Archivo de la categoría: Curiosidades

Datos curiosos de la Química. (Parte VI. 41-45)ESPECIAL NOMBRES CURIOSOS 2

Alejandro Alfredo Aguirre Flores.

TODOS LOS DERECHOS RESERVADOS © Copyright 2019

     En la entrega anterior se habló de nombres muy curiosos para algunas sustancias químicas de naturaleza bastante peculiar, por lo que antes de iniciar los invito a visitar la primera parte de este especial en el siguiente enlace: Datos curiosos de la Química. (Parte V. 36-40) ESPECIAL DE NOMBRES CURIOSOS. Bienvenidos.

41.- OROPIMENTE

El oropimente es un mineral bastante raro del arsénico y se presenta con la fórmula As2S3, su color se constituye como un verdadero atractivo para la vista, presenta tonalidades amarillentas y doradas. Algunos historiadores en química sostienen que fue Alberto Magno el primero en aislar arsénico a partir de este mineral en el siglo XIII [1], aunque en la actualidad se Considera descartada dicha posibilidad. Lo cierto es que Plinio el Viejo es el primero en citar al oropimente denominándole “auri pigmentum” (pigmento dorado) por su semejanza al oro. Lo curioso del oropimente, es que en repetidas ocasiones era confundido por oro propiamente dicho, otros alquimistas en la edad media lo confundían por cobre y lo que llama la atención es que la bibliografía menciona que dichos alquimistas esperaban obtener plata de este curioso mineral, para lo que procedían a quemarlo en el aire de modo que se producía anhídrido arsenioso, un toxico tan poderoso que terminaba matándolos.

Resultado de imagen para oropimente

42.-  FLORES MARCIALES

Este curioso nombre etimológicamente hablando viene de la traducción latina “Flores de Marte”, este curioso nombre se usa para designar al tetracloroferrato (III) de amonio (NH4 FeCl4) dentro de la química de complejos de coordinación, junto con éste todas las sales de hierro que se forman en la soluciones de cloruro de amonio [1]. Las flores marciales amoniacales eran utilizadas como excitantes y emenagogo para preparar algunas aguas y soluciones minerales ferruginosas, por esta razón también era denominado como Muriato de amoniaco ferruginoso.

Resultado de imagen para marte

 

43.- ÁCIDO CÓMICO

Resultado de imagen para commic acid

Un nombre algo alejado de la realidad y que más bien precede de una mala traducción, su nombre original en inglés es el “commic acid” que en realidad debe escribirse ácido commico y al contrario de lo que aparentaría su nombre este compuesto se encuentra dentro de algunas especies vegetales como la Commiphora pyracanthoides, especie perteneciente a la flora africana en Mozambique, esta especie pertenece a la familia de la mirra, y nada tiene que ver con el buen humor, la IUPAC  a su vez no reconoce al “ácido cómico” como un nombre adecuado para este compuesto por lo que se recomienda su correcta escritura.

Resultado de imagen para Commiphora pyracanthoides
Commiphora pyracanthoides subsp. pyracanthoides

44.- ÁLCALI ORINOSO

La mayoría de soluciones acuosas de amoniaco han tomado diversos nombres durante la historia debido principalmente a sus potentes hedores, en el siglo XVIII se les denominaba álcalis orinosos precisamente por la similitud que presenta su olor con el de la orina con el paso del tiempo, se denominaron también “soluciones agrio amoniacales”, “espíritu alcalino volátil” e incluso “espíritu de cuerno de venado”, este último nombre se utilizó en procedimientos que implicaban la destilación de las soluciones con virutas extraídas de los cuernos de estos animales y su potente olor se le atribuía al espíritu del venado macho [1].

Resultado de imagen para cuerno de venado

45.- ANTIPAIN

antipain
Antipain dihydrochloride (C27H44N10O6•2HCl)

No te dejes engañar por su nombre, este compuesto químico no actúa como un inhibidor del dolor como podría creerse a simple vista, en realidad actúa como un inhibidor de proteasa [2] para evitar la degradación de proteínas. Éste es un compuesto altamente tóxico que irónicamente produce dolores muy insoportables al contacto con la piel [1], según la fuente es un oligopéptido que se aísla a partir de bacterias (actinomicetos o actinobacterias) mismas que producen largos filamentos al crecer, demostrándonos así que la química puede ser muy irónica en sus nombres.

Resultado de imagen para actinomicetos
Actinomicetos, bacterias grampositivas anaeróbicas que se parecen a los hongos.

Referencias

[1]

D. Pleé, «Pontificia Universidad Católica del Perú,» Revista de Química PUCP, vol. 27, nº 1-2, pp. 33-36, 2013.

[2]

Alfa Aesar, «Alfa Aesar by thermo Fisher Scientific,» J63680 Antipain dihydrochloride, 2001. [En línea]. Available: https://www.alfa.com/es/catalog/J63680/. [Último acceso: 18 03 2019].

 

Imagen relacionada

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Datos curiosos de la Química. (Parte V. 36-40) ESPECIAL DE NOMBRES CURIOSOS

Alejandro Alfredo Aguirre Flores. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

En la red existe sin fin de información no verificada y en ocasiones se divulga información falsa con la finalidad de hacer unos cuantos centavos en marketing y publicidad de Internet, pues bien de entre tantas cosas que encontré decidí realizar esta nueva entrega de Datos curiosos de la química donde abordaremos 5 curiosos nombres de sustancias químicas sorprendentes o que quizás no conocías que existían en la realidad. A su vez, si te interesa cualquiera de nuestras anteriores entregas, las puedes encontrar en la siguiente categoría de nuestro blog: Categoría: Curiosidades. BIENVENIDOS

36.- CLITORIACETAL

Resultado de imagen para clitoris

Este peculiar compuesto posee un nombre bastante peculiar, aunque su nombre IUPAC es el 6,11,12a-trihidroxi-2,3,9-trimetoxi-6,6a-dihidrocromeno [3,4-b] cromen-12-ona, no tiene NADA que ver con lo que vuestras mentes podrían llegar a pensar con respecto a una parte especial del órgano reproductor femenino. Según menciona PUBCHEM (2009) el clitoriacetal presenta la siguiente fórmula molecular C 19 H 18 O 9. 

Clitoriacetal.png
CLITORIACETAL

Según la misma fuente la mayoría de patentes registradas para el uso de este compuesto son de uso dermatológico, a su vez este glucósido toma su nombre del género vegetal Clitoria, género perteneciente a la familia de las Fabaceaes con más de 100 registros oficiales de especies de plantas de dicho género según se constato la Base de Datos de Tropicos® perteneciente al Jardín Botánico de Missouri.

37.- CADAVERINA Y PUTRECINA

La cadaverina (C5H14N2), también conocida como 1,5 diaminopentanopentametilenodiaminapentano-1,5-diamina es una diamina biogénica que se obtiene por la descomposición del aminoácido lisina.

Ldc.png

La cadaverina debe su nombre al olor fétido que desprende como propiedad, la cadeverina se encuentra en la materia orgánica en descomposición por tanto es el compuesto responsable del olor a putrefacción.

Resultado de imagen para cadaverina
CADAVERINA

Otro compuesto de similares características es la PUTRESCINA, o putresceína (NH2(CH2)4NH2), más exactamente 1,4-diaminobutano, es una diamina que se crea al pudrirse la carne, dándole además su olor característico. Está relacionada con la cadaverina; ambas se forman por la descomposición de los aminoácidos en organismos vivos y muertos.

Resultado de imagen para cadaverina
Cheilymenia cadaverina (FUNGI) Foto de Aurelio García Blanco TOMADO DE: http://asociacionvallisoletanademicologia.com/wordpress/portfolio/cheilymenia-cadaverina/

La putrescina y cadaverina fue descrito por primera vez en 1885 por el médico Alamán Brieg Ludwig (1849-1919).Su descubridor, dijo: “Llamé a este [compuesto]” putrescina “la palabra latina putresco significa podrido, podrido ” dicha sustancia se origina como producto de la descomposición de la materia orgánica a su vez es sintetizada por algunos tipos de hongos y bacterias.

Resultado de imagen para cadaverina y putrescina

38.- LUCIFERINA

voe02_mayo2014
Brasil— Decenas de pequeños hongos bioluminiscentes brotan en un tronco seco. Sus tallos de color verde brillan a la luz de la luna. Esta especie, Mycena lucentipes, prospera en la madera de los árboles con flor de los bosques lluviosos de Brasil y Puerto Rico. Se ignora si es comestible. Tomado de: https://www.nationalgeographic.com.es/fotografia/visiones-de-la-tierra/hongos-bioluminiscentes_8165

Aunque su nombre parece haber salido del infierno, las luciferinas son moléculas más reales y comunes de lo que usted creería, son una clase de compuestos orgánicos empleados en la obtención de luz en organismos bioluminiscentes (bacterias, hongos y algunos tipos de insectos).  Dicha luz se obtiene mediante procesos catalíticos de la enzima luciferasa reaccionado con el oxígeno en efecto la mayoría de los grupos funcionales removidos de la luciferina liberan energía en forma de luz. El nombre de luciferina está inspirado en Lucifer (del latín lux “luz” y fero “llevar”).

Resultado de imagen para luciferina molecula

Imagen relacionada

39.-  ÁCIDO BOHÉMICO

Resultado de imagen para ACIDO BOHEMIO antibiótico

Esta particular mezcla a pesar de su nombre, no anda divirtiéndose como sugeriría su nombre.  Se trata de una mezcla de compuestos químicos de interés terapéutico en medicina que contiene una serie de moléculas que llevan por nombre los de los personajes principales de la ópera “La Bohème” de Puccini, reconocimiento dado por Donald E. Nettleton y cols con nombres de personajes de La bohème, como marcellomycin (por Marcello), musettamycin (por Musetta), rudolphomycin (por Rodolfo), mimimycin (por Mimí), collinemycin (por Colline), alcindoromycin (por Alcindoro) y schaunardimycin (por el músico Schaunard).

La solución puede estar, me parece, en un artículo que este mismo grupo de investigadores publicó en 1979 en el Journal of the American Chemical Society, sobre la estructura química del complejo del ácido bohémico, en el que proponen el nombre de rednose (rednosa) para un azúcar cíclico de fórmula  C6H8NO3 que forma parte de la molécula de la rudolfomicina, así lo afirma Fernando A. Navarro (2011).

40.- ÁCIDO ANGÉLICO

Resultado de imagen para acido angélico

Este ácido debe su nombre de la planta en la que se encuentra, la Angelica archangelica, misma que pertenece a la familia de las Apiaceaes, según menciona la Base de Datos de Tropicos® perteneciente al Jardín Botánico de Missouri que, a su vez, lo toma de la creencia popular de que es un regalo del arcángel San Gabriel. El ácido angélico fue aislado por primera vez en 1842 por el farmacéutico alemán Ludwig Andreas Buchner y se presenta como un sólido volátil con sabor penetrante y olor ligeramente agrio. Las sales derivadas de este ácido son denominadas angelatos.

REFERENCIAS:

Imagen relacionada

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Leeuwenhoek y el descubrimiento de los microorganismos

 

Alejandro Alfredo Aguirre Flores. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

     La realidad entendida como aquello que acontece de manera verdadera y demostrada termina siendo una verdad irrefutable ante lo que usted mi estimado lector, es capaz de palpar mediante sus sentidos en este mismo instante, puesto que existe (lo que es capaz de observar a simple vista)  en el macrocosmos; sin embargo para ciertos seres vivos que por su extrema pequeñez quedan fuera del alcance del ojo humano, el macrocosmos podría entenderse como un basto espacio lleno potenciales ecosistemas, por ejemplo en este mismo instante si comparamos el ombligo de una persona con el Archipiélago de Galápagos probablemente se encuentren en él más especies de microorganismos que de especies en “Las Islas Encantadas”; estos “seres” fueron denominados como MICROBIOS y partiendo desde su análisis epistemológico esta palabra es una derivación de dos vocablos griegos “mikro”, pequeño y “bio”, vida; entendiéndose por tanto como una pequeña, muy pequeña forma de vida no necesariamente simple como algunos autores mencionan y mucho menos poco importante; verlos no es posible si no mediante un instrumento óptico denominado “microscopio” y es gracias a este importante invento que el estudio de los microbios ha sido posible formando en sí mismo toda una rama de la biología moderna denominada MICROBIOLOGÍA.

Resultado de imagen para gifs microorganismos

En torno a dicho invento, el microscopio compuesto, es un instrumento conformado por dos sistemas de lentes, el uno es denominado sistema de lentes ocular y el segundo sistema como objetivo. Actualmente existen diversos tipos de microscopios más avanzados tales como el electrónico de barrido mismo que siendo capaz de captar imágenes con mayor resolución a nivel tridimensional y con facilidades que permiten obtener imágenes en formatos aptos para distinto software, aunque actualmente los microscopios poseen una  amplia diversidad como muestra la red conceptual siguiente:

Resultado de imagen para tipos de microscopio

Resultado de imagen para tipos de microscopio

De manera general el microscopio compuesto, por ser más asequible y práctico, para el estudio de la microbiología básica o general, permite un aumento suficiente para la apreciación de estructuras microcelulares, de forma análoga existe el microscopio monocular simple formado por un solo lente con radio de curvatura muy pequeño, en consecuencia, una  buena capacidad de aumento, dada su capacidad focal de corto alcance.Resultado de imagen para microscopio compuestoUna de las limitantes que presentó el monocular es que al estar acompañado de una sola lente de gran poder de convergencia según afirmó en 1970 el investigador Norberto J. Palleroni del Departamento de Bacteriología e Inmunología de la Universidad de California, Estados Unidos; los monoculares presentan condiciones de observación pobres y con capacidad de enfoque limitada, por lo que de apoco han empezado a ser considerados como obsoletos, en comparación con el microscopio compuesto capaz de superar estas limitantes mediante a combinación de distintas lentes de diferente poder de convergencia a fin de amplificar y esclarecer la nitidez de las muestras observadas, y es en este punto donde nace la pregunta ¿QUIÉN Y CÓMO HIZO NACER TAN IMPORTANTE INVENTO? Para contestar dicha interrogante es importante introducirnos en un contexto histórico en el cual un hombre brillante tuvo genialidad de observar por primera vez microrganismos, dicho hombre es Antoni van Leeuwenhoek  a continuación su historia.

La genialidad de la obra de Antonie Philips van Leeuwenhoek

Imagen relacionada

     Considerando las diversas vicisitudes antes mencionadas propias del microscopio monocular, los microbios fueron descubiertos con un dispositivo de este tipo y todo fue gracias al holandés Antonie van Leeuwenhoek, quien en pleno siglo XVII construyó sus propios microscopios rudimentarios dado su oficio de fabricante de lentes, utilizó su conocimiento para el diseño de diversas estructuras cristalinas de aumento, que resultaron ser muy eficientes para la época, el trabajo de Leeuwenhoek fue tan magnífico que sus observaciones marcaron un antes y un después en la ciencia del micromundo.

Nacido en Delft, Países Bajos, un 24 de octubre de 1632 fue sin duda el PRIMER ser humano en observar microorganismos (bacterias y protozoarios) cuyas descripciones constituyen una de las obras más notables de las ciencias biológicas, lastimosamente  su trabajo se vio imposibilitado de replicarse dada la dificultad de reproducir las lentes que inventó, algunos investigadores afirman que Leeuwenhoek fue egoísta al no difundir el modo de fabricación de sus lentes, otros como Palleroni defienden su proceder dada la tremenda dificultad de la época para la realización de múltiples dispositivos con las mismas características adicionalmente y considerando la cantidad de tiempo suponemos invirtió en su obra y en la ilustración que realizó de sus observaciones, quizás fueron condiciones que dificultaron la divulgación de sus métodos y técnicas.

Leeuwenhoek queda huérfano de padre (Philips Antonisz van Leeuwenhoek)  a los cinco años, posibilitando a su madre, Margaretha van den Berch, contraer un segundo matrimonio con un hábil pintor llamado Jacob Jansz Molijn, de quien posiblemente aprendió técnicas para la ilustración científica que desarrollará posteriormente.Actualmente es considerado como padre de la biología celular y microbiología. 

