra, el hidrógeno es producido principalmente a partir de la combinación de oxígeno en el agua, aunque también puede estar presente en distintos tipos de materia orgánica, como en plantas, petróleo y carbón.

Otros datos:

  • Número atómico: 1
  • Peso atómico: 1,00794
  • Símbolo atómico: H
  • Punto de fusión:-259,34° C
  • Punto de ebullición: -252,87° C

Resultado de imagen para hidrógeno

Imagen relacionada

 

PROPIEDADES DEL PLÁTANO

  • El plátano contiene hidratos de carbono saludables, fáciles de digerir y es nulo el contenido de grasas.
  • Es muy energético y está lleno de nutrientes que calman y levantan el ánimo.
  • Los plátanos reducen la fatiga y el síndrome pre-mensual.
  • Alivian la irritabilidad, reduce la depresión y fomenta el sueño.
  • Protege contra la hipertensión arterial y la retención de líquido.
  • Ayuda en caso de diarrea en que se haya perdido potasio.
  • Tiene un alto contenido de triptófano, aminoácido que el organismo transforma en serotonina, neurotransmisor que mejora el estado de ánimo y estimula la relajación. (licata, 2012)

Resultado de imagen para platano

Resultado de imagen para componentes del platano

COMPONENTES DEL PLÁTANO

Como fuente nutricional el plátano aporta de la siguiente manera:

Resultado de imagen para componentes del platano

Resultado de imagen para componentes del platano

FUNCIÓN DEL HIDRÓGENO EN EL PLÁTANO

El hidrógeno es un elemento esencial para la fertilidad de suelos y nutrición mineral del cultivo de banano.

HIDRÓGENOComponente de carbohidratos, lípidos, proteínas y ácidos nucleicos.  El hidrógeno (H) principalmente forma parte de la composición del agua. El agua es un componente imprescindible en la reacción química de la fotosíntesis. Constituye también el medio necesario para que se puedan disolver los elementos químicos del suelo que  las plantas deben utilizar para construir sus tejidos.  El hidrógeno, a través de los llamados puentes de hidrógeno, sirve también para unir las distintas fibras (celulosa) de la pared celular.

La producción de un sistema agrícola, en este caso específico sobre el cultivo del banano, depende de la interacción intrínseca de tres componentes: suelo-planta-clima. En vista que el suelo es un factor importante en la producción del cultivo, merece toda la atención de nuestra parte para conocer a fondo y en forma detallada el estado de su fertilidad, es decir la disponibilidad promedio que presenta para cada uno de los nutrientes esenciales que el cultivo requiere

OBTENCIÓN DEL HIDRÓGENO A PARTIR DE BIOMASA DE LOS RESIDUOS DE PLÁTANO

El proceso consiste en tomar bananos dañados o sus tallos y romper los hidratos de carbono en ausencia de aire, produciendo una mezcla de metano y dióxido de carbono. El biogás obtenido del proceso, resultó ser un sustituto adecuado para el combustible diesel en motores de combustión, con 40% de metano y pequeñas cantidades de sulfuro de hidrógeno y otros contaminantes. Growcom se dio a la tarea de aplicar estos resultados en la granja de una manera práctica y funcional a través de un digestor, procurando el uso de materiales bastante fáciles de obtener, y sin ningún tipo de control científico en su funcionamiento.

Resulta importante que el sistema opere en un entorno agrícola, por lo que se construyó un digestor, se colocó materia prima en él, y se produjo metano; el metano a su vez es utilizado para alimentar un generador bastante considerable y también para alimentar algunos vehículos.

El producto era un digestor anaeróbico de 460.000 litros con la capacidad para procesar 2.500 toneladas de banano por año, produciendo 85.000 metros cúbicos de metano. Growcom estima que con este nivel de producción de biogás, se podría generar continuamente 35kw de poder o satisfacer las necesidades de combustible de 100 vehículos convertidos a gas.

Livngstone comenta que “los beneficios son altos para el desarrollo de las naciones, ya que la tecnología también reduce los gases de efecto invernadero, normalmente, la materia prima se lanza de nuevo en el campo y se deja descomponer, así que esto reduciría los gases de efecto invernadero y permitiría ahorro de energía. También se puede usar el agua del digestor para fertilizar, obteniendo los nutrientes de vuelta en el suelo, pero de una manera muy controlada”. Esta nueva técnica para el manejo de residuos, puede ser una idea de negocio para muchos empresarios productores y exportadores de banano. El disponer de opciones para la producción que relacionen la disminución de costos con manejo de residuos, sin duda contribuye con la percepción que puede tener la demanda internacional de los productos. Por lo anterior, el empresario debe estar siempre a la vanguardia de los procesos tecnológicos que contribuyen con las mejoras en sus procesos productivos y energéticos, más aún si estos son para la generación de combustibles amigables con al ambiente.

La industria bananera nacional produce un significativo volumen de biomasa como desecho, generada a partir del banano que no cumple los requerimientos internacionales para su exportación; este banano denominado de “rechazo”, se ha convertido en una problemática medioambiental de grandes proporciones. A pesar que una considerable parte de este banano se utiliza para suplir la demanda interna, la cantidad remanente es tal (6.5-10.8 ton/año*ha) que se ha recurrido a los procesos de compostaje para su disposición final.

En este banano de rechazo, rico en almidón, puede ser utilizado como sustrato para procesos fermentativos que permitan el máximo aprovechamiento energético, a través de la generación de etanol y/o metano. La transformación de residuos en sustratos reutilizables resulta ser una apropiada alternativa para el manejo medioambiental de desechos, favoreciendo así la producción masiva de energía, el mejoramiento de suelos y el aprovechamiento final de estos residuos, cerrando el ciclo productivo.

Resultado de imagen para biogas casero

Adicionalmente les comparto este video, que les explicará cómo aprovechar los residuos orgánicos con la finalidad de producción del biogás:

 

HIDRÓGENO COMO COMBUSTIBLE

¿Por qué?

