NUTRIGENÓMICA

WhatsApp Image 2019-02-22 at 7.45.31 PM

Mackilff Carolina [1]

[1] ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO /FACULTAD DE SALUD PÚBLICA / ESCUELA DE NUTRICIÓN Y DIETÉTICA

TODOS LOS DERECHOS RESERVADOS © Copyright 2019

     La definición inicial de nutrigenómica hacia referencia a los efectos que los nutrientes y/o alimentos bioactivos sobre la expresión de los genes de un individuo. Hoy en día esta definición es más amplia puesto que también involucra los estudios sobre los factores nutricionales que actúan protegiendo el genoma. Esta nueva ciencia busca entender la influencia que tienen los componentes de la dieta sobre el genoma, el transcriptoma, el proteoma y el metaboloma. La nutrigenómica sentó sus bases a finales del siglo XVIII, sin embargo, las antiguas civilizaciones de Egipto, Grecia, Roma, Persia, China y la India ya eran conscientes del vínculo existente entre la alimentación y la salud.

Resultado de imagen para egipto y nutricion
Ofrendas de alimentos en la tumba de Menna (1400 A.E.C.). Se ven, entre otros alimentos patos, peces y ánforas de vino.

Nuestra relación con los alimentos es compleja y se encuentra en constante cambio. En la actualidad sabemos que desde la lactancia, la expresión de nuestros genes, se ve influenciada por los nutrientes que contiene. Asimismo, las diferencias regionales en la comida y la cultura han dejado su huella en nuestro genoma. Los nutrientes desde una perspectiva nutrigenómica actúan como señales, las cuales son detectadas por los sistemas sensores que tienen nuestras células, lo que influencia directamente sobre la expresión de los genes y posteriormente en la producción de metabolitos.

Imagen relacionada

La nutrigenómica tiene un vínculo estrecho con la epigenética, que estudia las modificaciones del ADN y proteínas que pueden causar cambios en la estructura de la cromatina, sin cambiar la secuencia de los nucleótidos. Un ejemplo de esta interacción es el suplemento de ácido fólico, antes y durante el embarazo, el cual disminuye el riesgo de que se presenten defectos del tubo neural, esto a través de favorecer la metilación del ADN.

Imagen relacionada
El ácido fólico es un tipo de vitamina B. Es la forma artificial (sintética) del folato que se encuentra en suplementos y se le agrega a los alimentos.

La nutrigenómica nos muestra una nueva forma de visualizar a la nutrición, la cual permitirá una mejor comprensión de cómo los alimentos interfieren con la expresión de los genes y cómo el organismo responde a estas interferencias. Esto seguramente derivará en estrategias y programas que permitan alcanzar una dieta saludable que nos conduzcan a una mejor calidad de vida.

  • Nutrigenómica propiamente dicha, que estudia el efecto de los nutrientes en la actividad génica.
  • La nutrigenética, que analiza cómo la variabilidad del genoma afecta a la manera en que utilizamos los nutrientes, y cómo esta variabilidad está ligada a la aparición de enfermedades.

Resultado de imagen para nutrigenetica

 

APLICACIONES DE LA NUTRIGENÓMICA

Desarrollar nuevos sistemas de detección y autenticación de ingredientes, presencia de microorganismos, residuos alérgenos, efectos del procesado de los alimentos sobre la eficacia de los componentes, etc. Que permitirán incrementar la seguridad alimentaria, especialmente entre las poblaciones con mayor riesgo.

Ámbito clínico: utilizado como una herramienta para el tratamiento de las diferentes enfermedades.

Ámbito poblacional: utilizado como herramienta preventiva y de tratamiento de la obesidad y la enfermedades cardiovasculares entre otras.

Intervención en los periodos críticos del desarrollo y la capacidad de modificar la susceptibilidad genética a ciertas enfermedades a través de la alimentación.

Resultado de imagen para nutrigenetica

RETOS Y ALCANCES DE LA NUTRIGENÓMICA

Es importante identificar la nutridinámica de los alimentos, es decir como interaccionan con el organismo, para personalizar la dieta de un individuo con respecto a la expresión de su genoma, así contribuiremos de manera efectiva a controlar patologías que se pueden adquirir.