Se conoce que Antonie a los 16 años se trasladó hasta la ciudad Holandesa de Amsterdam donde aprendió el oficio de textilero desempeñándose como aprendiz de tratante de telas y finalmente desarrollando diversas tareas hasta llegar a puestos  como cajero y contable, según mencionan Víctor Moreno, María E. Ramírez, Cristian de la Oliva, Estrella Moreno. (2018). Su vida se vio rodeada de tragedias, por ejemplo en 1666 muere su esposa tras haber contraído matrimonio en 1654 con Bárbara de Mey, una de las hijas del dueño de la empresa textilera donde trabajó por seis años, cuatro de sus cinco hijos murieron siendo infantes finalmente en 1671 contrae un segundo matrimonio con Cornelia Swalmius, con quien no tuviera hijos y 23 años más tarde también falleciera.

Imagen relacionada
DELFT-HOLANDA

En 1669 se convirtió en agrimensor (antigua rama de la topografía que consistía en la medición de territorios, terrenos o superficies destinadas para la agricultura), su vida fue definitivamente multifascética ya que en 1679 desempeñó el puesto de inspector y control de calidad en vinos en su poblado, Delft de que nunca saliera, habiendo sido siempre un personaje notable de dicha ciudad.

ANÁLISIS DE LA OBRA DE ANTONIE VAN LEEUWENHOEK

Fuera de la ciudad que lo viera nacer, nada se hubiera sabido de este magnífico hombre de ciencia, si no es porque Leeuwenhoek tuvo una gran habilidad para el manejo de cristales ya que mientras fue fabricante de lentes aprendió el oficio de moler las defectuosas, factor que marcó un antes y un después en la biología; Antonie poseía una gran habilidad en el pulido de lentes pequeñísimas biconvexas; muchos autores mencionan que en realidad Antonie creo dichas lentes como respuesta a su aburrimiento, obviamente cosa que no se a desmentido ya que se conoce el momento exacto en el que Leeuwenhoek creó su microscopio, estas diminutas lentes fueron montadas sobre platinas de latón como muestra la imagen siguiente: 

Imagen relacionada

Pues bien y antes de fantasear con tan fabuloso dispositivo es importante mencionar que la relación de tamaño del mismo era tal que cabía en la palma de una mano, sin embargo éstas al sostenerse muy cerca del ojo humano, al observar a través de ellas se podía apreciar objetos que eran montados sobre la cabeza o soporte similar al de un alfiler, dichas lentes ampliaban las muestras hasta unas 300 veces el tamaño original de las muestras, consiguió de esta forma lentes de entre 70 a 250 aumentos; apreciemos por tanto el tamaño original del dispositivo.

Imagen relacionada
El único instrumento fabricado por el naturalista holandés cuya autenticidad está certificada con técnicas modernas. Este objeto único pasó 300 años en el fondo de un canal en Delft y terminó en las manos de un coleccionista gallego.

Este diminuto dispositivo definió con mayor claridad las muestras que cualquier otro microscopio de la época, muchos importantes investigadores han aclarado que este dispositivo debería ser clasificado como una lupa puesto que sigue el mismo principio de observación.

Se conoce que la técnica utilizada por Antoni era bastante compleja, principalmente porque el montaje de la muestra podía ser un verdadero dolor de cabeza, en el mejor de los casos, de ser sólida era sostenida por la punta de su dispositivo mientras que si fuera una muestra líquida la debía montar sobre una lámina de talco o vidrio. El mérito especial no radica en su habilidad con las lentes sino más bien su técnica de observación y todo lo registrado en ella. Todo ello se conoce gracias al biólogo investigador inglés Clifford Dobell (1886-1949), quien mencionó que la clave del método de observación de Leeuwenhoek reside en la iluminación del campo oscuro, fundamente utilizado hasta la actualidad en los microscopios binoculares y monoculares, dicha iluminación consistía en iluminar lateralmente los objetos dándoles contraste con un fondo oscuro. La iluminación normal consiste en poder observar los objetos oscuros contra un fondo más claro, sin embargo el método de Leeuwenhoek obedece al principio del campo oscuro efecto análogo al efecto Tyndall, de tal manera que objetos muy diminutos pueden verse mientras reflejen la luz.

Resultado de imagen para microscopio de leeuwenhoek

En 1668, realizó importantes descubrimientos en torno a la red de capilares propuesta por el Fisiólogo italiano Marcello Malpighi, ilustre personaje quien descubriese los glóbulos rojos de la sangre y demostrando que son estas células las responsables del color rojo característico de la sangre, esto no se podría haber logrado sin Leeuwenhoek quien realizó observaciones de los capilares de las orejas de los conejos y la membrana intersticial de una pata de una rana, hasta que en 1674 realizara la primera descripción de los glóbulos rojos de la sangre.

Con mérito de sobra, Antonie Van Leeuwenhoek es considerado el fundador de la MICROMETRÍA, ciencia que estudia y mide todo lo observable a través de una lente o microscopio; los investigadores César Urtubia Vicario & Joan Antó i Roca en su artículo titulado: En el 350 aniversario  del nacimiento de Antoni van Leeuwenhoek (y ll.) Su obra.; mencionan un interesante experimento realizado por Leeuwenhoek y con el explican por qué se le considera como padre de la micrometría también: 

Calculó primero la dimensión aproximada de una gota de agua, misma que intentó separar el equivalente a  su centésima parte y la introdujo en un tubo de vidrio transparente mismo que había sido calibrado en unas 25 a 30 gotas. Posteriormente colocó el tubo bajo su microscopio y contó los infusorios (protozoarios) presentes en cada de sus partes, la palabra infusorios actualmente es un término no científico y hoy en día se les da el nombre propio filogenético. Con este dato calculó el número total de microorganismos presentes en la muestra sentando de esta manera el principio moderno de “cámara de recuento” y allí demostrada su incursión en la micrometría.

Resultado de imagen para microorganismos en una gota de agua
GOTA DE AGUA DE MAR AMPLIADA 25 VECES.

Posteriormente al experimento de la gota, observó el agua de lluvia y saliva humana, y en estas muestras encontró lo que llamaría animálculos o infusorios, mismos que actualmente se conocen como protozoos, algas  y bacterias.

Resultado de imagen para animalculos de leeuwenhoek

De esta manera descubrió que existen múltiples aplicaciones de la micrometría, otro experimento que realizó fue calcular el diámetro de un grano de arena gruesa como de 1/30 de pulgada, lo comparó con un grano de arena fino de aproximadamente 1/80 de pulgada y otro de 1/100 de pulgada ¿cuál fue la implicación biológica de este comparativo? pues enorme, dicha comparación permitió a futuro comprender la relación de tamaño entre estructuras inertes con bióticas, por ejemplo haciendo equivalencias descubrió que diámetro de un grano de arena fina con respecto a 2.5 veces el diámetro de un pelo de su barba determinó que el equivalente eran 600 de éstos en su peluca o barba.

Sus observaciones se remontan a la química, desde la cristalografía, Leeuwenhoek  fue el primero en afirmar que los cristales (de sal por ejemplo) vienen dados por un ordenamiento de átomos.

Resultado de imagen para cristales de leeuwenhoek
Cristales de azúcar descritos por Leeuwenhoek.

Las observaciones continuaron y así en 1677 descubrió los ESPERMATOZOOS  de los insectos y espermatozoides de los humanos, se opuso rotundamente a la teoría de generación espontánea casi 150 años antes que Luis Pasteur, demostrando por ejemplo que animales como los gorgojos no surgían espontáneamente de los granos de trigo y arena sino que se desarrollaban a partir de huevos diminutos, examinó también plantas, tejidos musculares, polen, y describió tres tipos de bacterias; bacilos, cocos y espirilos.

Imagen relacionada

Observó también  la constitución de diversos mohos y la morfología de diversas especies de insectos como pulgas, moscas, garrapatas y escarabajos como muestra la ilustración siguiente:

Resultado de imagen para animalculos de leeuwenhoek
PULGA DE LEEUWENHOEK

Por otro lado realizó descripciones de observaciones correspondientes al aparato bucal  y ojos de abejas. Realizó comprobaciones de sus propias deducciones, después de los análisis capilares en las patas de las ranas, complementó sus observaciones con las colas de los renacuajos de las mismas. Se sabe por su obra que observó las diferentes formas que presentaban los espermatozoides de especie a especie y los comparó en morfología.

Resultado de imagen para animalculos de leeuwenhoek
ESPERMATOZOIDES

Realizó y analizó observaciones de células de fermento llegando así al límite de su ampliación de lentes observando así en 1680 levaduras, y cuatro años antes reportó observaciones de gérmenes (microbios) lo que hoy en día se conoce como bacterias, sin embargo y como se mencionó antes, jamás describió el cómo realizó la fabricación de sus lentes.

Por todas estas observaciones exactamente un año después de haber escrito una carta dirigida a la Royal Society se publican por primera vez sus observaciones en las afamadas Philosophical Transactions, revistas de gran renombre en Londres – Inglaterra. En ellas describe los “animálculos” que observó procedentes de una laguna cercana a Delft, seres que hoy en día se clasificarían como protistas. Un 9 de octubre de 1676 describe las observaciones realizadas en 1675 donde afirma haber tinturado el agua de azul lo que pone en manifiesto la necesidad de colorearlos para poder observarlos, principio utilizado hasta la actualidad en microbiología. Adicionalmente describió  comparaciones, movilidad y comportamiento de ciertos protozoarios, en unos de sus artículos menciona: 

“Descubrí más animálculos en el agua de lluvia, así como unos pocos que eran ligeramente más grandes; e imagino que diez centenares de miles de estos animálculos muy diminutos no tenían el tamaño de un grano de arena común. Si se compararan estos animalillos microscópicos con los gusanillos del queso (que podemos distinguir a simple vista cuando se mueven), yo establecería la proporción en los términos siguientes: el tamaño de una abeja respecto al de un cabello, pues la circunferencia de uno de estos pequeños animálculos no es tan grande como el espesor del pelo de un gusanillo”. Antonie Philips van Leeuwenhoek (1676).

Imagen relacionada

Un dato muy curioso es que pensó que el calor o la sensación picante del agua de pimienta era causada por alguno de estos animáculos o alguna estructura que así lo permitiera y evidentemente no encontró nada; dicha suposición no fue tan descabellada como se pensaría en la actualidad puesto que en uno de sus últimos artículos mencionó microorganismos presentes en agua de jengibre, vinagre, clavo de olor y nuez moscada a los que describió como anguilillas con movimientos tipo oscilaciones tal como las anguilas en el agua.

Finalmente la pregunta es: ¿Cuantos dispositivos creó leeuwenhoek?

En 1774, tras la muerte de María la única de los 5 hijos que tuvo, los microscopios fueron subastados, Van Setters (1933) concluye que Leeuwenhoek fabricó al menos QUINIENTOS SESENTA Y SEIS (566) dispositivos, y en otro recuento se afirma fueron 543 de las cuales 26 se fabricaron en plata. Existen autores que mencionan tan solo 419 dispositivos lo cierto es que en la actualidad tan solo se conoce de la existencia de 9 y se sabe que muchas de ellas constituían hasta 270 aumentos. De la fabricación de las mismas no se sabe mucho más que eran pulidas meticulosamente y que debieron haber sido fabricadas mediante una técnica de soplado. 

Imagen relacionada

Los microscopios simples conservados actualmente son seis constituidos en bronces entre los que destacan como propietarios el Museo de la Universidad de Utrecht y el Deutsches Museum de Munich, y otros tres más constituidos en plata uno de los mismos se puede observar en el Museo de Munich antes citado. Uno de los datos más asombrosos es que una de las lentes descubiertas no contiene ni un solo rayón propio de la pulidura del vidrio, puesto que solo en la actualidad mediante técnicas modernas se puede lograr semejante cometido, sin embargo si se han determinado la presencia burbujas en las lentes puesto que Antonie utilizó técnicas de soplado que demuestra su gran habilidad con las mismas su espesor variaba entre los 10-20mm de diámetro. Dadas las condiciones de su fabricación y considerando que el siglo XIX existía una escasa cantidad de microscopios de Leeuwenhoek, Jhon Mayal Jr. secretario de la Royal Microscopical Society, usando el microscopio en posesión de la Universidad de Utrecht realizó tres copias de él, una de ellas guardada en Oxford  y otras dos en Cambridge. 

Resultado de imagen para microscopio de leeuwenhoek  de la Universidad de Utrecht
Imagen de diatomeas obtenida con una lente de Leeuwenhoek en el Museo de la Universidad de Utrecht. Las manchas oscuras las producen burbujas de aire en la lente. Fuente: Fig. 5 en “The microscope in the Dutch Republic: The shaping of discovery”, por Ruestow EG.

Trágicamente Antonie falleció un 26 de agosto de 1723 en su ciudad natal Delft a los 90 años, marcando así un ayer y un mañana en la ciencia microbiológica. El 31 de agosto fue enterrado en la Oude Kerk (Iglesia Vieja) de la ciudad; y quien continuará su legado posteriormente fuera Christiaan Huygens para su propia investigación sobre microscopía mejorando los dispositivos creados por Leeuwenhoek.

COMENTARIO DEL AUTOR:  la información existente sobre Leeuwenhoek difícilmente le hacen justicia a su labor, lastimosamente son muchos los artículos en los que he notado pesimismo, a mi juicio incomprensible, sobre lo que diversos autores consideran como EGOÍSMO o CELO, actitud que no es muy ajena de algunos científicos en la actualidad, sin embargo considero que Leeuwenhoek fue un microbiólogo e ilustrador naturalista nato, que ante las circunstancias propias de la época no podía darse el lujo de utilizar su tiempo para difundir sus métodos a detalle cuando ante sus ojos el mundo microscópico se mostraba amplio y lo suficientemente basto como para ser ignorado, tiempo que invirtió ilustrando y describiendo cada muestra que llegó a sus manos y plasmarlo en sus obras posteriormente publicadas, cosa que no puede ni DEBE ser INVISIBILIZADA por los autores que en su nombre tratamos de interpretar su trabajo, un trabajo asombroso pese a las dificultades de la época; los científicos NO ESTAMOS para emitir JUICIOS DE VALOR a razón del trabajo de grandes pioneros de las ciencias como lo fue Leeuwenhoek, los científicos estamos para construir positivamente los pilares del conocimiento, me atrevo a decir que nuestra actitud debe parecerse a un automóvil 4×4 todo terreno capaces de aportar y brillar con luz propia antes que criticar y opacar el trabajo de grandes mentes como la de Antoni van Leeuwenhoek.

Alejandro Aguirre F. 18/11/2018

https://youtu.be/g7dS0NBsORc 

REFERENCIAS:

  • César Urtubia Vicario & Joan Antó i Roca en su artículo titulado: En el 350 aniversario  del nacimiento de Antoni van Leeuwenhoek (y ll.) Su obra. Tomado de: https://upcommons.upc.edu/bitstream/handle/2117/754/En_el_350_aniversario_del_nacimiento_de_Anton_van_Leeuwenhoek_(II).pdf  
  • Norberto J. Palleroni.(1970) Principios Generales de Microbiología. Departamento de Bacteriología e Inmunología de la Universidad de California (Estados Unidos). Programa Regional de Desarrollo Científico y Tecnológico. Departamento de Asuntos Científicos. Secretaría General de la Organización de Estados Americanos. Washington, D.C. pp. 1-3.

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

La Radiactividad, una herramienta para medir el tiempo

Alejandro Aguirre F. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

El tiempo en definitiva se enmarca dentro de lo más ambiguo de la existencia humana, es de suponerse también sea una gran inconformidad del hombre, porque nunca será suficiente, tanto es que el hombre se ha concentrado en estudiar su transcurrir, se le ha brindado nombre, unidades físicas para conceder formalmente una dimensión existente para explicarlo y aun así la ciencia se encuentra en la tarea de intentar romper sus “límites” casi de una forma irracional buscando evitar lo inevitable. El tiempo ha tenido sin numero de definiciones, la física menciona que el tiempo es una dimensión que representa la sucesión de estados por los que atraviesa la materia y la energía; la definición física moderna menciona:

No hay espacio ni tiempo fuera del límite de tu universo; el tiempo ocurre inexorablemente.

Resultado de imagen para  tiempo

Hasta hace poco, el cálculo de miles de años en el pasado es decir, para  referirnos a espacios de tiempo pertenecientes a la prehistoria e incluso la historia, eran efectuados mediante cálculos esencialmente empíricos que se sostienen únicamente en la habilidad deductiva de los más experimentados paleontólogos. En la actualidad  y gracias a los estudios de la radiactividad, se puede calcular la edad de los fósiles y de los minerales.