Primero por prevención ante el posible agotamiento del petróleo, donde el hidrógeno destaca por sus propiedades específicas. Donde se observa que el hidrógeno posee tan solo un protón y un electrón, y son los más abundantes porque en el Universo se halla compuesto por cerca del 73.9% según Escalante, Carigi y Gasque (2011) en su artículo el origen de los elementos en tres actos. Además el hidrógeno no es una fuente de energía primaria, sino solo un vector energético (sustancias que almacenan energía para posteriormente liberar de manera controlada) y su principal ventaja es que al combustionar produce agua, lo que significa evitar la emisión de gases de efecto invernadero (CO2, CH4, Clorofluorocarbonos, N2O).

Una de sus propiedades importantes es la energía específica de su combustión. Su valor es de 120 mega julios por kg en comparación con 50 MJ/kg del gas natural o con 44,6 MJ/kg del petróleo. Esto se contrapone a la baja densidad que presenta tanto como gas como licuado y a las dificultades de almacenamiento para sus aplicaciones al transporte.

El hidrógeno es el primer elemento en la tabla periódica y posee el carácter de ser el elemento más liviano, es difícil encontrarlo en su forma pura de H2 y el principal carácter es el calor de la combustión que le permite al hidrógeno actuar como combustible.

Usos potenciales

Los motores de vehículos y hornos pueden adaptarse para utilizar hidrógeno como combustible.

Uso de celdas de combustible que tiene una eficiencia 2,5 veces mayor que si se quema hidrógeno en un motor térmico. Es un sistema electroquímico que convierte directamente la energía química del hidrógeno al reaccionar con oxígeno en electricidad. El modelo más sencillo de pila consta de dos electrodos, un ánodo, negativo, y un cátodo, positivo, ambos con platino como catalizador separados por un electrolito. El hidrógeno entra en la pila por el ánodo y allí se disocia en iones hidrógeno y electrones. Los iones hidrógeno pasan a través del electrolito hasta el cátodo. Los electrones del ánodo emigran por un circuito exterior hasta el cátodo donde reaccionan con los iones hidrógeno y el oxígeno para dar agua.

Resultado de imagen para biodigestor

Conclusiones y recomendaciones.-

La obtención de hidrógeno para el país significa la generación del producto energético del futuro, que reemplazará los combustibles provenientes de las reservas de petróleo. Con este método vamos a tener un mejor manejo económico es decir menos costos y el combustible va a estar en menor porcentaje de contaminación

No desechar por completo los residuos de banano, ni de ningún residuo orgánico sino guardarlos para posteriormente reutilizarlos para la elaboración de biogás y fertilizantes orgánicos.

Bibliografía

Licata, m. (25 de septiembre de 2012). zonadiet.com. Obtenido de http://www.zonadiet.com/comida/platano.htm

Américo, H. (s.f). Univesidad Nacional de la Plata. Obtenido de http://www.inifta.unlp.edu.ar/extension/Hidrogeno.pdf

Escalante, S., Carigi, L., & Gasque, L. (2011). Universidad Autonoma de Mexico. Obtenido de http://depa.fquim.unam.mx/amyd/archivero/Elorigendeloselementosentresactos_30104.pdf

Gutiérrez, L. (2005). EL HIDRÓGENO, COMBUSTIBLE DEL FUTURO. Real Academia de Ciencias Exactas, Físicas y Naturales, 49-67.

Precursores de la Medicina Latinoamericana (Parte II: José Mutis y Bosio)

     Continuando con la recopilación histórica realizada por el Dr. Plutarco Naranjo (✞), es el turno para un ilustre personaje representante de la hermana República de Colombia, el español José Celestino Mutis y Bosio, un importante médico que entregó su tiempo y pasión científica al entonces Reino de la Nueva Granada, y cuyo esfuerzo trascendió a lo que hoy constituye la República de Colombia, si dudarlo su trabajo llena de orgullo al país cafetero; adicionalmente quisiera compartir con ustedes el documental que detalla su obra en concreto, espero que lo disfruten tanto como yo.

José Celestino Mutis y Bosio

(1732-1808)

Resultado de imagen para jose celestino mutisJosé Celestino Mutis y Bosio nace en Cádiz – España de una noble familia, su vida y obra, que hasta cierto punto puede considerarse “ad honorem”,  hoy en día se entiende como uno de los mayores aportes realizados al ámbito de la ciencia generada desde aquí, desde Latinoamérica, entregada al mundo entero, sea por su contexto histórico, el valor científico que posee o simplemente la enorme valía artística que se plasma en cada una de las láminas que componen la totalidad de su obra.

Precisamente por ello y con justo homenaje, el escritor y científico colombiano,  Luis López de Mesa, quien fuera Ministro de Relaciones Exteriores de Colombia del entonces presidente Eduardo Santos; se refiere a Mutis en muchas de sus obras como “Maestro protomédico y protomártir por la  libertad americana” (1944).

Resultado de imagen para lopez de mesa

Médico, botánico, físico, catedrático, matemático y sacerdote eran parte de lo que constituía formación científica y teológica de Mutis; desde jóven se reveló como un hombre de inteligencia y con amplias capacidades muy por fuera de lo común todo ello emparejado con una severidad de carácter inigualable que encajaba perfectamente con su disciplina y amplio sentido de realizar sus actividades con profunda excelencia.  Sus estudios superiores los realizó en las Universidades de Cádiz y Madrid, siendo esta última en donde terminara su doctorado en 1754.

Resultado de imagen para Pedro Messía de la Cerda
Don Pedro Mesía de la Cerda, capitán del Glorioso.

En muy poco tiempo logró hacerse de un importante prestigio y notoriedad en el aspecto profesional como médico a tal punto que fue solicitado para formar parte de la Real Comitiva que acompañaría al nuevo Virrey, don Pedro Messía de la Cerda,  hasta Santa Fe de Bogotá.