NUTRIGENÓMICA Y MEDICINA CLÍNICA.

Las posibles aplicaciones terapéuticas y preventivas de la genómica nutricional son amplias: en personas con deficiencias enzimáticas, predisposición Genética para enfermedades complejas como dislipidemias, diabetes y cáncer o en personas que ya las padezcan, en personas con alteraciones del estado de ánimo o memoria, en el proceso de envejecimiento, en mujeres embarazadas, e incluso en personas sanas como método preventivo.

Imagen relacionada

NUEVAS TECNOLOGÍAS EN LA NUTRIGENÓMICA.

La nutrigenómica utiliza las técnicas tradicionales en metabolismo y nutrición; pero también las nuevas tecnologías bioquímicas y en particular las denominadas tecnologías ómicas (transcriptòmico, proteómico, metabólico) que se nutren de los rápidos avances en el conocimiento de los genes que conforman el genoma y se benefician de los grandes progresos en el conocimiento de la bioquímica y la fisiología humana y en concrétamente del metabolismo.

HERRAMIENTAS DE LA NUTRIGENÓMICA.

Actualmente se propone un enfoque más global y ambicioso: el fenotipo nutricional con un enfoque genómico y metabólico. Basado en un los micro ensayos de ADN complementario, utilizados para la expresión génica en condiciones de normalidad o estados patológicos así como para la caracterización de la respuesta genómica que se desencadenarían ante un fármaco específico.

  • La cromatografía de gases con espectrometría de masas.
  • La cromatografía líquida o la electroforesis por capilaridad acoplada a la espectrometría de masas.
Resultado de imagen para cromatografia de gases
Equipo cromatografía Gases/Masas/Masas

POSTULADOS DE LA NUTRIGENÓMICA

  • Bajo ciertas circunstancias y en algunos individuos la dieta puede ser un factor de riesgo importante para varias enfermedades.
  • Las sustancias químicas comunes en la dieta alteran de manera directa o indirecta la expresión genética o la estructura genética.
  • La influencia de la dieta en la salud depende de la constitución genética del individuo.
  • Algunos genes o sus variantes normales comunes son regulados por la dieta, lo cual puede jugar un papel en las enfermedades crónicas.
  • Las intervenciones dietéticas basadas en el conocimiento de los requerimientos nutricionales, el genotipo pueden ser utilizadas para desarrollar planes nutrición individual que optimicen la salud.

MECANISMOS DE LA NUTRIGENÓMICA

Intentos por confirmar ciertos inventos han llevado a la nutrigenómica a realizar investigaciones entre genes nutrientes, aunque interacciones no resultan ajenas algunas son inconsistentes al momento de evaluar los resultados.

 

¿POR QUÉ LA NUTRIGENÓMICA ES LLAMADA LA NUTRICIÓN PERSONALIZADA?

Es llamada la nutrición personalizada ya que busca que a través de la investigación del genoma se lleve a que una persona pueda adquirir una dieta individual que contraste con la expresión de su genoma y así pueda tener una vida amable con su genoma.

NUTRIGENOMICA EN LA MEDICINA CARDIOVASCULAR

La dieta y las enfermedades cardiovasculares: la dieta siempre ha sido considerada como uno de los principales factores de riesgo causante de las enfermedades cardiovasculares, otros factores que intervienen son el cambio de comportamiento, las modas, la presión de los medios de comunicación, el sedentarismo, intervenciones deficientes en materia de salud.

Resultado de imagen para medicina cardiologia

NUTRIGENÓMICA, OBESIDAD Y SALUD PÚBLICA

Una intervención nutricional en periodos críticos del desarrollo y la capacidad de modificar la susceptibilidad genética a ciertas enfermedades a través de la alimentación es el gran reto de la nutrigenómica, más allá del diseño de dietas o alimentos funcionales personalizados.