Resultado de imagen para paleontologia

El nuevo método consiste en la velocidad de disgregación de los principales elementos radioactivos; en efecto, al determinarse el grado de transformación que uno de éstos elementos experimenta en el periodo de una determinada estructura geológica, es muy posible establecer con gran exactitud cuántos años han transcurrido desde la formación de dicha estructura.

Imagen relacionada

En concreto la transformación de los elementos radioactivos es una especie de reloj  cuyas radiaciones marcan el tiempo desde el instante en que ha nacido el universo.

Imagen relacionada

La ley que rige dichas transformaciones establece que en cada unidad de tiempo la relación de los átomos transformados respecto a los que permanecen invariables es constante.

Resultado de imagen para elementos radiactivos

Si dN es el número de átomos transformados en el tiempo dt, se puede decir que la ecuación diferencial:

dN=L.N.dt

La cual expresa que la cantidad de dN es PROPORCIONAL al número de los átomos N, que aún no se han desintegrado.

L es la constante de desintegración, es decir, la fracción que se transforma en unidad de tiempo t. POsteriormente se integra la ecuación diferencial obteniendo al fin:

ssssss.png

Misma que nos permite obtener el número de los átomos N que aún están con su carda de radioacividad después del tiempo t.

Lo mismo se puede decir en relación con el peso: Nt expresa el peso de la sustancia que subsiste después del tiempo t, y No expresa el peso que existía en el origen.

En el caso del Radio, por ejemplo, L es igual a 1/2200 tomando como unidad de tiempo el año; lo que significa que en un año sobre 2200 átomos de Radio se desintegra UNO SOLO.

Resultado de imagen para radio elemento

La vida media de un átomo, refiriéndonos a la duración de su existencia media tomada en un grupo a partir de un instante cualquiera es la inversa de la constante L; por tanto la vida media del Radio es de 2200 años; esta vida media varía como orden de magnitud entre 1010 años para el Torio y 10-9 segundos para el Torio C`, osea entre límites enormemente grandes.

Resultado de imagen para torio

   Los físicos por su parte hacen todavía una distinción entre “vida media” y el tiempo de reducción del valor medio, llamado PERIODO, durante el cual cierta masa de sustancia se desintegra por mitad para comprenderlo Trevisani propone en 1952 un buen ejemplo:

En el estudio estadístico de la mortalidad humana cuando se consideran v.g. mil individuos de la misma edad, supóngase de 20 años , estos 1000 individuos, a 45 años serán reducidos a la mitad, pero no se puede deducir de aquí que en media, de las 1000 personas vivirían  25 años, porque tal vida media se obtendrían sumando todos los tiempos vividos. Podemos ver que ambos conceptos son distintos. Una análoga diferencia entre vida media y período en los cuerpos radioactivos.

Para la sustancias radioactivas el período es: 0.693/L.

Sea noel número de átomos que existían en el instante de origen del tiempo; n el número de átomos que existen en el momento del cálculo.

Llamamos L a la constante de radioactividad, y t el tiempo:

Tenemos:

n = no*e-Lt

Siendo: n = 1/2 no, de donde ½ = e-Lt  o sea  t =  log 2 /L = 0.693/L.

Así para el Radio el período es aproximadamente de 1600 años.

Para el Radio podemos calcular la constante de desintegración porque se ha llegado a contar directamente el número  de partículas alfa (∝) emitidas por segundo.

En efecto, el número de átomos emitidos de Radio en un tramo es:

AAAAAA

En un segundo son emitidos por gramo 3.71*1010 partículas y luego L para el Radio:

awaw.png

Se deduce la existencia media tomando la inversa de este número y dividiéndolo por el número de segundos tomados en un año. Nos da el período de 1600 años respectivamente.

El tiempo necesario para que una sustancia radioactiva esté en un equilibrio con el elemento que la genera depende de la velocidad de transformación de una y otra sustancia. es decir la emanación Radón se encuentra en equilibrio con el Radio. Después de dos meses cuando se hace iniciar el proceso de generación: el Radio A engendrado de emanación está en completo equilibrio después de cinco días. Esto nos da la posibilidad de encontrar las distintas cantidades de materia radioactiva que se encuentra en otra.

Resultado de imagen para particulas alfa del radio

Es por tanto cierto que la transformación de los elementos de tipo radioactivo sean una especie maravillosa de reloj ultra preciso cuyas radiaciones marcan el tiempo desde el instante en que ha nacido el universo mismo; y si usted es de los que cree en Dios sea en su forma Buda o en el mismo Jesucristo, independientemente y de ser artífice de la creación, seguramente este sea el sofisticado reloj que cuelga de su muñeca (de poseerla).

Los paleontólogos a su vez ya han empezado a apropiarse de este método de medida del tiempo y en todo el mundo se ha procedido a la verificación de los datos y registros fósiles de todo vestigio arqueológico, Según estas determinaciones la evolución del  ser humano habría comenzado sobre la Tierra hace unos 15 millones de años o 25 millones tomando en cuenta el ancestro primate más antiguo, los primeros mamífero y anfibios hace unos 150 y 250 millones de años ha respectivamente.

Resultado de imagen para aparecimiento del hombre cronologicamente

En todo esto existió dificultades grandes, puesto que estas radiaciones tienen una vida que se calcula en millones de años y no se prestan para medir tiempos menores a 1 millón de años.

A la postre cuando se investigó un poco más sobre el Uranio, el Plomo y el Torio 230, éste último que se encuentra frecuentemente en los sustratos geológicos del periodo Plioceno y que tiene un período de radioactividad que dura 186000 años. Con tal procedimiento fue posible se establezca que por ejemplo, el estado glaciar del Polo Sur (ANTÁRTIDA) existe desde hace unos 1100000 años atrás.

Resultado de imagen para origen glacial de la antartida

En siglo pasado las investigaciones al respecto se activaron entorno al descubrimiento de los rayos cósmicos.

Resultado de imagen para rayos cosmicos

Resultado de imagen para rayos cosmicos

Resultado de imagen para Libby, Anderson y ArnoldEfectivamente, fueron los profesores Libby, Anderson y Arnold del Instituto de Física Nuclear de la Universidad de Chicago, demostraron que en la naturaleza junto con el Carbono común (C 12) existe siempre en todas partes pequeñas cantidades de un isótopo radioactivo del mismo elemento (C 14) producido por la acción de los rayos cósmicos sobre el nitrógeno de la atmósfera.

Ing. Javier Trevisani. 1952.

Resultado de imagen para carbono 14

Imagen relacionada

En el aire el Carbono 14 permanece en cantidades constantes porque se va formando tanto como se desintegra, así también el carbono radiactivo penetra y se renueva continuamente aún en el seno de la materia viviente (mediante su alimentación) en contacto con la atmósfera, y se refiere a la materia viviente que es la que pertenece a los seres orgánicos.

A su vez si los seres de los mencionados mueren o son enterrados accidentalmente, entonces el Carbono 14 no puede ya renovarse y comienza su agotamiento radioactivo según las leyes ya antes mencionadas, se sabe que la emanación radioactiva del Carbono 14  se reduce a la mitad después de 5720 años.

Entonces desde el momento que queda enterrada una sustancia orgánica se puede establecer con mucha aproximación la fecha de su muerte dentro de un límite de 25.000 años. El descubrimiento de los profesores, Libby, Arnold, y Anderson  tiene por tanto una gran importancia.

Se ha efectuado múltiples experimentos así por ejemplo se ha examinado un pedazo de ciprés del sarcófago de la tumba egipcia de Neferu (Meydum) y pedazo de acacia de la tumba de Zoser (Sakkara).

Resultado de imagen para Zoser (Sakkara)
Zoser, el magnífico.

Los dos sarcófagos resultaron tener 4800 años, fechas que concuerdan con las de la historia señalada entre 4576 y 4650 respectivamente.

En el Carbono 14 están cifradas muchas esperanzas de la prehistoria y de la historia antigua de todos los continentes, estos descubrimientos ampliaron la información que proporcionan los astrónomos puesto que les permite tener mayo exactitud con la edad de muchos cuerpos celestes impactados con la tierra hace millones de años. En consecuencia permite fijar los cimientos del tiempo mediante la radioactividad porque se habla de las emanaciones radioactivas de un isótopo del Potasio, el denominado Potasio 40 (K40), que con el tiempo se transforma en Calcio y Argón, aun existe mucha información pendiente sobre su desintegración.

Resultado de imagen para Potasio 40

Con todo ello ya podríamos contestar con un poco de aproximación sobre cuál es la edad de nuestro planeta, y casi podríamos afirmar que la Tierra tiene unos 4600 millones de años ± 1%. Esta datación, basada en el decaimiento de hafnio 182 en tungsteno 182, fue determinada por John Rudge, del Departamento de Ciencias de la Tierra de la Universidad de Cambridge, en el año 2010, lo que resulta bastante curioso porque 70 años antes se creía que la edad de la Tierra databa de  unos 2 mil millones cosa que fue desmentida por los avances en el estudio del tungsteno y hafnio.

Imagen relacionada

La física y la química ponen así a disposición de la ciencia una cronología calculada sobre bases rigurosas que  permiten comprender con mayor exactitud la evolución de los distintos acontecimientos sobre y de nuestro globo así como del cosmos entero, un sentido de realidad y seguridad que apenas empieza a comprenderse.

Referencia Bibliográfica

Ing. Javier Trevisani. 1952. La radioactividad en la medición del tiempo. Revista Científica Órgano de la sociedad protectora de investigaciones científicas. Enero-Marzo 1952. Vol. Nº 1. pp. 18-21. Trujillo-Perú.

Imagen relacionada

Si te ha gustado este artículo o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

El enigma de los murciélagos en la ciencia

Alejandro Aguirre F. [1]

[1] Universidad Central del Ecuador-Fac. Ciencias Químicas-Química de Alimentos

TODOS LOS DERECHOS RESERVADOS © Copyright 2018

Hasta principios del siglo pasado no se conocía en lo absoluto que los murciélagos pudiesen transmitir la rabia y más allá de estigmatizar a estas bellas criaturas, considero muy importante socializar y difundir sobre el impacto que pueden tener en la salud humana, de manera particular en zonas rurales de las que se conoce, son hogar de diversas especies de murciélagos. Los primeros casos de rabia transmitida por murciélagos se observaron en zonas sureñas de Brasil a la par se fueron dando a conocer múltiples casos en América Central como México; en Ecuador e incluso Estados Unidos así lo menciona Antonio Molina en su artículo: “Los enigmáticos murciélagos” publicado en la revista AMERICA CLINICA Vol. XLII Núm. 6 (Junio de 1963).

Imagen relacionada

Resultado de imagen para murciélagos infografia

En muchos países del mundo la incidencia de  transmisión de rabia por murciélagos es un verdadero problema de salud pública en especial, en países del continente africano, el del mar Caribe, así como diversas localidades ubicadas en las cuencas del río Amazonas, en el caso específico de México existen casos registrados en las selvas de la península de Yucatán y Chiapas. En el caso concreto del Ecuador aunque la incidencia total de los casos es un tema pendiente para las autoridades de salud, se sabe bien que en la zona litoral, principalmente en localidades ubicadas cerca de manglares como lo son las provincias de Esmeraldas (hasta la frontera con Colombia) y Manabí tienen una amplia posibilidad de registrar casos puesto que en dichos manglares e incluso residencias abandonadas habitan especies de murciélagos transmisores de la rabia.

Resultado de imagen para murciélagos infografia

Sin embargo, y a juicio de Molina es imposible predecir si actualmente la transmisión de rabia llegue a representar un riesgo elevado para la sanidad pública, puesto que hasta ahora no ha sido necesario realizar campañas de exterminio de estos singulares mamíferos, pero sí debe tomarse en cuenta que la mordedura puede ser peligrosa, por lo que se recomienda que los habitantes de las comunidades en donde se han dado, avistamientos o se conozca en concreto su existencia, eviten contacto con los mismos ya que podrían poner en riesgo su salud, reiterando nuevamente que el asunto no es  malignizar o estereotipar a la imagen del murciélago, sino generar conciencia y respeto por las especies que habitan y comparten ecosistemas con nosotros, hay que recordar que los invasores de sus hábitats normalmente somos los seres humanos y que el papel de los murciélagos es fundamental en los ecosistemas, puesto que son los responsables del control de insectos así como también de otras especies de animales y plantas.

Imagen relacionada

Éstos animalitos que para muchos podrían parecer desagradables o a su vez tiernos, no dejan de ser fascinantes y enigmáticos, por siglos su imagen ha sido fuente de superstición y como es sabido, resulta imposible no relacionarlos con Drácula relato del famoso escritor irlandés Bram Stoker, novela publicada en 1897 que resultó ser un clásico de la literatura en el siglo XIX,  y que en lo que a mí respecta como escritor considero que fue un primer abordaje del papel que jugaba la mujer en la época victoriana; entorno a ese personaje (el vampiro) refiere a la tradición literaria un sin número de hechos fantásticos; en el pasado (nos referimos en especial a la Edad Media) se les atribuía poderes sobrenaturales y por esa razón, en más de una ocasión, y de forma irracional, las comunidades se han dedicado a su caza de forma ilegal reduciendo enormemente las poblaciones de murciélagos en estado libre, curiosamente las enfermedades transmitidas por mosquitos y otros insectos aumentaban en zonas en las que se practicaba la caza de estos mamíferos alados.

Imagen relacionada

El orden de los quirópteros al que los murciélagos pertenecen comprende en sí unas 2000 especies, habitan en todo el mundo y como se mencionó anteriormente pueden resultar muy útiles por consumir cantidades enormes de insectos, el único murciélago digno de ser llamado vampiro, por alimentarse de sangre es el americano V. Désmodo (Desmodus rotundus) o vampiro propiamente dicho, especie que inspirara los relatos del Conde Drácula. En los últimos años el murciélago ha sido foco de atención en otro sentido, y ese sentido es la robótica, actualmente diversos desarrolladores tratan de imitar en lo posible la sincronía de vuelo del murciélago y no solo el vuelo sino también su localización por radar, los murciélagos en su mayoría son seres nocturnos, que al tener una visión limitada ,la naturaleza los ha provisto de un sentido de ubicación por efecto magnético y ultrasonido, al ser capaces de decodificar dichas señales magnéticas producidas por la tierra y el sonido extra agudo que son capaces de captar con sus desarrollados oídos, los convierten en grandes cazadores de la noche.

La biotecnología ve en la imitación de estas virtudes una gran puerta de oportunidades para el servicio del hombre, dando una luz de esperanza en el desarrollo de equipos capaces de ayudar a personas no videntes e incluso con deficiencia de audición. Es evidente por tanto que tienen propiedades especiales con respecto a conducta, anatomía y fisiología al ser capaces de volar en plena oscuridad, evitando obstáculos en su recorrido, sin tropezar entre ellos, es una habilidad que los murciélagos no pierden aun cuando estén cegados, factor que no solo inspira a la literatura sino que da pautas para el desarrollo tecnológico que tiende a imitar a la sabia naturaleza.

A continuación un interesante clip que muestra un  robot que imita las habilidades de vuelo del murciélago,  Festo – BionicFlyingFox (English/Deutsch).

En 1920 el fisiólogo inglés Hartridge propuso por primera vez que los murciélagos capturaban a sus presas por medio del sonido, su hipótesis menciona que os murciélagos emiten frecuencias de onda de sonido muy alta, las cuales le capacitan volar con entera seguridad puesto que los ecos que retumban en las superficies le permiten trazar un verdadero mapa mental de los obstáculos presentados al frente cual si se tratase de un proyectil teledirigido.

Esquema de la ecolocalización.
Emisión de ultrasonidos (en rojo) que alcanzan el objeto (en azul) y son reflejados en forma de eco (en verde), volviendo al murciélago, que calcula la distancia (r) en base al tiempo transcurrido entre la emisión y la recepción. La dirección la deducen por la diferencia entre la llegada del eco al oído derecho y al izquierdo.

La frecuencia de los sonidos es de unas 50.000 vibraciones por cada segundo transcurrido, esto se contrasta según menciona Molina, con las 20.000 directamente perceptibles por el ser humano.

El murciélago gigante Vampyrum spectrum abunda en América Central y con alas extendidas  puede llegar a medir 75 cm de longitud; mediante experimentación se ha determinado que puede alcanzar asombrosas velocidades a través de una extensa hilera de alambres verticales y perseguir con exactitud a sus víctimas en completa oscuridad, a su vez al tener los oídos obstruidos el animal queda desorientado incluso  plena luz, así lo afirma Antonio Molina, 1963.