Finalmente Mutis llega hasta Nueva Granada en 1760, en calidad de médico del Virrey Carlos III, sin imaginar que esa tierra que lo acogiera entonces se convertiría en el foco central de todos sus sueños y a la que dedicaría el resto de su prolífica vida.

Como era común en la entonces Colonial de  Bogotá, había mucho por hacerse, para convertirla en un verdadero tesoro de la corona Española, Mutis lo sabía y empezó a ejecutar las nuevas orientaciones de la medicina y se dedicó en concreto a renovar la enseñanza de la ciencia de Esculapio. Sus primeros esfuerzos se centraron en crear y organizar la cátedra de medicina en el entonces célebre Colegio de Nuestra Señora del Rosario, cuna de los primeros médicos colombianos, sin embargo y ante la necesidad extrema de docentes, Mutis quien era todo un académico, sustentó también las cátedras de matemáticas física y astronomía.

Sin embargo, las cuatro paredes que rodean un aula de clases no era el destino queResultado de imagen para Linneo depararía la suerte de Mutis, ya que desde su llegada no pudo dejar de notar la abundancia de la flora del Reino de la Nueva Granada y es en esas selvas y páramos rodeados de exuberante vegetación que construyó su sueño, las plantas notoriamente eran su tentación y soñó con poder describir en detalle todas las especies que comprendían el  reino de la Nueva Granada con el fín de poder difundir sus  usos como aporte para la corona.

Conforme fue desarrollando la observación y colecta de las especies, no tardó en entrar en correspondencia con el renombrado Botánico sueco Carlos Linneo, mismo que quedó maravillado con su trabajo, dado que Mutis no hablaba sueco, ni Linneo español, la correspondencia se realizó en Latín, entorno a ellos se recreó una atmósfera de admiración mutua que cruzó el océano Atlántico; Mutis entre la inmensa variedad de plantas que descubrió quedó muy sorprendido por una en especial y no pudo resistirse en enviar una representación pictográfica a Linneo con el afán de poder clasificarla y nombrarla, esa especie representa toda la obra de Mutis, Linneo por su parte y al tratarse de una especie tan extraña aún para él, dado a que se asemejaba a un verdadero rompecabezas biológico, ya que por un lado presentaba hojas compuestas y por otro compartía rasgos que ponían en tela de duda la familia a la que se le clasificaría, finalmente Linneo rinde homenaje a Mutis bautizándola como Mutisia clematis L. f. representada por Salvador Rizo  a continuación:

Imagen relacionada
 Mutisia clematis. Salvador Rizo fue (Pintor de la Expedición de Mutis)

 

 

JBB13567
Mutisia clematis L.f. (Asteraceae) Colección: Díaz-Granados, Mauricio – 4153

Tiempo, fue un factor que siempre le faltó a José Celestino Mutis para realizar sus trabajos e investigaciones; en mi corta experiencia con botánicos en el Ecuador me atrevo a decir que el tiempo definitivamente es un factor que a todo botánico apasionado le hace falta; sin embargo entorno a Mutis el aspecto social y cortesano siempre fue algo que le repugnó a tal punto que jamás abandonó los hábitos sino más bien encontró una interesante armonía entre la medicina, la meditación y la botánica.

Ya entrado el año 1783, el Virrey Carlos III, cumple el anhelo de Mutis, nombrandolo mediante Cédula Real como Director de la Real Expedición Botánica al Nuevo Reino de Granada, a su cargo estaba el detallar pictográficamente las especies vegetales. Sin escatimar tiempo, esfuerzo, sacrificio; sin extenuación alguna producto de las largas jornadas que él y su equipo de colaboradores realizaban para la colecta de las especies, impertérrito ante el hambre, sed o el sol abrasador del trópico, Mutis trabajó de forma incansable innovando constantemente sus técnicas y las de sus pintores, basándose en técnicas y publicaciones europeas. Dado que Mutis era muy precavido ordenó realizar suficientes copias en tinta china con tal de no permitirse la pérdida de ningún espécimen; el campamento se centró en Santa Fe de Bogotá. La expedición recorrió casi todo el territorio de la Nueva Granada.

Resultado de imagen para reino de la nueva granada

En el territorio explorado, realizó investigaciones mineralógicas encontrando minas de oro y plata además colectó miles de plantas (aproximadamente 20.000 especies) mismas que se distribuyen en al menos 50 géneros; así como unas 7000 muestras zoológicas. Por la magnitud de su trabajo el Virrey Carlos III ordenó fiscalizar la obra nombrando como veedor al pintor Francisco Martínez del virreinato de Nueva España, quien conocía las técnicas que requerían las pinturas de Mutis; al examinarlas, quedó asombrado y dió lustre a su trabajo elogiándolo a él y a sus pintores ante el virrey, de esta manera se garantizó apoyo total por parte de la corona ya que el mismo, superaba de por sí el valor científico e incluso artístico por la perfección con la que se estaban realizando las representaciones, afirmando que dicho trabajo sería de mucha ayuda al mundo de la ciencia.

El taller-campamento de Mutis no tardó en convertirse en toda una escuela de grandes referentes de la pintura, por ella desfilaron grandes personalidades que enaltecieron su trabajo, por ejemplo Alexander Von Humboldt,  al enterarse de la expedición decide hacer una parada en Santa Fe de Bogotá con el afán de observar de cerca el trabajo que se estaba realizando donde calificó a Mutis como “el mejor ilustrador botánico del mundo”. La expedición comprendía varias disciplinas, Mutis tenia principal interés por describir diversos usos medicinales de las diferentes especies que colectaba, las que tenían una especial relevancia incluso trasladó y replantó en un Jardín que construyó en el recinto; a la expedición se unió el joven Francisco José de Caldas, científico, botánico y especialmente astrónomo al sentir gran admiración por el trabajo de Mutis decide contribuir desde la parte geográfica, se le nombra responsable de extender la expedición hasta los límites con el Reino de Quito, en Ibarra se reúne con Alexander Von Humboldt y descubren  que compartían en común ciertos métodos de medida para montes, montañas y cerros, su técnica barométrica era muy precisa y a la vez era compartida por Humboldt, gracias a ello adicionalmente Caldas aportó con su hipótesis de que las especies vegetales y su crecimiento depende directamente de la altitud en la que se encuentran, lo que fue de importante ayuda en el trabajo de Mutis.