Resultado de imagen para obesidad

INTERACCIONES ENTRE GENES Y NUTRIENTES

GENÓMICA NUTRICIONAL

Variaciones genéticas y requerimientos dietéticos, Interacciones directas entre genes y nutrientes e interacciones epigenéticas “Entendiendo la regulación epigenómica como una adaptación al entorno, es por tanto imprescindible la preservación del epigenoma a lo largo de la vida. La influencia de la alimentación en este sentido no se limita a las acciones directas de los nutrientes presentes en los alimentos (colina, ácido fólico, vitamina B6, B12) sobre la conservación de los patrones de metilación epigenéticos. Otros componentes (aditivos, pesticidas, tóxicos) pueden ser capaces de producir alteraciones en la metilación del ADN.” Situación actual de la nutrigenómica, (esperanza o realidad).

Las investigaciones actuales nos muestran que aunque existen unas pautas generales pueden que no se adecuen a las necesidades de todo el mundo. Cada vez se hace más evidente que los nutrientes interaccionan con los genes y esto parece indicar que ciertos alimentos con compuestos bioactivos son capaces de interactuar con regiones del genoma para conseguir una acción protectora frente a algunos mecanismos de iniciación de enfermedades mientras que otros pueden provocar el efecto contrario.

La genómica nutricional podría considerarse de gran importancia en el área de la salud pública porque permitiría que desde el momento de nacer se tuviese en cuenta los polimorfismos “informativos” para tenerlos en cuenta en forma de predecir la predisposición genética futura a las enfermedades, facilitando la implantación de técnicas de prevención (consejos dietéticos, estilo de vida, alimentos funcionales para determinados perfiles genéticos, etc.).

POLIMORFISMO EN LA EXPRESIÓN Y REGULACIÓN GENÉTICA

El polimorfismo genético hace referencia a la existencia en una población de múltiples alelos de un gen. Es decir, un polimorfismo es una variación en la secuencia de un lugar determinado del ADN en los cromosomas (locus) entre los individuos de una población. Hablamos de polimorfismo (que viene de las palabras griegas “poli” -múltiples- y “morfismo” -forma-) cuando estas formas representan al menos al 1% de la población.

Resultado de imagen para polimorfismo genetico

Aquellos polimorfismos que afectan a la secuencia codificante o reguladora y que producen cambios importantes en la estructura de la proteína o en el mecanismo de regulación de la expresión, pueden traducirse en diferentes fenotipos (por ejemplo, el color de los ojos o el color de cabello).

Tipos de polimorfismo

Resultado de imagen para polimorfismo en secuencia

  • Polimorfismo de Secuencia

Son aquellos donde el orden de los nucleótidos se ve alterado. Normalmente, al tratarse del mismo locus su diferencia no es muy notable, pero no forman exactamente la misma secuencia. Una clase de estos polimorfismos son los SNPs (Single Nucleotide Polimorphism) que afectan a un sólo nucleótido, es decir, el cambio de una base (A, T, C, G) dentro de la secuencia del ADN.

  • Polimorfismo de Longitud

Son variantes del mismo locus pero que se diferencian por la longitud, es decir el número de nucleótidos dentro del fragmento de ADN. Cada polimorfismo tiene en sus extremos una secuencia que delimita su posición y permite identificarlo. La mayoría de estos polimorfismos de longitud son secuencias repetitivas en tándem; es decir, una serie ordenada de nucleótidos más corta que se repite una y otra vez. Las veces que cada secuencia se repite varían, por lo que cuantas  más repeticiones se den, más larga será la longitud del locus del ADN total.

  • Polimorfismo de Nucleótido Único

Es una variación en la secuencia de ADN que afecta a una sola base (adenina (A), timina (T), citosina (C) o guanina (G)) de una secuencia del genoma. Estas variaciones tienen la cualidad de hacernos más fuertes o más débiles frente al desarrollo de enfermedades o la absorción de medicamentos, haciendo de los SNPs la base fundamental de nuestros estudios y la piedra angular del Mapa de Salud.

EJEMPLOS:

  • Los Grupos Sanguíneos ABO

Los grupos sanguíneos son creados por moléculas presentes en la superficie de las células rojas de la sangre (y a menudo en otras células también). Los grupos sanguíneos ABO fueron los primeros en ser descubiertos (en 1900), y son los más importantes para asegurar las transfusiones de sangre seguras.

Resultado de imagen para Los Grupos Sanguíneos ABO

  • El Factor RH

Los antígenos Rh son proteínas transmembrana con bucles expuestos en la superficie de las células rojas de la sangre. Parecen ser utilizado para el transporte de dióxido de carbono y / o amoníaco a través de la membrana plasmática.