Resultado de imagen para Vampyrum Spectrum

Conforme los murciélagos se acercan a los obstáculos emiten sonidos ultrasónicos en rápida sucesión de unos 30 gritos por segundo. Los sonidos orientadores se producen en su laringe, que según ha determinado la anatomía animal posee más desarrollados sus músculos intrínsecos especialmente los cricotiroideos; con el mismo fin de percibir las señales de alta frecuencia, la naturaleza les ha provisto de un aparato de audición especial.

Para finalizar citaré un comentario acerca de la materia:

“Si los biólogos habrían comprendido una década antes los métodos por los cuales los murciélagos se orientan, ¿no se habría dado más pronto la invención del radar? y ¿no podríamos estar en condiciones de confeccionar los métodos acústicos de auto-orientación para ciegos?” Griffin.(Scientific American).

Comprender la naturaleza nos llevará sin duda a satisfacer y complacer todas las necesidades existentes entorno a la salud, la ciencia y la tecnología; comprenderla es sin duda una tarea muy complicada, más cuando por azar del destino una pequeña rendija entreabierta nos permite conocer tan solo un poco de la misma, estoy seguro de que ese pequeño haz  generará bienestar por generaciones; sin embargo y si continuamos atentando contra ella, es cuestión de tiempo para cuando la naturaleza nos considere innecesarios, por ello mis estimados lectores comprometámonos día a día a cuidar este nuestro único hogar y a todo cuanto habita en él.

REFERENCIAS

Antonio Molina. (Junio de 1963) “LOS ENIGMÁTICOS MURCIÉLAGOS”. América Clínica. Vol XLII. Núm. 6. pp. 302-304.

Resultado de imagen para gif murciélago

Si te ha gustado este artículo o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Datos curiosos de la química (Parte IV. 31-35)

31.- IMPRESIONES PARA CIEGOS: Se sabe lo difícil que resulta la producción de papel o cartulina especial y por presión los puntos salientes o en relieve para que las personas con discapacidad para observar puedan leer en Braille, pensado en dicho problema, las industria química de polímeros así como el diseño de materiales y tintas reinventó el sistema contando en la actualidad con la posibilidad de obtener en el proceso de impresión corriente sustituyendo el toner o tinta corriente por una pasta  de cloruro de polivinilo.

Resultado de imagen para impresiones para ciegos

Resultado de imagen para pasta de cloruro de polivinilo

32.- EL ÁCIDO BUTÍRICO (CH3-CH2-CH2-COOH), es el responsable del sabor rancio de la mantequilla así como su olor algo desagradable en dicho estado. Este ácido se encuentra en múltiples grasas en pequeñas cantidades, es el resultado de la fermentación de los carbohidratos por los microorganismos del rumen (microorganismos presentes en algunos rumiantes). Su concentración va en aumento cuando la mantequilla se va volviendo rancia lo que le da su olor característico con otros elementos al formar butirina (triglicérido presente en las mantecas, éster formado por el ácido butírico y el glicerol). El ácido butírico fue observado por primera vez en forma impura en 1814 por el químico francés Michel Eugène Chevreul.

Resultado de imagen para acido butirico

Resultado de imagen para mantequilla

Resultado de imagen para acido butirico

33.- LA MIOGLOBINA, es el pigmento responsable de dar color a la carne roja. En

Myoglobin.png
MIOGLOBINA

química la mioglobina es una hemoproteína muscular que en estructura y funcionalidad es parecida a la hemoglobina. Es una proteína relativamente pequeña constituida por una cadena polipeptídica de 153 residuos aminoácidos y por un grupo hemo que contiene  un heteroátomo de hierro, es decir, la carne de un animal más viejo será más oscura por la oxidación del hierro presente en esta proteína y por que con la edad su producción natural decrece. Las mayores concentraciones de mioglobina se encuentran en el músculo esquelético y en el músculo cardíaco, donde se requieren grandes cantidades de O2 para satisfacer la demanda energética de las contracciones.

 

La mioglobina fue la primera proteína cuya estructura tridimensional se determinó experimentalmente. En 1958, John Kendrew y sus colegas determinaron la estructura de la mioglobina empleando cristalografía de rayos X de alta resolución. Por este descubrimiento, John Kendrew obtuvo en 1962 el Premio Nobel de Química, compartido con Max Perutz.

 34.- EL TOLUENO, es un importante derivado del benceno, normalmente es usado como Resultado de imagen para TOLUENOdisolvente si bien es cierto su nombre IUPAC es el metilbenceno, ¿por qué se llama tolueno? Pues bien el tolueno toma su nombre del árbol Myroxylon balsamum, éste árbol produce como resina el famoso Bálsamo de TOLÚ, del cual Henri Etienne Sainte-Claire Deville lo obtuvo por primera vez en 1844 mediante destilación seca.

Resultado de imagen para balsamo de tolu

Resultado de imagen para balsamo de tolu

La resina, tanto en hojas como en frutos, ha sido tradicionalmente usada desde tiempos prehispánicos por la gente de Colombia, Venezuela y América Central para mejorar tos y asma, o tratar heridas. Los aborígenes también usaron esta resina para el embalsamamiento. En la medicina es usado como expectorante, estimulante, antiséptico, sustancia corredora en los jarabes para la tos, combate catarros,gripes laringitis, reumatismo, bronquitis y demás enfermedades respiratorias por ello dicho bálsamo se encuentra registrado en la Farmacopea. Se conoce adicionalmente que se emplea para el tratamiento de enfermedades venéreas, sarna, diarrea, cólera y tuberculosis, actúa como fungicida, antibacterial, cicatrizante, antihelmíntico, antigonorreico y antisifilítico. En el campo alimenticio se emplea como goma de mascar (chicle) y como su saborizante en diversos alimentos y bebidas. En el campo cosmético también es empleado en la síntesis y elaboración de lociones, perfumes, ungüentos, jabones, detergentes y desodorantes. Es causa de dermatitis de contacto, una forma de alergia de la piel, en personas sensibles.

35.- EL HELIO, es menos denso que el aire (unas 7 veces), por lo que ofrece menos resistencia a la vibración. Como resultado las cuerdas vocales vibran con mayor rapidez y las ondas sonoras se desplazan con mayor velocidad ofreciendo unas notas más agudas, dando como resultado que tu voz suena muy graciosa, sin embargo se recomienda cautela, pues puede quedar sin oxígeno suficiente y colapsar por falta del mismo a pesar de no ser tóxico puede resultar peligroso.. ¿cómo se descubrió? Durante un eclipse solar en 1868, el astrónomo francés Pierre Janssen observó una línea espectral amarilla en la luz solar que hasta ese momento era desconocida. Norman Lockyer observó el mismo eclipse y propuso que dicha línea era producida por un nuevo elemento, al cual llamó helio.

Resultado de imagen para helio

Les dejo un video buenisimo! de dicho experimento!!!

 

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Datos curiosos de la química (Parte III. 16-30)

Las personas conocemos muchas sustancias químicas por sus nombres comunes o comerciales, a otras sustancias las conocemos por sus usos prácticos así por ejemplo:

Resultado de imagen para bicarbonato de sodio16.- El bicarbonato de sodio (NaHCO3) lo conocemos como polvo para hornear en todo lo que tiene que ver con panificación y repostería sin embargo  y como un tip, puede ser utilizado para eliminar malos olores de su refrigerador!

17.-  La sal común que utilizamos en la comida a diario es el Cloruro de Sodio (NaCl) y a su vez el azúcar es ni más ni menos que la sacarosa (C12H22O11).

Resultado de imagen para sal y azucar

18.- El vinagre es el ácido acético (CH3COOH), y su uso es universal en la cocina, ya que sirve de aderezo para ensaladas, sin embargo, se sabe que suele ser empleado para ciertas practicas de aseo y limpieza.

Resultado de imagen para acido acetico
Ácido acético o etanoico.

19.- La “Cal Viva”, es el óxido de calcio (CaO), que se utiliza para blanquear las fachadas y para la elaboración del cemento…etc.

Imagen relacionada

20.- Los elastómeros se caracterizan por su elasticidad y resistencia a los agentes químicos y al calor. Las fuerzas intermoleculares suelen ser débiles. Por su semejanza estructural con el caucho natural se denominan cauchos sintéticos.

Resultado de imagen para elastomeros

21.- Las Fibras, utilizadas como material textil reemplazando o complementando a las fibras naturales como el algodón, lana o seda. Se caracterizan por tener buenas propiedades que no todas las fibras naturales son capaces de conceder, por ejemplo presentan mayor resistencia a la tracción y a la formación de arrugas así como resisten con mayor eficiencia el desgaste, pueden presentar mayor ligereza, poca absorción de la humedad… entre otras más.

Resultado de imagen para fibras sintéticas

22.- la mezcla de gasolina y aire constituye el inicio de una importante reacción de combustión capaz de producir energía para la movilidad de vehículos principalmente, esta mezcla debe comprimirse en el motor antes que una chispa de la bujía provoque su explosión. Si la combustión explota en el interior del cilindro antes de que los pistones hayan acabado  su recorrido, se dice que se ha detonado. Esto origina una pérdida de potencia y es muy perjudicial para el motor.

Resultado de imagen para combustion de la gasolina en el motor gif

23.- La química orgánica estudia los compuestos que contienen carbono. Lo curioso: hoy en día se conocen alrededor de unos 2 MILLONES  de compuestos frente a unos 123 MILLONES que NO CONTIENEN CARBONO.

Resultado de imagen para quimica orgánica

24.- Con respecto a algunos alquinos, pueden encontrarse en algunos medicamentos, los llamados “citostáticos” y suelen ser empleados en personas que sufren de cáncer.

Resultado de imagen para citostaticos

25.- CRAQUEO: este procedimiento, de gran importancia en la industria petroleoquímica consiste en transformar los alcanos superiores en alquenos y alcanos de menos masa molecular.

Resultado de imagen para craqueo de petroleo gif

26.- Los alquinos pueden utilizarse en la síntesis de polímeros, semiconductores,  con propiedades parecidas al silicio, pero elásticos.

Resultado de imagen para alquinos usos

27.- Los cicloalquenos se utilizan para la generación de polímeros en medicina y odontología como materiales de relleno de las piezas dentales.

Resultado de imagen para odontologo

28.- El acetileno se emplea como materia  prima para la obtención de ácido acético y fabricación de monómeros que suelen ser utilizados en el proceso de fabricación de cauchos sintéticos y plásticos.

Resultado de imagen para cauchos sintéticos

29.- El grado alcohólico de algunas bebidas populares oscila en los siguientes rangos:

TIPO DE BEBIDA

CONCENTRACIÓN ALCOHÓLICA

TEQUILA 50-60%
WHISKY Y VODKA 40-50%
AGUARDIENTE 25-35%
VINO 8-12%
CERVEZA COMÚN (NACIONAL E IMPORTADA) 4-14%

30.- Debido al par de electrones libres del nitrógeno, las aminas tienen alta reactividad. También forman parte de diversos sistemas bioquímicos formando aminoácidos, proteínas, alcaloides y vitaminas. Son utilizados en la industria farmacéutica para la síntesis de analgésicos locales. Un derivado de las aminas es la penicilina.

Imagen relacionada

Datos curiosos de la química (Parte II. 11-15)

Edición especial: Envenenamientos, muertes e intentos de asesinato.

Continuando con esta pequeña recopilación de curiosidades químicas he decido compartir con ustedes algunas interesantes formas de morir por ingesta de sustancias químicas, esta entrada forma parte de una meta personal de entregar a ustedes 100 datos curiosos que involucren la química, pues bien, esta entrada es una edición especial dado su contexto; espero que la disfruten.

11.- ENVENENAMIENTO CON CIANURO: (Tiempo estimado para el deceso 1 minuto)

     La muerte por cianuro es una muerte muy dolorosa. Sólo 50 mg (miligramos) de este potente veneno produce parálisis respiratoria al actuar sobre el aparato respiratorio. El diafragma se agita sin control produciendo convulsiones finalmente a la víctima se le dilatan las pupilas justo antes de sentir un paro cardíaco.

La muerte de los Hitler

Eva Braun, esposa de Adolf Hitler, recurrió al envenenamiento con cianuro a manera de ÁCIDO PRÚSICO [H-C≡N(g)] (ácido cianhídrico), un 30 de abril de 1945, al mismo tiempo sucedió el suicidio de su esposo, quien murió de un disparo en la sien derecha, ambos cadáveres yacían tendidos en las escaleras de un búnker por la salida de emergencia hacia el jardín situado detrás de la Cancillería del Reich, donde fueron parcialmente incinerados, dicho evento sucedió en la  ciudad de Berlín, cuando  Braun apenas tenía 33 años.

12.- ENVENENAMIENTO POR INGESTA DE CICUTA (Conium maculatum L.)

     La cicuta (Conium maculatum) es una especie botánica de planta con flor herbácea de la familia de las apiáceas, dentro de ésta, perteneciente al género Conium. Es un potente veneno. Los antiguos griegos utilizaban esta planta para ejecutar a los condenados a muerte. La cicuta pasó a la historia gracias a Sócrates, ilustre personaje que perdió la vida bebiendo una infusión de esta planta venenosa. Juzgado por no reconocer a los dioses atenienses y por, supuestamente, corromper a la juventud, el gran filósofo griego fue condenado a morir ingiriendo el potente veneno.

Resultado de imagen para muerte de socrates

La fitoquímica detrás de esta planta comprende la presencia de alcaloides desde la raíz hasta la punta de sus hojas; entre los que se destacan glucósidos flavónicos y cumarínicos, un único aceite esencial, además de la CONICEINA y la CONIÍNA, siendo estos dos últimos los factores de más alta toxicidad, esta última suele ser llamaba como  conina, conicina o cicutina, ésta es una neurotoxina que inhibe el funcionamiento del sistema nervioso central y es la causante del denominado “Cicutismo”, los efectos de la toxina son similares al curare. Sin embargo, la cicuta en sí misma no es peligrosa: sólo la dosis decide si una sustancia inocua puede resultar tóxica, alucinógena o medicinal en función de la cantidad empleada, cuando se habla de las propiedades de las plantas siempre se las relaciona con sus ventajas medicinales sin embargo la historia demuestra que el poder tóxico de algunas especies han sido ligado al hombre, bien como veneno, bien como alucinógeno.

Resultado de imagen para cicutina
Cicutina (C8H17N)

Imagen relacionada

13.- RADIACIÓN CON POLONIO (210)

[foto de la noticia]     El Polonio [Po], es el elemento número 84 de la tabla periódica es altamente radioactivo y se encuentra presente en la naturaleza. Su descubrimiento se remonta a 1898 gracias a los esposos Pierre y Marie Curie, quienes lograron extraerlo de la uranita o pechblenda. Se ha determinado que existen alrededor de 27 isótopos de polonio con masas atómicas que van desde 192 a 218; siendo el 210, el único que se encuentra de en la naturaleza y resulta ser un elemento muy difícil de manipular. En la actualidad el uso más común es ser empleado en centrales nucleares y en temas de investigación. En la vida cotidiana y en cantidades muy pequeñas suele estar presente en técnicas de fotografía y en cigarrillos.

En forma de óxido éste se presenta como un polvo rojizo no observable para el ser humano, común en entornos industriales y centrales nucleares.

Tan solo MEDIO (1/2) miligramo (mg) bastaría para considerarse como dosis mortal por efectos de la radiación. Considérese que su manejo implica cámaras y equipo de protección de plomo en ambientes especiales. Cuando una persona ha sido contaminada por ingesta de la sustancia en concreto, no hay nada que se pueda hacer, su muerte es inevitable, si su exposición fue superficial, se procede a “secuestrar ” por medio de quelantes hasta que quede libre del mismo. La KGB, entre otras organizaciones han utilizado al polonio desde su descubrimiento como un potente veneno capaz de producir la muerte con alto sufrimiento y de manera lenta dado que resulta indetectable ante los sentidos.