Imagen relacionada
Ruinas de la casa y jardín botánico del sabio Mutis

La expedición duró 30 años y el gran pecado de Mutis fue no publicar su obra, quizá porque esperaba publicarla en su totalidad, aunque de por sí ya era monumental y tomaría muchísimo tiempo, y es precisamente el tanto tiempo de espera lo que generó ciertas inquinas con la Corte Española por lo que tuvo que publicar una  muy pequeña parte de su obra. Entre tales publicaciones se destacan: “El garcano de la quina” (1793), donde describe los usos del árbol de quina, especie descubierta en Ecuador con la finalidad de curar la malaria (Para mayor información sobre este descubrimiento: Precursores de la Medicina Latinoamericana (PARTE I: Pedro Leiva)), y “Memorias sobre las palmas del Nuevo Reino de Granada” donde hace especial énfasis sobre los diversos usos de aceites esenciales provenientes de palmas así como usos alimenticios, sin embargo la vida  no le alcanzó para ver su obra.

Resultado de imagen para laminas de mutis

Entre los descubrimientos más importantes fueron encontrar especies de quina en el territorio ya descrito, descubrió el denominado té de Bogotá, describió propiedades diversas del bejuco, procesos de aclimatación para cultivar canela, anís y nuez moscada.

Entre sus colegas y colaboradores estuvo el presbítero Juan Eloy Valenzuela cuya función era ayudar en la colecta y transportación de los especímenes así como informar sobre el consumo del material en calidad de administrativo fue nombrado como subdirector de la expedición; en calidad de oficial de pluma el dibujante Pedro Antonio García y Salvador Rizo, Francisco Javier Matiz figuró como dibujante a lápiz, con el tiempo ganó gran habilidad y se convirtió en pintor; Sinforoso Mutis Consuegra, sobrino de José C. Mutis, quien tiempo después le sucedieran en su obra también colaboró en el aspecto botánico; Francisco Antonio Zea, quien no tenía nada que ver con la botánica por ser periodista, se encargó de la crónica y documentación escrita de la expedición junto a Jorge Manuel Restrepo; Jorge Tadeo Lozano importante naturalista hizo parte en especies de animales y finalmente, el antes mencionado Francisco José de Caldas quien anhelaba sucederle tras su muerte sin embargo se dedicó exclusivamente a aspectos geográficos y astronómicos.

Resultado de imagen para francisco jose de caldas
El Gobierno de Colombia imprimió billetes de 20 pesos con la efigie de Francisco José Caldas

Con el tiempo el campamento dejó de ser solo un lugar con fines biológicos, ya que al tener en sus instalaciones, mismas que tiempo después pasaron a bautizarse como  la Fundación del Observatorio Astronómico de Santa Fe de Bogotá, en la que diversos proyectos científicos se crearon, como la Sociedad de Científicos Amigos, a la que pertenecieron los personajes que antes se detalló, allí se empezaron a debatir diversas ideas de la coyuntura política de la Colonia y los distintos acontecimientos que se venían dando en España, haciendo que el observatorio se vuelva una verdadera cuna de próceres para lo que el 20 de julio de 1810 se plantearía como un primer intento de independencia total de España, que no terminó nada bien, puesto que entre 1815-1816, tras diversas guerras civiles se diera la reconquista terminando por fusilar a Caldas y Lozano en el patíbulo.

Por orden de Pablo Morillo y Morillo las más de 6000 láminas terminadas de Mutis más otras 1000 sin terminar que pretendían realizar “La Flora de Bogotá” fueron empaquetadas y enviadas al Real Jardín Botánico de Madrid donde han permanecido hasta la actualidad, por más de un siglo permaneció inerte hasta que gracias al botánico Santiago Díaz Piedrahita (✞), y gracias a un pacto de cooperación entre el gobierno de la República de Colombia y España es que se logró la publicación de 33 volúmenes del trabajo de Mutis con un aproximado de 60-80 láminas por volumen, lo que constituye una de las más grandes y monumentales publicaciones científicas que posee el país cafetalero. Por esta razón Mutis se constituye como un importante personaje colombiano que logró instaurar los inicios de la medicina en Colombia gracias a todos los discípulos que vieron en su sombra paternal la inspiración para tan noble profesión así como botánicos y científicos. Pero también gracias a él crecieron los patriotas y próceres de la independencia, en especial de la manos de Caldas, cuyas últimas palabras antes de su ejecución servirán para terminar este artículo, esperando que sirva para rescatar la memoria de nuestra patria grande, quien dijo:

“España no necesita sabios” Francisco José de Caldas.

BIBLIOGRAFÍA

  • Naranjo Plutarco. (1978) Precursores de la Medicina Latinoamericana. Academia de Medicina del Ecuador. Editorial Universitaria. Quito-Ecuador.

 

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios y seguirnos en redes.