Resultado de imagen para el factor rh de la sangre

  • El Complejo Mayor de Histocompatibilidad (MHC)

El complejo mayor de Histocompatibilidad es una familia de genes cuyos productos están implicados en la diferenciación de lo propio y lo ajeno en el sistema inmunitario.

REGULACIÓN DE LA EXPRESIÓN GÉNICA: MÚLTIPLE Y COMPLEJA

  • El estudio de la expresión genética a escala genómica ha sido un avance crucial para establecer que la variación de la expresión genética entre una persona y otra es un fenómeno común y que se vincula con un fenotipo.
  • El propósito de esta revisión es resumir los avances recientes de las medidas ideadas para la identificación de SNP en regiones reguladoras (rSNP), su validación funcional y el estudio de su profundo efecto fisiopatológico consecutivo a la sobreexpresión, subexpresión o expresión aberrante de un gen.
  • Se analiza el hecho de que la identificación de SNP reguladores (rSNP) abre un campo promisorio a la búsqueda de determinantes genéticos de afecciones de origen multifactorial. Como preámbulo, se presenta una breve introducción a los conceptos actuales sobre la regulación de la expresión genética. Los aspectos generales de la búsqueda de determinantes genéticos en enfermedades complejas se han descrito en otras investigaciones.

      Factores Externos

  1. Genoma: cromatina, histonas, metilación del ADN (epigenética)
  2. Transcripción: Factores de transcripción
  3. Procesado y transporte del ARNm
  4. Degradación o inhibición de la traducción de ARNm por ARN de interferencia o silenciación (microARNs)

INTERRELACIÓN CON ASPECTOS PROTEÓMICOS Y METABOLÓMICOS

PROTEÓMICA

La proteómica es el análisis del proteoma, el conjunto de proteínas presentes en las células o tejidos, el proteoma es dinámico en el sentido de que cambia en función de las condiciones ambientales y otros factores, y de gran interés para la nutrigenómica.

Imagen relacionada

Características

  • La descripción del proteoma permite tener una imagen dinámica de todas las proteínas expresadas, en un momento dado y bajo determinadas condiciones concretas de tiempo y ambiente.
  • La proteómica es una ciencia relativamente reciente. Para su despegue definitivo, ha sido necesaria la consolidación definitiva de la espectrometría de masas como técnica aplicada al análisis de moléculas biológicas y el crecimiento exponencial en el número de entradas correspondientes a genes y/o proteínas en las bases de datos.
  • Para entender las bases genéticas de algunas enfermedades, se debe estudiar tanto el proteoma como el genoma de los individuos que las presentan. El cáncer es una de las enfermedades más estudiadas y para detectarlo en sus inicios se utiliza la aproximación proteómica, a través de la identificación de proteínas cuya expresión se ve afectada durante el proceso de la enfermedad.

METABOLÓMICA

Es el estudio y comparación de los metabolomas, es decir, la colección de todos los metabolitos (moléculas de bajo peso molecular) presentes en una célula, tejido u organismo en un momento dado. Estos metabolitos incluyen a intermediarios del metabolismo, hormonas y otras moléculas de señalización, y a metabolitos secundarios.

APLICACIONES PRESENTES Y FUTURAS DE LA METABOLÓMICA

  • Un enorme potencial en la monitorización de intervenciones nutricionales, a partir de la medida del cambio provocado por un determinado alimento (o régimen) sobre determinados grupos de metabolitos, especialmente los triglicéridos y colesteroles.
  • Muy eficaz en la monitorización de los transplantes de órganos, ya que a partir de una muestra de orina o suero, permite analizar la evolución de un conjunto de metabolitos que  nos indican, en estadios incipientes,  si se producirá o no el rechazo del órgano implantado.
  • Un ámbito de aplicación emergente es el diagnóstico de enfermedades, especialmente en cáncer, enfermedades neurológicas y metabólicas.  En un estudio reciente (5) se ha comprobado que la sarcosina es un potencial biomarcador del cáncer de próstata; en el caso de confirmarse el estudio, el impacto clínico sería enorme, ya que podría diagnosticarse la enfermedad a partir de un simple análisis de orina.
  • Otro ámbito realmente interesante al que la  investigación metabolómica puede contribuir es la detección de factores de riesgo en poblaciones.  A partir de un análisis de orina (o suero), sería realmente extraordinario poder conocer para un individuo determinado, qué factores de riesgo presenta, a qué tipo de enfermedades está predispuesto (antes de desarrollarlas), y una estimación sobre la probabilidad de desarrollarlas.