La controversial muerte de Alexandder Litvinenko

Alexandder Valterovic Litvinenko, era quizás el último espía (agente) de la KGB, su extraña muerte fue foco de controversia en especial en el ámbito político salpicando dudas sobre el gobierno de Vladimir Putin. Más allá de la controversia llama la atención su muerte, Litvinenko pasó de la KGB al servicio de inteligencia del Reino Unido (MI6), diversas fuentes señalan al mandatario como autor mediato del hecho, incluso señalan a su muerte como un objetivo que perseguía la SFS (Servicio Federal de Seguridad ruso). Su muerte se produjo posiblemente tras liberarse una fragancia al abrir su paraguas  o bebida preferida que pudieron haber servido como vehículo del veneno, (Polonio 210). Muchos pueden preguntarse ¿cómo una sustancia de este tipo pudo haber sido ingerida tan fácilmente? pues bien, Lo pudo ingerir en una comida o bebida que estuviera lo suficientemente salada o azucarada como para no percibir variaciones en el sabor. También pudo haber fumado un cigarro impregnado en polonio 210. Otra opción sería la inyección pero Litvinenko se habría dado cuenta.

https://twitter.com/Mundo_ECpe/status/690191567202717700/photo/1

14.- ENVENENAMIENTO CON ÁCIDO RICINOLEICO 

     La especie de vegetal Ricinus communis L. o ricino es una planta muy común en la región americana, recibe nombres comunes como jiguerilla, higuerilla, higrillo, castor oil plant o arand (Pakistán); es una especie de tipo arborescente cuyos frutos crecen en forma de cápsulas espinosas en su interior se alojan sus semillas con manchas marrones, esta planta familia de las Euphorbiaceaes, su uso industrial tiene a la fabricación de hilos con su resina y la extracción de aceite de ricino comercialmente suele denominarse como (aceite de castor), éste es tóxico y su uso también suele ser industrial.

Su semilla marmórea contiene un aceite viscoso y algo insípido (aunque dependiendo de la variedad de la especie puede presentar un sabor desagradable), su aceite (aceite recinoleico) actúa sobre la mucosa intestinal y acelera el peristaltismo (movimientos de los intestinos-retortijones) del 100% de las semillas, entre el 50% y 85%  constituyen aceites el resto de sus componentes son albuminoides entre los que se encuentra la ricina, esta proteína se considera como uno de los componentes más altamente tóxicos existentes conocidos por el hombre, la dosis potencialmente MORTAL va de 3 a 8 semillas. Sin embargo la intoxicación depende de la forma de ingestión:

INTOXICACIÓN MÁXIMA: o envenenamiento si se mastican.

INTOXICACIÓN MÍNIMA: o nula si se traga entera.

La vía de eliminación de la toxina es por vía urinaria,los síntomas son: somnolencia,

Estructura de la ricina. La cadena A se muestra en azul y la cadena B en anaranjado.

náuseas, vómito, gastroenteritis hemorrágica, dolor abdominal, daño renal y hepático, hemólisis, convulsiones, coma, hipotensión, depresión respiratoria y shock. El tiempo de latencia entre la ingesta y los síntomas suele ser de 2 a 10 horas.

Químicamente la ricina se considera como una fitotoxina por su origen, con actividad citotóxica, su efecto tóxico fue descubierto por  Stillmark en 1888, allí se observó que la toxina aglutinaba las células sanguíneas por un efecto producido por tan solo el 5% de la semilla que contiene en peso ricina y aglutinina (RCA).

Estructuralmente la ricina se compone por dos cadenas una cadena A (RTA), unida por un puente disulfuro a una cadena B (RTB); este puente entre ambas cadenas se establece mediante dos cisteínas. Esta proteína  forma parte del grupo de proteínas inactivadoras de ribosomas (RIPs) de tipo 2, que se caracterizan por presentar dos cadenas polipeptídicas: una capaz de inhibir la síntesis de proteínas y otra con propiedades de lectina, es decir, capaz de unirse a hidratos de carbono.

Fuente: Romanos A. Intoxicación por semillas de Ricino. Rev Toxicol Esp, 1 (1983), pp. 30-31

INTENTO DE ENVENENAMIENTO AL PRESIDENTE BARACK OBAMA

Las autoridades de inteligencia del entonces presidente de Estados Unidos, Barack Obama informaron en 2013, que a su despacho llegó un sobre impregnado de ricino, sustancia mortal, el Servicio de Inteligencia Norteamericano calificó al hecho como un atentado en contra de la integridad del entonces mandatario y de uno de sus senadores el republicano Roger Wicker así lo afirmó el Departamento de Justicia mediante un comunicado donde expresó cómo se llevó a cabo la captura del sospechoso implicado  Paul Kevin Curtis, un imitador de Elvis Presley, arrestado por el FBI quien se cree fue el responsable del envió de tres sobres tipo carta enviados mediante el servicio postal. Las cartas llevaban el mensaje: “Soy KC y apruebo esto mensaje” este hecho se suscitó en 2013 mismo año cuando el tema se volvió más polémico dado que el intento de asesinato se repitió, pero esta vez con la actriz Shannon Guess Richardson, quien envió cartas que estaban también impregnadas de ricino, la actora de la afamada serie “The Walking Dead” inicialmente culpò a su esposo de hacerlo sin embargo, tiempo después se declaró culpable, las cartas contenían el mensaje:

“Lo que hay en esta carta no es nada comprado. Lo he reservado para usted, señor presidente.

“Tendrás que matarme a mí y a mi familia antes de que entregue mis armas. Quien quiera venir a mi casa recibirá un disparo en la cara”.

La actriz de entonces 36 años hoy enfrenta una sentencia por 18 años de prisión y una fianza de 367.000 $.

 

15.- ENVENENAMIENTO POR ARSÉNICO

     A la intoxicación por arsénico se le conoce como arsenicosis o arsenismo, y seResultado de imagen para arsina entiende como un conjunto de alteraciones en la salud, es decir es potencialmente peligroso para el ser humano, su origen puede derivarse de compuestos de naturaleza orgánica o inorgánica. Este semimetal esta presente en la naturaleza y puede encontrarse en la comida, agua, aire y suelo. Sus efectos son claramente tóxicos y dependen del origen del mismo que puede ser inorgánico, orgánico o gas a manera de arsina; suele depender también de su valencia: trivalente como el caso del arsenito, pentavalente como el caso del arseniato o arsénico elemental.

Ordenando los niveles de toxicidad de mayor a menor las diferentes formas del arsénico pueden organizarse de la siguiente forma:

  • Gas arsina (arsano) (muy tóxico, letal).
  • Compuestos inorgánicos trivalentes.
  • Compuestos orgánicos trivalentes.
  • Compuestos inorgánicos pentavalentes.
  • Compuestos orgánicos pentavalentes.
  • Arsénico elemental (prácticamente sin efectos).

Un dato curioso, en ciertos países del mundo el gas arsina es utilizado por las fuerzas policiales y militares como herramienta anti motines o para dispersar manifestantes por tanto la exposición al mismo puede ser muy perjudicial, este se presenta de color rojizo.

Resultado de imagen para gas arsina
ESE GAS ROSA-NARANJA ES ARSINA (COMPUESTO DE ARSÉNICO) TOXICO Y CARCINOGÉNICO.

Toxicidad:

Sustancia Química Toxicidad Efectos, síntomas o consecuencias
Arsénico inorgánico ALTA

*Cantidades elevadas: síntomas gastrointestinales, alteraciones en las funciones cardiovascular y neurológica y eventualmente la muerte.

*Alteraciones: depresión de la médula ósea, hemólisis, hepatomegalia, melanosis, polineuropatía y encefalopatía.

*Por exposición en cantidades menores: trastornos dermatológicos, neuropatía periférica, encefalopatía, bronquitis, fibrosis pulmonar, hepatoesplenomegalia, hipertensión portal, enfermedad vascular periférica («síndrome del pie negro»), aterosclerosis, cáncer y diabetes mellitus.

Arsénico orgánico MEDIA Y BAJA

*Compuestos que presentan toxicidad: ácido monometil arsénico (MMA) y sus sales, el ácido dimetilarsínico (DMA) y sus sales, y la roxarsona. La arsenobetaina y la arsenocolina son compuestos orgánicos frecuentemente presente en los peces y de bajo grado de toxicidad. Todos con efectos parecidos a los descritos anteriormente en los inorgánicos.

Napoleón: arsénico por accidente (o no)

La causa de la muerte de Napoleón Bonaparte (1769-1821) en su destierro de la isla de Santa Elena sigue generando controversia. Oficialmente se trató de un cáncer de estómago, pero estudios recientes de muestras de su cabello han revelado un contenido de arsénico muy superior a lo normal. Hay distintas hipótesis: que se envenenó accidentalmente al inhalar el arseniuro de cobre presente en la pintura de su prisión o que se lo suministrara su asistente, el conde de Montholon, siguiendo instrucciones de los ingleses, que querían evitar a toda costa que Napoleón volviese a Francia. Sin embargo su muerte aùn es tema de debate.

Imagen relacionada

Datos curiosos de la química (parte I. 1-10)

Resultado de imagen para COMO SE VE EL AIRE LIQUIDO}1.- El Aire Líquido Existe: efectivamente, el aire al ser un gas mediante procesos físico químicos puede “licuarse” haciendo que presente un cambio de estado a líquido tras ejercerse en él alta presión y temperaturas bajas.  El efecto que se obtiene con ello es que el aire tienda a absorber calor cambiando así su estado. Lo interesante es que presenta un tono azulado.

Resultado de imagen para esmalte dental2.- El Esmalte es la sustancia más dura del cuerpo humano: tomando en cuenta que el ser humano posee 32 piezas dentales y mudó 20 dientes de leche en toda su vida; se sabe que la sustancia con mayor dureza en todo el organismo humano es el esmalte dental, mismo que se compone principalmente por Fosfato de Calcio Cristalino (Ca3(PO4)2). Posicionándose con un valor de 5 en la escala de Mohs en términos de dureza.

3.- ¿Los peces se pueden ahogar? Aunque sea algo paradójico, un pez si puede morirImagen relacionada ahogado ya que en teoría al no poseer un sistema complejo de intercambio gaseoso como los pulmones de un mamífero es la razón del porqué un pez no resiste cambios de presiones de gases en el agua y peor aun fuera de ella, por lo tanto en agua con poco oxígeno disuelto en ella es simplemente causa de ahogamiento de un pez a la par si un pez sale del agua, si vejiga natatoria no resiste el cambio y el excesivo oxígeno termina por hacer colapsar hasta estallar este órgano. Es importante mencionar que existen peces que han desarrollado ciertas ventajas evolutivas con la finalidad de enfrentar este problema  y es así que existen especies en las profundidades que no requieren ingentes cantidades de oxígeno dejándolos desarrollarse en esos ambientes mucho más inhóspitos.

Resultado de imagen para temperatura de fusion del galio

4.- La temperatura de fusión del Galio es menor que la temperatura corporal promedio, por tanto básicamente puedes hacer fundir Galio con tus manos ya que su punto de fusión es de 29.76°C,  si lo sostienes con tus manos, en muy poco tiempo éste empezará literalmente a derretirse.

5.- En aguas contaminadas con detergentes las aves no pueden flotar: curiosamente la mayoría de detergentes poseen en su composición agentes ablandadores del agua,Resultado de imagen para patos nadando tales como el Bórax, estos actúan sobre las moléculas del agua variando la relación de sus componente, haciéndola más blanda y por tanto perdiendo su natural resistencia al rompimiento entre moléculas hidrofóbicas e hidrofílicas haciendo que el plumaje de aves normalmente impermeable rompa la resistencia natural del agua. Lo que en definitiva es un grave riesgo para los ecosistemas.

6.- El gas etileno, en algunos vegetales y frutas es responsable de su maduración y posterior deterioro principalmente en cítricos. Se sabe que a niveles bajos es decir, menores a 1 ppm,  se dice que el etileno es fisiológicamente activo, lo que ejerce gran influencia sobre los procesos de maduración y senescencia de las frutas y por tanto influye directamente en la calidad de las mismas.

Resultado de imagen para etileno en frutas

7.- Las bebidas que vienen en polvo, los dulces duros, y las gomas masticables son simplemente derivados de la azúcar granulada. Las gomitas masticables son más que nada almidón. Estas comidas tienden a tener un 98-99% de carbohidratos totales en su composición.

8.- El GLP, (gas licuado de petróleo) por sus siglas, es ni más ni menos que el gasResultado de imagen para gas licuado de petroleo utilizado para la cocción de alimentos en las cocinas tradicionales, sin embargo, este no presenta olor, ni color. El olor que percibimos al existir una ligera fuga del mismo es un aditivo que las refinerías agregan con la finalidad de indicar al usuario que existe una importante fuga, dado que es un compuesto altamente volátil capaz de provocar una explosión.

9.- Es raro saber que la molécula biológica tenga un alquilo, pero no imposible… He aquí un ejemplo. Se han aislado de los microbios (como los actinomicetos) mediante fermentación varios compuestos naturales que contienen alquinos. Entre ellos están las dinemicinas. La dinemicina A contiene dos triples enlaces y un doble enlace en un sistema conjugado, a demás de otros grupos funcionales. estos compuestos tienen una potente actividad antibacteriana y anticancerosa, aunque por desgracia, son quizá demasiado tóxicos hacia los mamíferos para ser agentes farma.

Resultado de imagen para actinomicetos

10.-Si agrandamos la molécula de agua hasta el tamaño de una moneda de 10 centavosuna molécula de ácido nucleico tendría una anchura de 10 centímetros y varios cientos kilómetros de longitud. Ello se debe a que el agua está formada por moléculas simples, de sólo tres átomos cada una. Hay moléculas de tamaños muy variables: las que tienen peso molecular mayor de 10.000 se conocen como macromoléculas. Por ejemplo, la celulosa tiene peso molecular de al menos 570.000. El ADN es una de las macromoléculas más grandes. El ADN de la E. coli, una bacteria común, contiene alrededor de 3 millones de pares de bases: su peso molecular ronda los 1.8000 g/mol.

Resultado de imagen para adn de una bacteria

Teoría Ácido / Base

Cuadro comparativo de las teorías Ácido/Base.

acidobase.pngPropiedades y características de los ácidos y bases.

Según menciona (Características, 2017), los ácidos y las bases son sustancias que existen en la naturaleza que se distinguen por su pH, es decir por su grado de acidez o alcalinidad (basicidad). Sin Embargo, estas sustancias pueden ser corrosivas, a menudo tóxicas, con numerosas aplicaciones industriales y humanas.

  • Los ácidos: son sustancias con pH, inferior a 7, (pH del agua, considerado neutro) en cuya química figuran comúnmente grandes cantidades de iones de hidrógeno (H+) al añadirle agua. Suelen reaccionar ante otras sustancias perdiendo protones.Imagen relacionada
  • Las Bases: son sustancias de pH superior a 7, que en disoluciones acuosas suelen aportar iones de hidroxilo (OH-) al medio. Suelen ser potentes oxidantes, es decir, absorben protones del medio circundante.

La reacción entre ácido y bases se denomina neutralización y elimina más o menos las propiedades de ambos compuestos, produciendo agua y una sal en su lugar. (PUCP, 2011)

Resultado de imagen para PROPIEDADES ACIDO BASE

a) Características de los ácidos y bases

  1. Nombre y nomenclatura:

El nombre de los ácidos proviene del latín acidus, que significa “agrio”; las bases en cambio, denominadas álcalis, obtienen su nombre del árabe Al-Qaly, que traduce “ceniza”. En estos nombres puede observarse cómo el hombre ha lidiado con ellos desde edades antiguas, tratando de discernir unos de otros a partir de sus características.