Desarrollo histórico de la microbiología

Autores: Johanna Yupangui G. (1) & Alejandro Aguirre F. (2)

(1) Nivelación Académica-UCE : Facultad de Filosofía Ciencias y Letras

(2) Química de Alimentos: Facultad de Ciencias Químicas-UCE

 

     El aparecimiento de los microorganismos data de hace 4000 millones de años, estos han tenido un papel fundamental en la evolución del planeta Tierra; sin embargo, el ser humano apenas lleva alrededor de 300 años de descubrirlos desde la primera vez que fueron observados, por tanto, el estudio de los microorganismos se considera relativamente una ciencia joven que requiere mayor estudio y comprensión, el presente ensayo tiene por finalidad sintetizar el desarrollo histórico del estudio de la microbiología desde su aparecimiento, como parte de las ciencias biológicas partiendo de un enfoque generalista que buscar dar a conocer la importancia de esta ciencia para el desarrollo de la sociedad humana y el ambiente.

Etimológicamente la palabra microbiología proviene de tres raíces griegas que otorgan Resultado de imagen para celulas de corcho hookesu significado, la primera “Mikros” que quiere decir pequeño, la segunda “bios” que significa vida y la tercera “logos” que quiere decir ciencia, por lo tanto, la microbiología comprende el estudio de la vida microscópica, sus orígenes se remontan hasta el siglo XVII cuando por primera vez una célula es observada, este acontecimiento marca el inicio de toda una ciencia que comprende a aquello que no podemos ver a simple vista, este hito es atribuido al matemático ingles Robert Hooke (1635-1703) quien en 1665 publica su más importante obra denominada “Macrographia” donde describe 50 observaciones microscópicas apoyando mediante gráficas sus investigaciones, quizá la observación que lo catapultó al reconocimiento científico de la época, fueron las células que observó al realizar un corte en forma de lámina de un corcho, dándose cuenta que existían una especie de celdas entre sí a manera de un panal, a estas cavidades Hook denominó “Células”, sin embargo no logró determinar lo que estas celdas significaban en torno a los seres vivos así lo menciona (Terán, 2016).

 Años más tarde, el holandés Antoni van Leeuwenhoek siendo tan solo un fabricante de lentes demuestra en el año 1684 la existencia de pequeños microorganismos vivientes aResultado de imagen para leeuwenhoek quienes bautizó como animálculos o animáculos, Leeuwenhoek observó por primera vez espermatozoides, células sanguíneas y baterías; por este hecho es considerado el descubridor del mundo microbiano, sus observaciones se debieron a que él construyó sus propias lentes biconvexas en platinas de latón como muestra la ilustración 2, las muestras eran colocadas sobre la cabeza de un alfiler y sus lentes conseguían un aumento de hasta 300 veces el objetivo así lo afirma (Terán, 2016). Por otro lado, Leeuwenhoek se dedicó a observar el agua de lluvia, mar y ríos, así como también la saliva humana entre otras sustancias convirtiéndolo en un pionero en el descubrimiento de protozoos, glóbulos rojos, capilares, bacterias en agua y diversas formas de espermatozoides de animales, insectos y seres humanos. Parte del trabajo que desarrolló Leeuwenhoek fue demostrar la existencia de los huevos de gorgojo y pulgas en el maíz entre otras gramíneas, es importante mencionar que en el siglo XVII la idea de que los gorgojos aparecieran en harinas y granos era un fenómeno que se atribuía a un acto puramente espontáneo propio del grano. Adicionalmente describió también el ciclo vital de las hormigas demostrando gracias a su microscopio que larvas (pupas) de hormiga provenían de huevos. Dentro del contexto microbiológico Leeuwenhoek clasifica tres tipos de bacterias: Bacilos, Cocos y Espirilos. Su trabajo puede ser estudiado gracias a su mas importante obra el “ARCANA NATURAE DETECTA” (1695).

Resultado de imagen para ARCANA NATURAE DETECTA

Resultado de imagen para ARCANA NATURAE DETECTA

Durante cientos de años la sociedad humana atribuía el aparecimiento de ciertas plagas a factores divinos, de hecho, hasta finales del siglo XVII, se consideraba como cierta la teoría de “Generación espontánea” que trata de dar explicación al origen de la vida, esta teoría defiende que la vida compleja sea animal o vegetal puede surgir de forma espontanea a partir de materia orgánica o inorgánica; esta teoría fue descrita por Aristóteles (384-322 a.C.) arraigándola hasta el siglo XVII. Sin embargo y a finales de ese siglo la controversia sobre lo espontáneo empieza a acrecentarse, primero en 1667 el sacerdote belga, Van Helmont, en su afán de demostrar como cierta, la teoría de la espontaneidad decide hacer un “experimento”, este consistía en reunir en una caja un cúmulo de granos y telas viejas en un determinado sitio, al cabo de 21 días exactos al regresar al sitio encontraba allí ratones. Lo cierto es que jamás cerró la caja y el lugar en donde realizó su experimento no fue hermético, por lo tanto, no era irrefutable su experiencia con respecto a la generación espontánea, un año más tarde en 1668 el italiano Francesco Redi (1626–1697) decide refutar y debatir la teoría de la espontaneidad diseñando un nuevo experimento que puso fin a la creencia ya mencionada, este consistió en colocar trozos de carne en tres contenedores iguales al primero lo dejó descubierto, el segundo lo tapó con corcho y el tercero lo cubrió con un pedazo de tela bien atada, al cabo de algunos días observó que en el primero aparecieron moscas y que habían crecido larvas, en los contenedores 2 y 3 no descubrió larvas ni mocas pero si un olor desagradable por tanto determinó que la carne descompuesta puede anidar larvas de mosca pero al no permitirse el contacto con la misma entre insectos y la muestra ésta no se contamina de larvas ya que no se le permite a la mosca colocar sus huevos en ella. De este modo queda rechazada la teoría de la generación espontánea.