Resultado de imagen para METABOLÓMICA

INTERACCIÓN GEN DIETA

El concepto de la nutrición personalizada basada en los genes, también conocida como nutrigenética o nutrigenómica, no es nuevo. Su aplicación en la práctica médica apareció en el siglo pasado como medida necesaria para la prevenir los graves efectos, a veces letales, de errores congénitos del metabolismo

Como por ejemplo la fenilcetonuria y la galactosemia. Estos, como su nombre indica, son hereditarios y debidos a mutaciones genéticas que alteran el metabolismo del individuo pero que, a menudo, pueden ser subsanados mediante regímenes dietéticos personalizados. Estos errores metabólicos son poco frecuentes (menos de 1 de cada diez mil nacimientos) en la población, de ahí que se denominen “enfermedades raras”. Sin embargo, a pesar de su rareza, el impacto a nivel individual y familiar en aquellos que lo padecen puede ser devastador. Afortunadamente, la manifestación de la enfermedad asociada a estos defectos metabólicos o metabolopatías puede ser eliminada totalmente –o al menos disminuida en gran medida gracias a los programas de detección precoz neonatal de errores congénitos del metabolismo y a la instauración del tratamiento paliativo (ej. dieta personalizada). Así pues, las enfermedades raras innatas y monogénicas – así como el desarrollo por la industria alimentaria y farmacéutica de productos diseñados para ciertos genes – fueron la primera aplicación de la nutrigenómica.

LOS ALIMENTOS ESCULPEN EL GENOMA

La baja frecuencia de las metabolopatías “raras” se debe a la carencia de una ventaja evolutiva asociada a las mutaciones que la causan. Sin embargo, otras mutaciones han contribuido de manera muy importante a los hábitos alimentarios de la población, así como a las diferencias interindividuales en el consumo de alimentos más allá de las resultantes de nuestros gustos peculiares.

Desde el punto de vista de la nutrición, el depender de un amplio espectro de productos nos daba la variedad predicada en una dieta saludable. Lo que este estilo de vida ancestral no nos daba era estabilidad ya que lo que primaba era el nomadismo. Por el contrario, la agricultura proporcionó una “estabilidad” que pudo desencadenar un gran crecimiento demográfico. El compromiso fue el perder la variedad alimentaria al depender de una pequeña fracción de cosechas que aprendimos a cultivar y de animales que conseguimos domesticar.

Resultado de imagen para alimentos y genes

El problema más acuciante desde el punto de vista de la salud pública son las enfermedades complejas, comunes y poligénicas que se han clasificado como epidémicas en los países industrializados. Para su prevención, se han ido diseñando diferentes guías prácticas de alimentación, que en sus versiones más recientes adoptaron las formas de pirámide o de plato. Sin embargo, estas recomendaciones no tienen en cuenta la realidad biológica de nuestra individualidad genética y no están además optimizadas para las diferentes fases de nuestras vidas. Al objeto de incorporar la genética las recomendaciones nutricionales se iniciaron, hace ya más de dos décadas, estudios de identificación de variaciones genéticas en rutas metabólicas de interés (por ejemplo el metabolismo de las lipoproteínas) al objeto de acumular conocimiento al respecto de cómo algunas de estas variantes podían predecir desajustes metabólicos y riesgo de enfermedad, así como la respuesta a diferentes componentes de la dieta.

Aunque los genes, el genoma, y la genómica han ocupado desde hace años el estrellato de la prensa científica y popular, no olvidemos que al fin y al cabo las proteínas son las que hacen la mayoría del trabajo y forman la mayoría de las estructuras.