La nomenclatura de unos y otros, en la química actual, obedece a lo siguiente: los ácidos suelen llamarse como tales: ácido sulfúrico, ácido clorhídrico, etc. dependiendo de los componentes que acompañen al hidrógeno. Las bases, en cambio, suelen llamarse hidroxilos, haciendo alusión a la molécula OH (óxido de hidrógeno) que estos compuestos presentan. (Características, 2017)

  1. Sabor:

Las bases y los ácidos se distinguen fácilmente a través de su sabor. Las primeras tienen un sabor amargo característico, mientras que los ácidos suelen ser agrios, como el ácido cítrico del limón. Algunas bases menos intensas suelen mostrar sabores semejantes al jabón. (Características, 2017)

Resultado de imagen para sabor acido y base

  1. Conductividad Eléctrica:

Tanto ácidos como bases, en disoluciones acuosas, son muy buenos conductores eléctricos. Ello se debe a su capacidad de generar iones cargados eléctricamente. (Características, 2017)

  1. Solubilidad:

Los ácidos y las bases son solubles en agua, en líneas generales. Sin embargo, muchas bases fuertes como la sosa cáustica (NaOH) liberan una enorme cantidad de energía al hacerlo (reacción exotérmica) por lo que su contacto con este líquido es considerado de riesgo inflamable severo. (Características, 2017)

  1. Reactividad:

Como se ha dicho, los ácidos y las bases se distinguen en que los primeros ceden protones mientras que las segundas absorben protones de las sustancias que los acompañen. Esto significa que suelen reaccionar químicamente de maneras distintas ante sustancias como la materia orgánica, aunque en ambos casos el efecto visible sea de corrosión: tanto ácidos como bases pueden causar quemaduras graves a la piel, por ejemplo. (Características, 2017)

  1. Neutralización:

Al juntar una base con un ácido se produce un efecto de neutralización, donde los protones liberados por el ácido son absorbidos por la base, perdiendo ambos parte (o la totalidad) de sus propiedades químicas. Como subproducto de esta reacción se forma agua y algún tipo de sal, dependiendo del ácido y la base involucrados. Es por ello que la sustancia resultante no es agria ni alcalina, sino salada. (Características, 2017)

  1. Estados Físicos:

Tanto ácidos como álcalis pueden hallarse en cualquiera de los tres estados de agregación de la materia: sólidos (en polvo), gaseosos o líquidos. Las formas gaseosas son las de mayor riesgo industrial y humano, ya que a menudo no pueden ser percibidas antes de inhalarse y hacer daños en el sistema respiratorio. (Características, 2017)

  1. Apariencia:

Los ácidos presentan una consistencia aceitosa, mientras que algunas bases pueden tener un tacto jabonoso. Sin embargo, en estado sólido suelen ser más o menos porosos y frágiles, dependiendo de la sustancia específica. Algunos gases ácidos o básicos son incluso visibles a simple vista. (Características, 2017)

  1. Medición:

Para medir el pH de las sustancias se emplea un tipo especial de papel denominado papel tornasol. Existen varias presentaciones de este papel, en varios colores. La reacción ante un ácido y una base suele ser de la siguiente manera:

Ácido. El papel tornasol azul se vuelve rosado, y el de metilo de anaranjado pasa a un color rojo intenso. La fenolftaleína, en cambio, permanece incolora.

Base. El papel tornasol rojo se vuelve azul o verdoso.

A continuación un breve compendio de indicadores con sus respectivos virajes.

Resultado de imagen para indicadores de acido y base

En el enlace siguiente puedes encontrar un artículo de cómo preparar un indicador ácido base casero en base a col o repollo morado: https://manualdaquimica.uol.com.br/experimentos-quimica/indicador-acido-base-com-repolho-roxo.htm

Resultado de imagen para indicadores de acido y base

10. Aplicaciones:

Tanto bases como ácidos tienen numerosas aplicaciones industriales, a saber:

  • Ácidos. Sus propiedades corrosivas son usadas para eliminar la herrumbre y otras impurezas de las sustancias industriales, como los metales, así como en reacciones químicas que permiten la obtención de electricidad, como en el caso de las baterías. Además, forman parte de fertilizantes y son a menudo empleados como catalizadores en reacciones químicas controladas, para obtener productos específicos en laboratorio.
  • Bases. Se emplean a menudo como desecantes o productos para combatir la humedad ambiental, así como sustancias de limpieza y desinfección, tales como el jabón, el cloro de las piscinas, incluso el amoníaco. También se producen como fármacos para contrarrestar la acidez, como el bicarbonato de sodio, o purgantes como la leche de magnesia.

Constante de acidez y basicidad

Al imaginar la composición molecular de una solución de un ácido débil en agua, se piensa en una solución que contiene • moléculas o iones del ácido; pequeñas concentraciones de iones H3O+ y la base conjugada del ácido, y una concentración muy pero muy pequeña de iones OH, que mantienen el equilibrio de autoprotólisis. (Atkins/Jones, 2012)

Constante de ionización de un ácido o Contante de acidez

Todas estas especies se encuentran en un equilibrio dinámico incesante. De manera similar, para una solución de una base débil, se imaginan las moléculas o iones de la base; pequeñas concentraciones de iones OH y el ácido conjugado de la base, y una concentración muy pero muy pequeña de iones H3O+, que mantienen el equilibrio de autoprotólisis. Dado que los ácidos y las bases conjugadas están en equilibrio en solución, podemos utilizar la constante de equilibrio para la transferencia de protón entre el soluto y el solvente como indicador de sus fuerzas  (Atkins/Jones, 2012). Por ejemplo, para el ácido acético en agua,

CH3COOH(aq) + H2O(l) ↔ H3O+(aq) + CH3CO2 (aq)

la constante de equilibrio es:

111.jpgComo las soluciones en consideración están diluidas y el agua es casi pura, la actividad del H2O puede igualarse a 1. La expresión resultante se denomina constante de acidez, Ka. Si se realiza una aproximación adicional reemplazando las actividades de las especies del soluto por los valores numéricos de sus concentraciones molares, se puede escribir la expresión para la constante de acidez del ácido acético como:

112

El valor experimental de Ka a 25 °C para el ácido acético es 1,8 ×10–5. Este valor bajo indica que sólo una pequeña proporción de las moléculas de CH3COOH donan sus protones cuando se disuelven en agua. Aproximadamente 99 de cada 100 moléculas de CH3COOH pueden permanecer intactas en CH3COOH(aq) 1 M (el valor real depende de la concentración del ácido). En general, la constante de acidez para un ácido HA es:

112.png

A continuación se presenta una tabla de constantes de acidez tabulada a 25ºC: tomada de (Atkins/Jones, 2012):

125.png

Constante de ionización de una base o Contante de basicidad

También puede escribirse una constante de equilibrio para el equilibrio de transferencia de protón de una base en agua. Para el amoníaco acuoso, por ejemplo:

NH3(aq) + H2O(l) ↔ NH4+ (aq) + OH(aq)

la constante de equilibrio es:

112

En soluciones diluidas el agua es casi pura y su actividad puede igualarse a 1. Con esta aproximación, se obtiene la constante de basicidad, Kb. Si se hace la aproximación adicional de reemplazar las actividades de las especies del soluto por los valores numéricos de sus concentraciones molares, se puede escribir la expresión para la constante de basicidad del amoniaco como:

112

El valor experimental de Kb a 25 °C para el amoníaco en agua es 1,8 × 10–5. Este valor bajo indica que normalmente sólo una pequeña proporción de las moléculas de NH3 están presentes como NH4+. Los cálculos en el equilibrio muestran que sólo 1 de cada 100 moléculas está protonada en una solución típica En general, la constante de basicidad para una base B en agua es:

112.png

El valor de Kb nos indica cuán lejos continúa la reacción hacia la derecha. Cuanto menor es el valor de Kb más débil es la capacidad de la base para aceptar un protón. (Atkins/Jones, 2012). Las constantes de acidez y de basicidad suelen informarse como sus logaritmos negativos, mediante la definición.

pKa = –log Ka               pKb = –log Kb

Cuando se piensa acerca de las fuerzas de ácidos y bases debiéramos notar que:

  • Cuanto más débil es el ácido mayor es el valor de Ka y mayor el de pKa.
  • Cuanto más débil es la base, mayor es el valor de Kb y mayor el valor de pKb.

La fuerza de un ácido para donar un protón se mide a través de su constante de acidez; la fuerza de una base para aceptar un protón se mide por su constante de basicidad. Cuanto menores son las constantes, más débiles son las fuerzas respectivas. Cuanto mayor es el valor de pK, más débil es el ácido o la base. (Atkins/Jones, 2012)

126.png

Electrolitos y No Electrolitos

Un electrolito es cualquier sustancia que contiene iones libres, los que se comportan como un medio conductor eléctrico. Debido a que generalmente consisten de iones en solución, los electrolitos también son conocidos como soluciones iónicas, pero también son posibles electrolitos fundidos y electrolitos sólidos. El papel que juegan es el de mantener el equilibrio de los fluidos en las células para que éstas funcionen correctamente. Los electrolitos principales son el sodio, el potasio y el cloro, y en una medida menor el calcio, el magnesio y el bicarbonato. (PUCP, 2011)

PRINCIPIOS

Comúnmente, los electrolitos existen como soluciones de ácidos, bases o sales. Más aún, algunos gases puede comportarse como electrolitos bajo condiciones de alta temperatura o baja presión. Las soluciones de electrolitos pueden resultar de la disolución de algunos polímeros biológicos (por ejemplo, ADN, polipéptidos) o sintéticos (por ejemplo, poliestireno sulfonato), en cuyo caso se denominan polielectrólito) y contienen múltiples centros cargados. Las soluciones de electrolitos se forman normalmente cuando una sal se coloca en un solvente tal como el agua, y los componentes individuales se disocian debido a las interacciones entre las moléculas del solvente y el soluto, en un proceso denominado solvatación. Por ejemplo, cuando la sal común, NaCl se coloca en agua, sucede la siguiente reacción:

NaCl(s) → Na+ + Cl

También es posible que las sustancias reaccionen con el agua cuando se les agrega a ella, produciendo iones. Por ejemplo, el dióxido de carbono reacciona con agua para producir una solución que contiene iones hidronio, bicarbonato y carbonato. En términos simples, el electrólito es un material que se disuelve en agua para producir una solución que conduce una corriente eléctrica.

Clasificación de los electrolitos: electrolito fuertes y electrolitos débiles

Los solutos se clasifican a menudo en tres categorías según las conductividades eléctricas de sus soluciones acuosas. Las sustancias que se disuelven como moléculas y que, en consecuencia, dan soluciones no conductoras se clasifican como no electrolitos. Las sustancias que existen en solución acuosa como una mezcla en equilibrio de iones y moléculas reciben el nombre electrolitos débiles. Muchos ácidos son electrolitos y se ionizan parcialmente. Los electrolitos fuertes existen casi exclusivamente en forma de iones en solución acuosa. Se incluyen aquí casi todas las sales neutras. Por ejemplo, NaCl, así como las bases fuertes NaOH, KOH, etc. En disolución, lo iones migran hacia los electrodos de acuerdo con los signos de sus cargas, de aquí que lo iones positivos y negativos reciban nombres de cationes y aniones, respectivamente. Los electrolitos fuertes suelen estar ionizados ya por completo en estado sólido, de tal modo que al disolverlos o fundirlos no se hace más que liberar los iones de las fuerzas que los mantienen fijos en la red cristalina. (PUCP, 2011)

De manera general:

111

1111.jpg

  1. ¿Qué es y cómo medir la constante de equilibrio?

Equilibrio químico es la denominación que se hace a cualquier reacción reversible cuando se observa que las cantidades relativas de dos o más sustancias permanecen constantes, es decir, el equilibrio químico se da cuando la concentración de las especies participantes no cambia, de igual manera, en estado de equilibrio no se observan cambios físicos a medida que transcurre el tiempo; siempre es necesario que exista una reacción química para que exista un equilibrio químico, sin reacción no sería posible. (Gracia Mora, 2015)

Las sustancias originales (las que se transformarán) se denominan reactantes reactivos y las finales se llaman productos. Todos los procesos químicos evolucionan desde los reactantes hasta la formación de productos a una determinada velocidad hasta que la reacción se completa. En ese momento, la velocidad de formación de los productos es igual a la velocidad de descomposición de éstos para formar nuevamente los reactantes de los que proceden.

Desde ese mismo momento las concentraciones de todas las especies reaccionantes (reactantes y productos) permanecen constantes. Ese estado se conoce con el nombre de equilibrio químico.

El equilibrio químico es un estado en el que no se observan cambios visibles en el sistema. Sin embargo, a nivel molecular existe una gran actividad debido a que las moléculas de reactantes siguen produciendo moléculas de productos, y estas a su vez siguen formando moléculas de productos.

Como ya dijimos, cuando se alcanza el equilibrio químico las velocidades de la reacción directa ( => ) e inversa ( <= ) son iguales y las concentraciones de los reactantes y de los productos permanecen constantes. Para que esto ocurra, la reacción debe suceder a una temperatura presión constantes en un recipiente cerrado en el que ninguna sustancia pueda entrar o salir.

Es importante diferenciar entre el equilibrio en términos de velocidad, en el que ambas velocidades son iguales, del equilibrio en términos de concentraciones, donde éstas pueden ser, y normalmente son, distintas. (Gracia Mora, 2015)

Factores que modifican el equilibrio

Existen diversos factores capaces de modificar el estado de equilibrio en un proceso químico, como son: la temperatura , la presión (afectando al volumen ) y las concentraciones .

La influencia de estos tres factores se puede predecir, de una manera cualitativa por el Principio de Le Chatelier, que dice lo siguiente:

Si en una reacción química en equilibrio se modifican la presión, la temperatura o la concentración de alguna de las especies reaccionantes, la reacción evolucionará en uno u otro sentido hasta alcanzar un nuevo estado de equilibrio. Este principio es equivalente al principio de la conservación de la energía .

Efecto de la temperatura.

Es la única variable que, además de influir en el equilibrio, modifica el valor de su constante. Si una vez alcanzado el equilibrio se aumenta la temperatura, el sistema se opone a ese aumento de energía calorífica desplazándose en el sentido que absorba calor; es decir, hacia el sentido que marca la reacción endotérmica.

Aquí debemos recordar que en las reacciones químicas existen dos tipos de variación con la temperatura: Exotérmica : aquella que libera o desprende calor.

Endotérmica : aquella que absorbe el calor.

Es importante hacer notar que a bajas temperaturas, la reacción requiere más tiempo, debido a que bajas temperaturas reducen la movilidad de las partículas involucradas. Para contrarrestar este efecto se utiliza un catalizador para acelerar la reacción.

Respecto a los catalizadores, se ha determinado que estos no tienen  ningún efecto sobre la concentración de los reaccionantes y de los productos en equilibrio. Esto se debe a que si un catalizador acelera la reacción directa también hace lo mismo con la reacción inversa, de modo que si ambas reacciones se aceleran en la misma proporción, no se produce ninguna alteración del equilibrio.

Efecto de la presión

Si aumenta la presión la reacción se desplazará hacia donde exista menor número de moles gaseosos, para así contrarrestar el efecto de disminución de volumen, y viceversa.

Lógicamente, en el caso de que las cantidades de moles gaseosos sean iguales para cada lado de la ecuación, no se producirán cambios, es decir que el equilibro no se desplazará. También se puede aumentar la presión del sistema sin afectar el equilibrio agregando un gas noble.

Efecto de las concentraciones

Un aumento en la concentración de uno de los reactivos hace que el equilibrio se desplace hacia la formación de productos, y a la inversa en el caso de que se disminuya dicha concentración. Y un aumento en la concentración de los productos hace que el equilibrio se desplace hacia la formación de reactivos, y viceversa en el caso de que se disminuya.

Obtención de la constante de equilibrio

Esta es la ley del equilibrio químico, también llamada ley de acción de masas, para nuestro sistema. Esta ley fue propuesta por los químicos noruegos Cato Maximilian Guldgerg y Peter Waage en 1864, sobre la base de las ideas de Berthollet sobre las reacciones químicas reversibles. La constante 57 que caracteriza el equilibrio se denomina constante de equilibrio, se representa por Kc y su valor no depende de las concentraciones iniciales. La constante de equilibrio depende de la temperatura, para otro valor de la misma la constante sería diferente, por ello hace falta especificar siempre la temperatura cuando se dé un valor de Kc. Para una reacción cualquiera, representada por la ecuación química (Gracia Mora, 2015):

aA + bB ↔cC + dD

si el sistema se encuentra en equilibrio químico, la constante de equilibrio viene dada por:

ssssss.png

Esta constante de equilibrio solo depende de la temperatura a la que se realiza el proceso, y no de las concentraciones de las sustancias que intervienen en el mismo. La ley de acción de masas se puede enunciar de la siguiente manera: En una reacción química el producto de las concentraciones de los productos, en el equilibrio, elevadas a sus respectivos coeficientes estequiométricos, dividido por el producto de las concentraciones de los reactivos, en el equilibrio, elevadas a sus respectivos coeficientes estequiométricos, es una constante a cada temperatura llamada constante de equilibrio.