Resultado de imagen para experimento de la carne de francesco redi

Según mención Terán, ya en el siglo XIX y de la mano del brillante francés Luis Pasteur es que la microbiología encuentra sus inicios, este químico y biólogo comenzó investigando procesos de fermentación en vino y cerveza donde determinó que para dicho proceso intervienen irremediablemente bacterias que contribuyen con su metabolismo a la degradación de azúcares permitiendo que estas bebidas se conviertan en alcohólicas como por ejemplo la presencia de la bacteria Saccharomyces cerevisiae,

Resultado de imagen para Saccharomyces cerevisiae
Saccharomyces cerevisiae

quien es la bacteria responsable de la fermentación de la cerveza. Por otro lado su aporte fundamental para la microbiología fue desarrollar una teoría que defiende que todo ser vivo proviene de otro existente bautizando su teoría como “Teoría de los gérmenes” por otro lado la lista de sus investigaciones es grande siendo de entre lo más destacado sus estudios del crecimiento microbiano de levaduras en 1881 introduciendo por primera vez términos como aerobio y anaerobio al mundo de la biología, desarrollo diversas vacunas, en sí es considerado como inventor de las vacunas, estas salvaron incontables vidas, sus vacunas enfrentaron problemas como el ántrax, cólera, gripe aviar y la más importante y famosa de todas la vacuna contra la rabia. Esta ultima tuvo lugar en su propio Instituto Luis Pasteur en Francia (1888) cuando logra identificar a la batería Rhabdoviridae, del niño Joseph Meister de 9 años salvándose con ella su vida. Introduce finalmente terminología como esterilización mediante diversos trabajos y experimentos que conllevan al desarrollo de procesos como la pasteurización de la leche y finalmente aniquila la idea de la teoría de la espontaneidad con su experimento del “matraz de cuello de cisne”. Por todos estos aportes es que a Luis Pasteur se conoce como el padre de la microbiología (2016).

 

Resultado de imagen para luis pasteur

Es importante también mencionar que antes de Pasteur en el año 1798 existe un pequeño evento importante como antecedente a las vacunas y es el descubrimiento de la vacuna contra la viruela desarrollada por Edward Jenner. Posteriormente y gracias a Pasteur diversos médicos en el mundo empezaron a leer sus publicaciones y comenzaron a comprender la importancia de la asepsia en procedimientos médicos y es en 1867 que Joseph Lister quien describe por primera vez principios antisépticos en la cirugía médica. En 1872 gracias al polaco-judío Ferdinand Julius Cohn (1828-1898) es que se propone por primera vez la clasificación de las bacterias por género, especie y variedades, este importante hecho permite que los estudios que se iban dando en la época permitieran tener una primera base de datos sobre las infecciones que podían producirse por géneros y familias de bacterias, adicionalmente aporta describiendo microorganismos patógenos transmitidos por el agua contaminada y su mayor aporte fue el descubrimiento de bacterias resistentes al calor formadoras de endosporas del género bacillus.

En 1881 al simultáneo que Pasteur trabaja con levaduras el alemán Robert Koch se inmiscuye en descubrir métodos de cultivo puros para bacterias. Su legado mas importante son los postulados que llevan su mismo nombre que de manera general sostiene que solo se puede aislar bacterias de individuos contaminados hacia un cultivo puro y que nunca se puede aislar bacterias desde un individuo sano, sin embargo, si se puede contaminar a un individuo sano desde un individuo contagiado, esta práctica la realizó con ratones. Desarrollo el cultivo de bacterias en medios sólidos “agares”, y tinciones para el estudio de bacterias  adicionalmente descubrió el carbunco o ántrax enfermedad proveniente de una bacteria ésta última ha utilizada como arma biológica, en 1882 descubre el bacilar de la tuberculosis y es el primer microbiólogo en lograr aislar dicha bacteria siendo así en 1905 gana el premio Nobel de Medicina (Terán, 2016).

Resultado de imagen para postulados de koch

Un factor preponderante de los medios de cultivo es que básicamente ya se habían desarrollado pero no existía un instrumento adecuado para los cultivos así es como en 1877 Richard Petri diseña por primera vez cajas de cristal en forma de circunferencia que permitan realizar los cultivos modificando el cultivo en láminas que desarrolló Koch, de forma conjunta y gracias a sus esposa  Walter Hesse en el mismo año es que se decide emplear el agar de origen vegetal para solidificar medios de cultivo reemplazando las gelatinas de origen animal.

Resultado de imagen para Walter Hesse
Walter y Fanny Hesse

En 1884 se desarrolla un nuevo hito importante y es la tinción coloreada, desarrollada por Christian Gram que consiste en dar colorantes de contraste para identificar bacterias del tipo Gram + o Gram – siendo estas últimas las nocivas, a esta técnica se la denomina en su honor como “Tinción Gram”.  en 1886 Ernest Haeckel (1834-1919) da origen al taxón Monera clasificándolas de acuerdo a su núcleo así nacen dos divisiones: procariotas y eucariotas, ubicando a las bacterias por carecer de núcleo en la división de las procariotas. En 1959 se realiza la división de los 5 reinos vigentes de los seres vivos de la mano del norteamericano Robert Whittaker (1920-1980).

Resultado de imagen para tincion de gram

Finalmente, y de manera conjunta a todos los hechos mencionados anteriormente comienza la microbiología a conformarse como una nueva ciencia dedicada a la comprensión del reino monera, posterior a estos hechos se descubrieron muchas más evidencias microbiológicas así es como en 1889 Martinus Beijerinck introduce el concepto de virus, permitiendo a la microbiología ahondar en un el estudio de la genética microbiana este último científico en 1901 descubre cómo enriquecer medios de cultivo. De este modo la microbiología se convierte en una potente arma contra las enfermedades al servicio de la humanidad y es gracias a ella que en 1901 Karl Landsteiner describe por primera vez la clasificación de los grupos sanguíneos, o que después de 10 años, es decir, en 1911 se descubra por primera vez el cáncer viral determinado por Francis Rous.