De momento, una de las áreas más activas de adquisición, almacenamiento, tratamiento e interpretación de datos a gran escala corresponde al estudio de las variaciones del genoma humano. Para ello lo primero que necesitamos es obtener una imagen detallada del mismo. Es decir, de cómo las regiones codificantes y otras secuencias del genoma (recordemos que el 98% del mismo está en esa sección de “otras”) funcionan y se coordinan entre ellas y en respuesta a factores ambientales (por ejemplo, la dieta). Este conocimiento debería suponer un impacto tremendo en la manera en que las enfermedades, o mejor dicho el riesgo a padecerlas, son prevenidas, diagnosticadas y como última medida tratadas. Para ello vamos a necesitar una serie de avances, algunos de ellos tecnológicos y otros conceptuales, referentes a cómo asumimos estas revoluciones en la sociedad. El primer paso incluye el desarrollo de pruebas genéticas fiables que posibiliten un diagnóstico preciso del riesgo de un individuo asintomático de padecer la enfermedad, en muchos casos con décadas de antelación.

Resultado de imagen para pruebas genéticas

De hecho, cientos de test genéticos ya se comercializan en la actualidad para usos clínicos y un número probablemente mucho mayor se encuentra en fase de desarrollo. Bien es verdad que la mayoría de los que ya están en el mercado y además son fiables lidian con enfermedades monogénicas poco comunes. Este hecho contrasta con lo que ocurre con las enfermedades más comunes, en las que gran cantidad de genes pueden estar implicados. Este es el caso de la fibrosis quística, de la distrofia muscular de Duchenne, de varias anemias, o de la enfermedad de Huntington por citar alguna. El aspecto positivo es que los test genéticos pueden predecir estas enfermedades con gran precisión; el negativo es que todavía hay poco que podamos hacer para prevenir o paliar los efectos de muchas de ellas. Más recientemente las pruebas genéticas están comenzando a penetrar el mercado de enfermedades mucho más comunes, pero también mucho más complejas dado el número de factores implicados. Entre ellas se encuentran los test para la detección de diferentes tipos de cánceres, como el de mama, el de ovario y el de colon. Estas pruebas tienen todavía grandes limitaciones, pero pueden utilizarse para hacer estimación de riesgo en individuos asintomáticos con un historial familiar de la enfermedad. Tales pruebas genéticas podrían ayudar a los médicos a atender al paciente de una manera más eficaz.

Resultado de imagen para alimentos y genes

Durante muchos años, los estudios de nutrigenómica enfocados hacia las enfermedades comunes de la población (obesidad, diabetes, cáncer, cardiovasculares, etc.) se han llevado a cabo a imagen y semejanza de los estudios de las enfermedades monogénicas raras. Es decir, limitando los estudios a una variante en un solo gen, un factor de riesgo (ej. Colesterol en plasma) y un único nutriente (ej. grasa saturada). De esta manera se ha conseguido establecer el concepto de la interacción gen-dieta y se ha demostrado su potencial de aplicación clínica en casos específicos. Algunos ejemplos dignos de destacar incluyen interacciones entre una variante funcional del gen de la lipasa hepática (LIPC -514 C/T), el consumo habitual de grasa y los niveles de colesterol en HDL; o el de otra variante funcional, en este caso en el gen de la apolipoproteinaA2 (APOA2 -265 T/C), consumo de grasa saturada y el riesgo de obesidad.