Diferencias entre reacción ácido-base y equilibrio ácido-base

Cuadro de diferencias
Reacción Ácido/Base Equilibrio Ácido/Base
Conocida también como reacción de neutralización. Se define según las teorías de Arrhenius; bronsted & Lowry y Lewis.
Reacción que ocurre entre un ácido y una base. Se llega al equilibrio una vez que los reactivos dejan de reaccionar, y en este caso cuando el ácido y la base ya se han neutralizado mutuamente sus propiedades.
Su producto es una sal y agua. Ya no se observan cambios físicos en el transcurrir del tiempo.
La mayoría de las veces son exotérmicas. Es necesario exista equilibrio en el sistema A-B caso contrario la reacción ácido base no se daría.
La constante de equilibrio no depende de las concentraciones de que intervienen en el sistema pero si de la temperatura.
Puede ser determinada según la Ley de acción de las masas.
Cuando las concentraciones de los reactantes permanecen constantes se dice que se ha llegado al equilibrio.

 

  1. Ejemplos de pares conjugados

 H2SO4(l) +2NaOH(aq)→ Na2SO4(aq) +2H2O

Ácido: H2SO4; ácido sulfúrico

Base: NaOH; Hidróxido de sodio

Ácido conjugado: H2O; agua

Base conjugada: Na2SO4; sulfato de sodio

 

HNO3(l) + KOH(aq) → KNO3(aq) + H2O

Ácido: HNO3; ácido nítrico

Base: KOH; hidróxido de potasio

Ácido conjugado: H2O; agua

Base conjugada: KNO3; nitrato de potasio

 

HCl (l) + Ca(OH)2 (s) → CaCl2 (aq) + 2H2O

Ácido: HCl; ácido clorhídrico

Base: Ca(OH)2; Hidróxido de calcio

Ácido conjugado: H2O; agua

Base conjugada: CaCl2; cloruro de calcio

 

HSO4 + H2O ⇄ SO4-2 + H3O+

Ácido: HSO4; hidrógeno sulfato

Base: H2O; agua

Ácido conjugado: H3O+ ; ion hidronio

Base conjugada: SO4-2 ; anión sulfato

 

HCN +H2SO4 →H2CN+ + HSO4

Ácido: H2SO4

Base: HCN

Ácido conjugado: H2CN+

Base conjugada: HSO4

 

 

C2H3O2 + H2O → HC2H3O2 + OH

Ácido: H2O

Base: C2H3O2

Ácido conjugado: HC2H3O2

Base conjugada: OH

ESPECIES ANFÓTERAS

Los Anfóteros son sustancias que pueden actuar tanto como ácidos o como bases dependiendo del medio en que se encuentren. Etimológicamente la palabra “anfótero” proviene del griego “amphóteros” que es una variante de “amphi” y significa”ambos”. (Químicas Net, 2015)

 Ejemplos de Anfóteros:

El H2O es llamado de anfótero cuando reacciona con ácidos y actúa como base receptora de protones o cuando reacciona con bases y actúa como ácido donante de protones. Sustancias que pueden actuar, como un ácido o como una base, son llamadas de anfóteras. Siendo así, si combinamos el agua con una base, ella actúa como ácido y viceversa. En la reacción con amoniaco, el agua actúa como un ácido dador de protón, veamos la ecuación que representa el proceso:

NH3(g) + H2O(l) ↔ NH4+ + OH

Notamos que el agua reaccionó con un ácido donante de protones: el NH3 recibe un protón del agua y adquiere la forma NH4+. El agua es una molécula tan versátil hasta consigo misma.

H2O(l) + H2O (l) ↔ H3O+ + OH

Las dos moléculas de H2O reaccionan entre sí: una dona y la otra recibe electrones. El producto es agua protonada (H3O+) e ión OH.

EJEMPLOS DE ESPECIES ANFOTÉRICAS

 Metales anfóteros: algunos metales forman óxidos e hidróxidos con propiedades anfóteras como los siguientes:

  • Óxido de zinc (ZnO) puede actuar de diferente manera si el medio es ácido o básico:
    • Con ácidos → actúa como base neutralizándolos: ZnO + 2H2SO4→ ZnSO4 + H2O
    • Con bases → actúa como ácido neutralizándolos: ZnO + H2O + 2NaOH → Na2[Zn(OH)4]
  • Hidróxido de aluminio (Al(OH)3):
    • Con ácidos → actúa como base neutralizándolos: Al(OH)3+ 3HCl → AlCl3 + 3H2O
    • Con bases → actúa como ácido neutralizándolos: Al(OH)3+ NaOH → Na[Al(OH)4]
  • Óxido de aluminio (Al2O3):
    • Con ácidos → actúa como base neutralizándolos: Al2O3+ 3 H2O + 6 HCl → 2Cl3[Al(H2O)6]
    • Con bases → actúa como ácido neutralizándolos: Al2O3+ 2 NaOH + 3 H2O → 2 NaAl(OH)4
  • Hidróxido de Berilio (Be(OH)2):
    • Con ácidos → actúa como base neutralizándolos: Be(OH)2+ 2HCl → BeCl2 + 2H2O
    • Con bases → actúa como ácido neutralizándolos: Be(OH)2+ 2NaOH → Na2Be(OH)4
  • Óxido de Plomo (PbO):
    • Con ácidos → actúa como base neutralizándolos: PbO + 2HCl → PbCl2+ H2O
    • Con bases → actúa como ácido neutralizándolos: PbO + Ca(OH)2+H2O → Ca[Pb(OH)4]

 Metaloides anfóteros: la mayoría de ellos forman óxidos o hidróxidos con propiedades anfóteras:

  • Boro
  • Silicio
  • Germanio
  • Arsénico
  • Aminoácidos: poseen un grupo amino (NH2) básico y otro carboxílico (COOH) ácido.
  • Proteínas
  • Amoníaco
  • Ion Bicarbonato (HCO3)

 

Bibliografía

Atkins/Jones. (2012). Principios de Química. Barcelona: 5ta Ed. Editorial Médica Panamericana 2012.

Características, E. d. (2017). http://www.caracteristicas.co. Obtenido de https://www.caracteristicas.co/acidos-y-bases/

Gracia Mora, J. (2015). http://depa.fquim.unam.mx. Obtenido de Equilibrio Químico: http://depa.fquim.unam.mx/amyd/archivero/Equilibrio_quimico_23415.pdf

Kotz, J., Treichel, J. R., & Townsend , D. (2015). Acids and Bases: The Arrhenius Definition (Ácidos y bases: definición de Arrhenius). En Chemistry and Chemical Reactivity, Instructor’s Edition (Química y reactividad química, edición del profesor) (págs. 234-237). Stamford: 9th ed. Cengage Learning.

Méndez, Á. (19 de 05 de 2010). La Guía 2000. Obtenido de Ácido-base, según Lewis: https://quimica.laguia2000.com/conceptos-basicos/acido-base-segun-lewis

PUCP. (2011). Química General. Obtenido de corinto.pucp.edu.pe: http://corinto.pucp.edu.pe/quimicageneral/contenido/361-teorias-acido-base.html

Químicas Net. (11 de 2015). http://www.químicas.net. Obtenido de http://www.quimicas.net/2015/11/ejemplos-de-anfoteros_21.html

 

 

ALUMBRES Y MORDIENTES

ALUMBRES

Piedra de alumbre
Ilustración 1 Alumbre de potasio. Fuente https://inzitan.blogspot.com/2014/07/cosas-que-si-funcionan-alumbre-de.html

El alumbre es un compuesto químico resultado de la unión de dos sales dobles hidratados; donde el sulfato más usado para la formación de diferentes tipos de alumbres es el sulfato de aluminio. La forma más común de alumbre es aquella compuesta por dos sulfatos y agua. Todos los compuestos que se corresponda con la fórmula empírica AB(SO4)2·12H2O es considerado un alumbre.

 

Los alumbres se forman fácilmente, en general se disuelve sulfato de aluminio en agua para luego agregar el sulfato de otro elemento. La evaporación del agua cristaliza la solución formando el alumbre. La mayoría de los alumbres tienen un efecto astringente y un sabor ácido. Son incoloros, inodoros y se encuentran generalmente en forma de polvo blanco cristalino.

Uno de los alumbres más conocidos es el alumbre potásico o alumbre de potasio cuya fórmula química es KAI(SO4)2 y es formado naturalmente dentro de varios minerales como, por ejemplo, en la calcantita, en la alunita y en la leucita de las cuales se puede obtener cristales de alumbre luego de ser tratadas con ácido sulfúrico. El alumbre potásico es uno de los tipos de alumbres que usamos diariamente y es un sulfato de aluminio potásico; se encuentra en el bicarbonato de sodio que usamos para cocinar. También es usado para la purificación del agua, en los productos de afeitado y tratamiento de pieles. El alumbre de potasio también es conocido en forma de piedra llamada también piedra de alumbre, cristal de alumbre o mineral de alumbre y es conocido como un desodorante natural (Graus, 2013).

MORDIENTE

Resultado de imagen para mordientes
Ilustración 2: Mordiente de cochinilla. Fuente: https://desarrollorurallanzarote.wordpress.com/2010/08/22/el-tenido-solar-con-cochinilla-de-lanzarote/

Los mordientes, aunque no son colorantes, tienen gran importancia en algunas técnicas de tinción. Los mordientes intensifican la tinción porque aumentan la afinidad de la célula por el colorante. También se pueden utilizar para producir un engrosamiento de ciertas estructuras celulares externas, como los flagelos, que debido a su delgadez no podrían ser visualizados de otra forma (Flores, 2012).

BIBLIOGRAFÍA: 

Flores, Y. (2012). Tinciones Usadas en Microbiología. Obtenido de Microbiología: http://realisaciondeanalisis.blogspot.com/2012/06/tinciones-usadas-en-microbiologia.html

Graus. (2013). Significado del Alumbre. Obtenido de Significados: https://www.significados.com/alumbre/

 

Uso del bórax como ablandador de agua

Resultado de imagen para uso de borax como ablandador de agua

Ilustración 1 Uso doméstico del Bórax. Fuente (https://ygritte.wordpress.com/2011/03/10/detergente-lavadora-casero/)

Es importante mencionar que se conoce como agua dura a aquella que posee un contenido alto de minerales disueltos en ella que por lo general son calcio y magnesio así afirma (Wikishow, 2008). Estos minerales dejan depósitos que pueden obstruir los desagües, manchar los cristales y los azulejos, evitar que el jabón genere espuma y dejar residuos en el cabello y la piel. Por lo tanto, es importante en el uso doméstico el ablandamiento del agua dura y un mecanismo de acción podría ser usando bórax como ablandador para potenciar el uso de detergentes, se usa como agente activo para desinfección de baños y zonas de alta contaminación biológica, al ablandar el agua con bórax se mejora la eficiencia de la limpieza.

MODO DE EMPLEO

Añadir bórax directamente al agua con el jabón o detergente que se desea incrementar su efectividad. Sea para uso de limpieza como jabón o detergente de ropa, su función es impedir que la cal interactúe con el detergente ayudando a generar espuma. Actualmente los detergentes posen contenidos de bórax por su efectividad para potenciarlo.

¼ parte de bórax + 2/4 partes de detergente + ¼ parte de bicarbonato de sodio = ablandador y potenciador detergente

De manera  más formal y técnica podemos entender que el agua dura  puede ser ablandada por diversos métodos. A continuación les dejo un hermoso video que explica detalladamente cómo eliminar la dureza del agua.

 

Bibliografía

Wikishow. (2008). es.wikihow.com. Obtenido de https://es.wikihow.com/ablandar-el-agua-dura

Esmeralda y amatista piedras preciosas del grupo 13 de los elementos de la tabla periódica

  • ESMERALDA

     Resultado de imagen para esmeralda

     La esmeralda es un tipo de silicato de berilo, siendo su sistema cristalino el Trigonal y hexagonal. Su color se debe a que en su composición química está presente el cromo y el vanadio. Las esmeraldas se encuentran normalmente en minas a profundidades medias. Tiene una textura dura y su índice de dureza en la escala de Mohs es ocho, siendo esta escala del uno al diez. La piedra preciosa con más dureza en la escala de Mohs es el diamante, siendo su índice de dureza 10. Su rareza y la alta estima que siempre se ha tenido a la esmeralda se debe, además de a su extraordinario color verde, a que es la única piedra preciosa de este color que se encuentra en la naturaleza que es cristalina (Ramos, 2015).

  • AMATISTA

Resultado de imagen para amatista

     El cuarzo tiene como fórmula molecular SiO2 y presenta la siguiente composición (peso molecular de la fórmula empírica dividido por las sumas de los pesos atómicos de cada elemento para obtener el porcentaje de cada uno de ellos): 46.74 % Si y 53.26 % O.

El color del cuarzo se debe a la presencia en su estructura de lo que llamamos impurezas, aunque estás se encuentran en muy pequeñas cantidades. Así, los siguientes elementos originan los siguientes colores: lechoso = gotas gaseosas; rosado = manganeso/titanio; Ahumado = radioactividad natural; Citrino = hierro coloidal; Amatista = óxido de hierro, etc. La amatista es un mineral que aparece cristalizado muy frecuentemente bajo la forma de prisma hexagonal, terminado en 2 romboedros, que simulan una bipirámide hexagonal y en las que las caras del prisma suelen estar estriadas horizontalmente. También son frecuentes las formas compactas y masivas. Si en las caras del prisma aparece un trapezoedro, éste determina la simetría real del cristal, de forma tal que si el trapezoedro queda en posición superior-derecha respecto a una cara del prisma (visto desde el frente), el cristal es dextrógiro y si queda en posición superior-izquierda, es levógiro. Es un mineral no exfoliable, de fractura concoidea, y de gran variedad de tonalidades.

     El color de la amatista, que es debido a la presencia de hierro en su estructura, varia de tonalidades malvas claras a violeta oscuro, casi púrpura. Si la calentamos a temperaturas entre 400º y 500 ºC, su color se transforma en pardo/amarillento, muy similar al que presenta el cuarzo citrino. Al incrementar aún más la temperatura, en torno a los 600º C, se vuelve lechosa (Esteban, 2015).

BIBLIOGRAFÍA: 

Esteban, Á. L. (2015). Cuarzo Amatista. Obtenido de Naturaleza Nazarí: http://www.granadanatural.com/ficha_minerales.php?cod=156

Ramos, J. (2015). Características de las Esmeraldas. Obtenido de Alta Joyeria: http://www.diamantesdecompromiso.com/joyas-boda/la-esmeralda-caracteristicas

Fabricación del Vidrio Borosilicato

La sustitución de óxidos alcalinos por oxido de boro en la red vítrea de la sílice da lugar a vidrios de más baja expansión térmica. Cuando el B2O3 entra en la red de la sílice, debilita su estructura y reduce considerablemente el punto de reblandecimiento de los vidrios de sílice. El efecto de debilitamiento se atribuye a la presencia de boros tricoordinados planares.

Tiene baja expansión térmica, alrededor de un tercio de la del vidrio a la sosa y cal, se puede hacer con buena resistencia química y una elevada resistencia dieléctrica y se usa en donde se necesitan combinaciones de estas dos propiedades. Su elevada temperatura de ablandamiento lo hace más difícil de trabajar que los vidrios a la sosa y cal y al plomo. Se utiliza para utensilios de vidrio para laboratorios, tubería industrial, termómetros para temperaturas elevadas, espejos de telescopios grandes, utensilios domésticos para cocina, como los “Pyrex”, bulbos para lámparas muy calientes y tubos electrónicos de alto watiaje. (UNIOVI, 2006).

COMPOSICIÓN QUÍMICA:

SiO2: 60 – 80 %

B2O3: 10 – 25 %

Al2O3: 1 – 4 %

USOS

Los vidrios borosilicatados (vidrios Pyrex) tienen buena resistencia al choque térmico (pequeños coeficientes de dilatación térmica) y buena estabilidad química y se usan ampliamente en la industria química para equipos de laboratorio, tuberías, hornos y faros de lámparas reflectoras (UNIOVI, 2006).

PROCESO DE FABRICACIÓN

  1. Materias primas: para la producción moderna de varios tipos de vidrios se emplea una mezcla de materias primas que se introducen en un recipiente llamado tolva.

ARENA DE SILICE: primer componente, compuesta esencialmente por (dióxido de silicio) SiO

CARBONATO O SULFATO DE SODIO (Na2CO3): gracias a este compuesto la arena funde a menor temperatura.

PIEDRA CALIZA (CaCO3): para que el cristal no se descomponga en el agua.

CRISTAL RECICLADO: su uso es ecológico porque ahorra el gasto de otras materias primas y se aprovecha el rezago de fábrica.