Resultado de imagen para grupos sanguineos

La microbiología aportó a la superación de múltiples enfermedades como infecciones que pueden ser combatidas gracias a la penicilina descubierta por Alexander Van Fleming (1929) posterior a ello la microbiología no se detuvo y aportó  significativamente a múltiples áreas del conocimiento permitiéndonos comprender a la vida en macro desde una perspectiva en micro en la actualidad la microbiología apunta al nacimiento de áreas más especializadas en miras a la clonación de proteínas y el desarrollo de enzimas especialidad que comprende la biotecnología  y se encamina también hacia el desarrollo de proyectos más visionarios comprendidos desde la nanotecnología, en resumen esta ciencia promete ser la respuesta las múltiples interrogantes y retos que plantea la sociedad humana del futuro sea desde la biorremediación, la medina, la alimentación o incluso la docencia una docencia que tenga por fin educar a las generaciones futuras sobre la importancia de comprender todo aquello que nos rodea y lograr así modificar patrones culturales que afectan la salud y pueden atentar contra la vida.

Videos Recomendados:

 

Referencias

Terán, R. (2016). Raíces históricas de la Microbiología. En R. Terán, Naturaleza de la microbiología y del mundo microbiano. (págs. 13-32). Quito: Editorial Universitaria .

 

Precursores de la Medicina Latinoamericana (PARTE I: Pedro Leiva)

Resultado de imagen para plutarco naranjoEl presente artículo pretende rendir homenaje a uno de los más brillantes médicos ecuatorianos; el Dr. Plutarco Naranjo (†), quien en 1978 publica en Quito un sencillo pero muy importante artículo denominado: “Precursores de la Medicina Latinoamericana” y con el afán de impedir se pierda en la historia su trabajo, quiero compartir con ustedes mis distinguidos lectores, una breve reseña sobre seis personajes de medicina Latinoamericana que con su trabajo dejaron en claro que el Sur posee a sus propios Hipócrates y Galenos que dieron lustre a la medicina con sus investigaciones, descubrimientos o incluso desde la misma docencia centrando todos sus esfuerzos por el bienestar de los demás. Por otro lado considero que es la oportunidad perfecta de rendir un homenaje a los distintos seguidores de este blog quienes contribuyen día a día con sus visitas, la difusión de contenido académico y que mejor que contribuyendo con pequeñas reseñas bibliográficas de un conjunto a personajes como Carlos Finlay (CUBA), Hipólito Unanue (PERÚ), José M. Vargas (VENEZUELA), José C. Mutis (ESPAÑA-COLOMBIA), Eugenio Espejo (ECUADOR) y Pedro Leiva (ECUADOR) representantes de las ciencias médicas de nuestra América Latina; en esta primera entrega les hablaré de  Pedro Leiva  personaje ecuatoriano que en tiempos de la conquista y colonia contribuyó enormemente a la salud.

 

PEDRO LEIVA (1602?-1660?)

“Los malacatos son relativamente altos y delgados. Cara alargada y facciones afiladas. Hasta hace poco tiempo no acostumbraban a cortarse el pelo sino que lo dejaban largo y suelto, repartido a los dos lados de la cabeza.” La Efigie, es obra del pintos Bolívar Mena Franco.

La recopilación histórica coloca a Pedro Leiva como un importante médico cacique

Resultado de imagen para tribu malacatos
Provincia de Loja-Ecuador

quien posiblemente pertenecería a principios del siglo XVII a la tribu de los Malacatos, ubicada en la provincia de Loja cerca de la ciudad capital, al sur de la región interandina de la República del Ecuador. Los registros históricos no identifican su nombre nativo ni el de sus padres así lo manifiesta Pérez Pimentel. R. (1994).

Pues bien, según la investigación realizada por el Dr. Plutarco Naranjo (†)  en 1978, a la que este artículo hace referencia. Se afirma que ensayó con éxito el tratamiento de las fiebres tercianas es decir, pudo combatir con eficacia la malaria. Esa enfermedad era común en la época y es transmitida por picaduras de insectos, particularmente mosquitos  anofeles , quienes portan el parásito denominado esporozoito, éstos parásitos viajan a través del torrente sanguíneo hasta el hígado, donde maduran y producen otra forma de parásitos, llamada merozoitos. Los parásitos ingresan en el torrente sanguíneo e infectan a los glóbulos rojos.

Imagen relacionada
Árbol de Quina, cascarilla o chinchona

Logró controlar esta enfermedad suministrando a sus pacientes en estado de paludismo maceraciones en chicha (bebida tradicional indígena) de la corteza vegetal  “cara chucchu” que quería decir en su dialecto “corteza de los fríos” esta provenía del árbol que los nativos habían denominado como “yura chucchu” que significa ” árbol para los fríos”; posteriormente en las mismas comunidades asentadas sobre dichos territorios a esa especie vegetal se le conoce actualmente como “cascarilla” o de forma generalizada se le conoce como “árbol de quina” (Cinchona succirubra y otras especies del género Gentianales y familia de las Rubiaceaes).

Name
Cinchona succirubra Pav. ex Klotzsch
Specimen
Mercer, F. – FM23
Short Description
Cinchona
Tomado de: http://www.tropicos.org/Name/27900159

 

Ricardo Palma en su tradición “Los polvos de la Condesa” (1930) menciona lo siguiente: “Un indio de Loja llamado Pedro Leiva, bebió para calmar los ardores de la sed del agua de un remanso, en cuyas orillas crecían unos árboles de quina. Salvado así, hizo la experiencia de dar  a beber a otros enfermos del mismo mal, cántaros de agua en los que depositó cortezas de cascarilla”. Pérez Pimentel. R. (1994).

Pimentel menciona también que hacia principios del siglo XVII la orden religiosa católica Jesuita, empieza a introducirse en territorio lojano, mismos que fundan la población de San Francisco de Borja en 1619. El registro histórico jesuita menciona a Leiva como partícipe de la curación del sacerdote jesuita Juan López  en 1631. Este hecho es de vital importancia dado que el cacique es bautizado con un nombre cristiano de Pedro Leiva, nombre con el cual será conocido por siempre el herbolario de Malacatos perdiéndose en el tiempo su nombre nativo.