     2. Los ingredientes se funden en un horno para obtener cristal líquido entre (1500-2000 ºC) el fuego lo mantiene caliente y fundido.

     3. El flujo de cristal fundido se desliza a través de conductos del ancho deseado del vidrio.

4. El vidrio flota sobre un baño de Estaño a 1000º. En este compartimento se va enfriando y solidificando.

5. Posteriormente el vidrio es pegajoso y viscoso pero suficiente consistencia para deslizarse por bandas transportadoras en forma de rodillos.

6. A través de horno caliente no lo suficiente para fundirlo de nuevo, lo calienta con la finalidad de eliminar gases o impurezas además cumple la función de templado.

7. Se deja enfriar lentamente para que no se agriete.

8. Finalmente, un brazo robótico con punta de diamante corta el vidrio según sus especificaciones.

9. Se almacena el vidrio en láminas. Así lo manifiesta (Hernández, 2015)

Imagen relacionada

A continuación y el el siguiente enlace comparto un asombroso video que muestra el proceso de fabricación de un hermoso dragón de vidrio. Gracias por leer este su blog de divulgación de conocimiento y ciencia.

Bibliografía:

*Hernández, M. Á. (15 de 08 de 2015). es.slideshare.net. Obtenido de https://es.slideshare.net/moroshoh12/reciclaje-del-vidrio-13975956

*UNIOVI. (2006). Obtenido de http://www6.uniovi.es/usr/fblanco/Tema5.VIDRIO.pdf

Poliéteres, una historia detrás de los antibióticos

Imagen relacionadaUna de las técnicas más usadas en el campo farmacéutico para identificar sustancias que hagan reaccionar a los microorganismos, es haciendo proliferar bacterias en caldos de cultivo, como muestra la imagen de la izquierda; y antes de continuar con el tema de fondo, lo que usted observa es un homenaje que realizó el Museo de Ciencias Naturales de Carolina del Norte, Estados Unidos, para celebrar el cumpleaños de Charles Darwin, este cultivo consistió en tomar muestras con un algodón estéril del fondo de los ombligos de algunos voluntarios, al colocar la muestra sobre las cajas petri en medio de cultivo estéril y a una temperatura adecuada, diferentes microorganismos empezaron a crecer en ellas. Este pequeño experimento permitió que el público estuviera consciente de la microbiota que existe  y se encuentra albergada en cada individuo; lo que definitivamente nos muestra es que somos en sí mismos verdaderos caldos de cultivo para diferentes microorganismos  y  aveces zonas como el ombligo se constituyen en términos de diversidad biológica una zona que podría considerarse las Islas Galápagos de nuestro cuerpo humano.

Pues bien  las empresas  farmacéuticas realizan este proceso de forma planificada hasta determinar sustancias químicas que hacen que los microorganismos presenten una determinada actividad biológica. Éste método ha conseguido desarrollar un gran número de sustancias antibióticas, de las mismas muchisimas han conseguido convertirse en

Una corriente bacteriana de tejido vegetal recién cortado.
Una corriente bacteriana de tejido vegetal recién cortado

fármacos efectivos y no solo de uso humano o animal, dichas sustancias antibióticas han aportado significativamente en el campo de la industria alimenticia y en el agro frenando daños ocasionados por ciertas bacterias. Los antibióticos son por definición, tóxicos  (anti “contra” ; bios “vida”), la meta es una sola, encontrar sustancias que sean más tóxicas para los microorganismos infecciosos que para los  seres humanos, de esa manera hacer que el impacto en él, sea bajo o por lo menos médicamente tratable.

 

Resultado de imagen para monensina
MONENSINA

Ya en la década de los 50’s, se va descubriendo una  variedad de poliésteres antibióticos usando técnicas de fermentación se caracterizan por poseer varias unidades estructurales de eter ciclico como la monensina, esta junto con otros poliéteres en estado natural se parecen a los éteres corona ya que también tienen la capacidad de formar complejos metálicos estables como se muestra a continuación:

 

 

 

ssssdsdf
Sal de sodio de monensina

La sal representada anteriormente es la sal de sodio de monensina, como se puede observar, los cuatro oxígenos de éter y los dos procedentes de los hidroxilos rodean el ión sodio.

Los grupos alquilo se orientan hacia el exterior del complejo y los oxígenos polares y el ion metálico están en el interior. La superficie del complejo, semejante a los hidrocarburos, le permite llevar al ion sodio a través del interior de una membrana celular, semejante a los hidrocarburos. Francis A. Carey & Robert M. Giuliano (2006)

Lo que irrumpe un equilibrio normal entre los iones sodio de la célula, interfiriendo con procesos celulares en la respiración celular, liquidando de esa manera a microorganismos varios, esta sustancia se agrega en cantidades pequeñas en los alimentos de los animales ayudando de esta manera controlar problemas de parasitosis que normalmente prolifera en pollos, vacas, etc. Finalmente  a la monensina  como a múltiples éteres corona que interfieren con los equilibrios de iones metálicos transportandolos en las células se denominan ionóforos (portadores de iones).

Resultado de imagen para ionóforos

 

Imagen relacionada

BIBLIOGRAFÍA

Francis A. Carey & Robert M. Giuliano, (2006), Química Orgánica. Capítulo 16: Éteres, epóxidos y sulfuros. 9º Ed. Mc. GrawHill. pp. 656.

Vidaver, A.K. and P.A. Lambrecht 2004. Las Bacterias como Patógenos Vegetales. Trans. Ana María Romero. The Plant Health Instructor. DOI: 10.1094/PHI-I-2006-0601-01. Recuperado de: https://www.apsnet.org/edcenter/intropp/PathogenGroups/Pages/BacteriaEspanol.aspx

 

Adiciones y correcciones para la tabla periódica en Español. (Acuerdo IUPAC 28 de noviembre del 2016 actualmente vigente)

     El pasado  28 de noviembre del 2016  la IUPAC, (International Union of Pure and Applied Chemistry) publicó la renovada tabla de los Elementos Químicos, presentando en ella 118 elementos químicos reconocidos y aceptados, con sus respectivos símbolos y nombres. Y no es nada raro que a más de uno le de un verdadero dolor de cabeza con respecto a ciertas pronunciaciones y abreviaturas sea en la nomenclatura química como en la formulación. Sin embargo es muy importante hacerlo de forma correcta con la finalidad de no cometer errores. Dicha terminologia se adapta al informe realizado por IUPAC y acoge recomendaciones realizadas por la Real Academia de la Lengua Española con respecto a ciertas dificultades que se presentaban con ciertos  elementos; dicho trabajo fue realizado por  un equipo de trabajo de la RSEQ, (Real Sociedad Española de Química) donde se recomendaba la traducción de los elementos 113, 115, 117 y 118;  como Nihonio (Nh), Moscovio (Mc), Tennesso (Ts) y Oganessón (Og), respectivamente. Sin embargo  el trabajo no se detuvo en el 2016 y los estudios respectivos para la terminologia continuaron hasta 2017 , cuando el 1 de febrero de dicho año en La Real Academia de Ciencias Exactas, Fìsicas y Naturales, varios organismos y delegados de la IUPAC decidieron adoptar un criterio unificado sobre la grafía en español de algunos elementos químicos de la nueva actualización. Por lo que a continuación presentaré los acuerdos alcanzados:

  1. Se acepta como variante la palabra Cinc para el elemento con número atómico 30 Zinc.
  2. Se mantiene la escritura para la palabra Kriptón  de manera preferencial para el elemento con número atómico 36 de la tabla periódica, sin embargo se acepta como variante registrada la grafía Criptón.
  3. Se dá como preferencia la grafía Circonio al nombre del elemento número 40 de la tabla periódica y se registra como variante la grafía Zirconio.
  4. Para el nombre del elemento con número atómico 52 de la tabla periódica se mantiene la preferencia Telurio y se acepta como  variable la denominación Teluro.
  5. Continuar con la grafía Yodo, como nombre del elemento con numero atómico 53 y seguir registrando Iodo como variante.
  6. Queda suprimido el uso de la terminología Tantalio,  como variante del Tántalo  elemento de número atómico 73, cuya terminología es única según el informe determinado por la IUPAC.
  7. Se dá preferencia al uso del término Wolframio cuya variante a utilizar puede ser volframio,  para el elemento químico 74. A pesar de que el nombre dado por la IUPAC en inglés sea el Tungsten  y español Tungsteno. La RSEQ, reivindica el nombre dado por los hermanos Delhuyar químicos riojanos quienes fueron los primeros en aislar el elemento.
  8. Mantener el par lawrencio/laurencio, con preferencia por la primera forma, en el nombre del elemento de número atómico 103.
  9. La IUPAC acepta la eliminacion de la denominación Kurchatovio perteneciente al número  atómico 104 (denominación que se adopto durante la Guerra Fría por los Rusos que competía hasta la actualidad con la denominacion correcta y única Rutherfordio).
  10. Se sustituye la grafía Hassio  por Hasio para el elemento  de número atómico 108. Se suprime Hassio hasta como variante.  ya que la la secuencia grafica -ss- es ajena al sistema ortográfico español; de seguirse usando la terminología Hassio  se recomienda usar cursiva mas el uso de redonda es exclusivo para hasio debido a que a partir del presente informe  se  asume el uso de Hassio como grafía de lengua muerta.
  11. Se sustituye la forma Darmstadio por Darmstatio para el elemento con número atómico 110. Debido a confusiones en las debidas pronunciaciones del inglés y alemán dado el uso de la d y t.
  12. Se establece las formas Teneso y Oganesón como nombres españoles de los nuevos elementos de números atómicos 117 y 118, respectivamente.
  13. Finalmente se acepta la regla: m antes de p o b  para los elementos de nombre provisional como por ejemplo: ununpentium  en inglés por unumpentio en español.; y a la vez se acepta hibridación de la regla puede usarse tanto la terminología inglesa como la española por tratarse de elementos que aun no han sido debidamente aislados.

nueva tabla peródica

DOCUMENTO ORIGINAL DE LA RSEQ: Nombres y símbolos en español de los elementos aceptados por la IUPAC el 28 de noviembre de 2016 acordados por la RAC, la RAE, la RSEQ y la Fundéu

BIBLIOGRAFÍA

  • IUPAC Periodic Table of the Elements, versión fechada el 28 de
    noviembre de 2016, bit.ly/2bjmHcz, visitada el 08/02/2017.
  • IUPAC announces the names of the elements 113, 115, 117
    and 118, IUPAC recent posts, 30/11/2016; bit.ly/2fPyFQg,

¿Qué son las Auroras Polares?

Las auroras polares son un fenómeno atmosférico luminoso verdaderamente hermoso, que pueden ser observadas sobre los polos de nuestro planeta Tierra. Cuando las partículas cargadas de las ondas electromagnéticas emitidas por el Sol, en sus explosiones, llegan arrastradas por el viento solar y chocan contra la magnetosfera (Campo electromagnético de la Tierra), como muestra la imagen siguiente, es aquí cuando se libera una cantidad grande de energía en forma de luces de diferentes colores, debido a que las longitudes de onda de estas emisiones va variando dentro del espectro de luz visible.

¿Cómo se producen las auroras?

Fijémonos en la imagen siguiente:

Las partículas procedentes del Sol, que es la estrella mas cercana a nuestro planeta, entran en la atmósfera terrestres sufriendo una desviación debida a la fuerza magnética de la Tierra. Como nuestro planeta tiene dos polos magnéticos, estas partículas se concentran alrededor de los polos Norte y Sur, produciendo el fenómeno luminoso.

Resultado de imagen para campo electromagnetico de la tierra

  • Las Explosiones en la corona solar desprenden gran cantidad de energía en forma de partículas con carga que conforman el viento solar. El viento solar arrastra partículas mas pequeñas que un átomo, cargadas eléctricamente: electrones protones y partículas alfa, actualmente se cree que también se encuentran particulas betas, y gamma. Estas partículas viajan a una velocidad de 450 Km/s y tarda dos días en llegar a la Tierra. AQUÍ UN VIDEO MUY BUENO SOBRE DICHAS PARTÍCULAS: mediatheque.lindau-nobel
  • Algunas partículas se desvian y siguen su viaje hasta chocar contra los campos electromagnéticos de otros planetas del sistema solar, o incluso ser absorbidas por otros cuerpos celestes.
  • La zona de formación de las auroras, está sobre los polos de la Tierra.
  • Las auroras se producen en la ionósfera, donde los átomos pierden sus electrones y se encuentran como partículas con carga, llamadas iones (cationes y aniones), que reaccionan al chocar con las partículas que arrastra el viento solar.
  • El campo Electromagnético de la Tierra o magnetósfera se deforma por acción del viento solar.

LA CIENCIA DETRÁS DE LOS HERMOSOS COLORES DE LAS AURORAS BOREALES

  • Los colores de la aurora dependen de la velocidad del viento solar y de las partículas que intervienen en el choque.
  • Las partículas solares más rápidas en cambio penetran de manera más profunda en nuestra atmósfera. Si el choque se produce con Oxigeno a unos 150 km sobre el nivel del mar las formaciones se verán de color amarillentos en todos sus diferentes tonos.
  • Cuando el viento solar es relativamente lento, los corpúsculos se quedan en las capas superiores de la atmósfera. En este caso, si la colision se produce fundamentalmente con atomos de oxígeno a unos 400 Km de altura o mas la aurora resultante será morada hasta el azul.
  • Las partículas más veloces que penetran hasta los 90 km por encima de nuestras cabezas, producen auroras rojas y azul muy brillantes al chocar fundamentalmente con nitrógeno.

Resultado de imagen para aurora boreal roja

LAS FORMAS DE LAS AURORAS 

Las auroras se muestran de formas diferentes, algunas son inmóviles y otras adquieren movilidad y color. A continuación se enumeran sus formas más conocidas:

  1. DE ARCO UNIFORME: Semejante a un arcoiris, con su borde inferior muy marcado; debajo se ve el cielo oscuro  y el punto más alto está en el meridiano magnético.
  2. DE ARCO RADIADO: Los rayos parecen trasladarse a lo largo del arco y aparecen colores cambiantes: rojos, blancos, rosados violáceos y verdosos.
  3. DE CORONA: El arco iluminado se cierra aveces en forma de círculo muy brillante, con centro en el meridiano magnético.Resultado de imagen para aurora boreal circular
  4. DE BANDAS: En ellas parecen que los arcos se mantuvieran colgados, como si fueran enormes banderas llameando en el cielo.Resultado de imagen para aurora boreal de bandas

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Los frailes y la pólvora

Nos remontamos a la Edad Media, donde la paz probablemente era lujo para los monasterios religiosos, dicho silencio era más que propicio para que sacerdotes se pudieran dedicar a sus estudios favoritos. Curiosamente una de las actividades más atractivas parecia ser la pirotecnia, el uso de la pólvora parecia haberse vuelto su actividad favorita y eso conllevaba cierta peligrosidad, según menciona el Dr. Antonio Pons C. (1995)  ésta peligrosidad no era tan importante como salir a cazar brujas, hechiceros, castigar a los herejes y hacer de la “Santa Inquisición” su modus vivendi.

En medio de este debacle de la humanidad surge un personaje interesante del que se conoce poco, Berthold Schwars, y aunque su apellido parece haber sido sacado un alguna novela de J.L. Rowling, lo  cierto es que era conocido como “El Monje de la Pólvora” y aunque el tema del origen de la pólvora es controversial y nos lleva hasta el continente asiático, para Europa, “el monje de la pólvora” es atribuido como el descubridor de dicho explosivo.

Bueno el tema es que otro monje dominico, San Alberto Magno, es quien menciona las propiedades de un tipo de pólvora elaborada con salitre, azufre y carbón. Anteriormente el fraile inglés Roger Bacon también menciona prescripciones sobre una pólvora ruidosa y altamente explosiva. Sin embargo ninguno de ellos sabía ni pensó en las victorias conseguidas con tal formidable invento. Curioso Verdad?

Tomado de: Pons, A. Historia Natural Ilustrada Sopena. Arañando la corteza terrestre. Ed. Ramón Sopena. S.A. Barcelona. 1995

AQUÍ LES DEJO UN VIDEO POR SI DESEAN DESCUBRIR USTEDES MISMO ¿PORQUE LOS FRAILES AMARON LA PIROTECNIA.

Como hacer PÓLVORA NEGRA casera de alta calidad, sencillo y facil de hacer I IceRocket