Este hecho trascendió fronteras y dogmas sobre el paludismo puesto que el entonces Corregidor de Loja Juan López de Cañizares al enfermar primero intenta salvarse mediante la aplicaciond e protocolos tradicionales de la medicina europea que consistia en repetidas sangrías, purgamientos y sinapismos y al estar al borde de la muerte escucha sobre la curación que esperimento el sacerdote Jesuita quién llevaba curiosamente su mismo nombre y opta por seguir el tratamiento descrito por Leiva quien viaja desde su comunidad hasta la Ciudad de Loja donde da de beber al Corregidor su macerado lo que definitivamente salva a Juan López de Cañizares.

Resultado de imagen para Luis Jerónimo Fernández de Cabrera Bobadilla Cerda y Mendoza
Luis Jerónimo Fernández de Cabrera Bobadilla Cerda y Mendoza (Virrey de Perú)

Posteriormente el sacerdote Jesuita Juan López, viaja hasta la hermana República del Perú, específicamente a Lima con el conocimiento adquirido de Pedro Leiva. Es entonces donde quizás la fórmula de Leiva debe ponerse a prueba. Luis Jerónimo Fernández de Cabrera Bobadilla Cerda y Mendoza; ni más ni menos que el Virrey de Perú, VI Conde de Chinchón; cae terriblemente enfermo de paludismo, su esposa Francisca Henríques de Cabrera pone en manos la salud del Virrey al médico Juan de la Vega quien consulta  a todo herbolario del sector posibles tratamientos para salvar al Virrey sin obtener ningún resultado satisfactorio. Ya casi en el desahucio logran dar con el Padre López en el colegio jesuita de San Pablo el sugiere el tratamiento de Leiva y es así como se devuelve  a la vida al Virrey. Y es desde entonces que los bosques de quina de la provincia de Loja comenzaron a ser explotados con la finalidad de extraer sus cortezas.

En Europa y el cercano Oriente mientras tanto, el problema de la malaria ya era conocida varios siglos antes. Y se sabe que su expansión en América se debió básicamente al periodo de conquista e invasión europea a América. Un dato curioso es que no se ha encontrado vestigios de dicha corteza en ningún cuerpo o tumba ancestral que demuestre su uso fuera de la tribu de Malacatos, por lo que se puede casi asegurar que sólo dicha tribu conocía su importante uso a pesar que esta especie crece en casi toda zona subtropical de América.

El descubrimiento por tanto frenó un conjunto de muertes dado su efectividad frente a la enfermedad que tenía diezmada la población española que iniciaba su proceso de colonización. Con esta importante connotación Pedro Leiva pasa a convertirse en uno de los más grandes benefactores de la humanidad, que a criterio del Dr. Plutarco Naranjo (†) quizás ni el descubrimiento de la penicilina ha salvado de la muerte a tantos millones de pacientes como la quina  y la quinina.

Años más tarde y según diversos archivos históricos, sesudos autores tales como el agustino Fray Antonio de la Calancha y el Dr. Pedro Barba; este último, médicos de la cámara del Rey Felipe IV comenzaron a dar testimonio escrito sobre las importantes propiedades curativas de la quina. Adicionalmente se conoce que años antes el Rey Felipe II encarga a su médico el Dr. Francisco de Hernández, viniese al nuevo mundo a constatar este como muchos otros descubrimientos con respecto a las nuevas especies vegetales descubiertas, dándose a la tarea de recopilar por primera vez todo el folklore médico de las comunidades aborígenes del nuevo continente terminando por elaborar no uno sino varios volúmenes con la descripción de no menos de setecientas plantas de México únicamente, quedando entre abierta la posibilidad de muchas más especies distribuidas a lo largo de Sur América.

Por fin y muchos años más tarde y ya con una América que terminaba sus periodos

Charles Louis Alphonse Laveran
Charles Louis Alphonse Laveran (1845-1922)

coloniales, y se fraguaron los primeros hechos independentistas, es más, cuando ya Repúblicas como el Ecuador  habían nacido; el parisino Charles Louis Alphonse Laveran (1845-1922) hace un importante descubrimiento para la medicina en general y un paso enorme en torno a la microbiología, entre los años  1878-1883 mientras permanecía como médico militar  en Bône (Argelia) en medio de una situación insostenible por las muertes de militares afectados por la malaria decide estudiar la sangre de los afectados, determinando pequeños corpúsculos negros, tras investigar el origen de este pigmento descubre el agente causal de la enfermedad siendo un hematozoario a quien nombró como Haemamoeba laverani. observándolo por primera vez un 26 de octubre de 1880. El Plasmodium malariae, productor del paludismo fue combatido con la quina y su respectivo alcaloide la quinina siendo este el primer medicamento específico y originando también la medicina terapéutica etiológica.

Imagen relacionada
Plasmodium malariae

El nombre de Pedro Leiva quedó perdido en pocos y polvorientos documentos que poco o casi nada mencionan su labor, cosa que no es nada rara, así como no es nada extraño que personajes como el sacerdote Juan López que se atribuyan el descubrimiento de la especie; por esta razón la importancia de rescatar del olvido a este importante personaje, que puede ser considerado como un primer precursor de la medicina latinoamericana. Historias como la de Leiva deben existir en toda nuestra América a la espera de ser salvadas de la ingrata y frágil memoria de los pueblos.

BIBLIOGRAFÍA

  • Naranjo Plutarco. (1978) Precursores de la Medicina Latinoamericana. Academia de Medicina del Ecuador. Editorial Universitaria. Quito-Ecuador.
  • Pérez P. Rodolfo. (1994) Diccionario Bibliográfico del Ecuador. Tomo VI. pp 186-187. Imprenta de la Universidad de Guayaquil. Guayaquil-Ecuador.