La lipasa hepática es un enzima producido principalmente en el hígado cuya función principal es la hidrólisis de fosfolípidos y triglicéridos en lipoproteínas plasmáticas. Su actividad se ha asociado con niveles en plasma de estas lipoproteínas, especialmente las HDL. El gen que la codifica está localizado en el brazo largo del cromosoma 15 y sus variantes han sido estudiadas en relación a diferentes dislipidemias, así como el riesgo de enfermedad cardiovascular. Una de es-tos polimorfismos es conocido como LIPC -514 C/T, localizado en la zona promotora del gen, es decir la región que interacciona con factores que determinan cuando y en qué niveles el gen se expresa en respuesta a las necesidades del organismo. El alelo más común en las poblaciones de origen europeo se caracteriza por la presencia de C en esta posición, mientras que la forma mutada es la que contiene T en este locus. La frecuencia varía en diferentes grupos étnicos siendo más alta en asiáticos y africanos. Lo interesante de este polimorfismo, desde el punto de vista de la nutrigenómica, es su uso potencial para clasificar la respuesta de HDL al consumo de grasa en la dieta. En un estudio llevado a cabo por nuestro grupo en la población del Estudio de Framingham demostramos una respuesta diametralmente opuesta del colesterol en HDL al consumo de grasa en los homocigotos (TT) para el alelo menos común y en aquellos homocigotos para el alelo más común (CC). Es decir, en sujetos que tenían el genotipo CC, el consumo de grasa estaba asociado directamente con los niveles de colesterol en HDL (más consumo de grasa, más colesterol HDL). Por lo tanto, estos sujetos podrían consumir un amplio espectro de dietas, desde las bajas a las altas en grasa, sin modificar su riesgo cardiovascular ya que los ni-veles de HDL parecen ajustarse para mantener la relación entre HDL (protectora) y LDL (aterogénica) constante independientemente de la dieta consumida. Este no es el caso de los sujetos con el genotipo TT, ya que un mayor consumo de grasa está asociado con niveles más bajos de colesterol en HDL. Esto se traduce desde el punto de vista clínico y de asesoramiento nutricional en la necesidad/recomendación de que estos sujetos reduzcan su consumo de grasa en la dieta al objeto de mantener los niveles de colesterol HDL en niveles saludables. Estos resulta-dos también ofrecen una explicación parcial acerca de por qué los resultados de los estudios poblacionales e incluso de intervención son tan variables ya que los mismos dependerán en parte de la constitución genética de los participantes.

De esta manera vamos viendo aparecer en la literatura estudios de interacción gen-dieta que incluyen decenas de miles de sujetos. Interacciones genes-dieta y sus implicaciones en la práctica clínica.

Al estudio conjunto de múltiples genes e incluso barridos completos del genoma. Gracias a ello podemos empezar a vislumbrar ya esas aplicaciones clínicas que guiarán al médico, al profesional de la salud a distribuir el portafolio de recomendaciones dietéticas (macronutrientes y micro-nutrientes) y conductuales comportamientos (actividad física, etc.) acordes con las necesidades reales del individuo basado en su genoma/genotipo. Un ejemplo del progreso llevado a cabo utilizando estas nuevas aproximaciones al estudio de la nutrigenómica queda plasmado por un reciente estudio en el que se investigó la relación entre el consumo de bebidas azucaradas y el riesgo de obesidad modulado por la genética. Este es un tópico de gran relevancia debido al énfasis reciente en relacionar el consumo de estas bebidas con el aumento en la prevalencia de obesidad. Sin embargo, lo que desconocíamos era el papel de los genes en la relación entre el consumo de bebidas azucaradas y la obesidad. Al objeto de investigar dicha cuestión, el grupo de Lu Qi en Harvard analizó esta interacción en un consorcio que incluía tres estudios individuales con una población total de aproximadamente unos 33.000 sujetos, todos ellos con datos genéticos, antropométricos y nutricionales7.

Un score de predisposición genética a la obesidad fue calculado utilizando variantes en 32 genes asociados con el índice de masa corporal (IMC). En general, la asociación del score genético con IMC fue significativamente más marcada en aquellos sujetos con un score genético más alto – es decir, aquellos sujetos con una predisposición genética a la obesidad – que en aquellos con una baja predisposición genética a la obesidad, En consecuencia, el consumo de bebidas azucaradas dispara el riesgo de obesidad en aquellos que están genéticamente predispuestos. Por el contrario, en aquellos sujetos que no son susceptibles genéticamente a la obesidad, el consumo de bebidas azucaradas no se traducía en aumento de peso

Este es un ejemplo más de cómo el conocimiento de los genes podría ayudar a combatir la obesidad, primero mediante la determinación de la predisposición genética y segundo medianteunas recomendaciones más personalizadas y apropiadas para conseguir los objetivos. Por ejemplo, recomendando de manera específica el evitar o limitar las bebidas azucaradas en sujetos con alto score genético o limitando el consumo de grasas saturadas en aquellos que sean portadores del genotipo CC en el polimorfismo citado anteriormente para la APOA2.

Resultados más alentadores con relación a este mismo gen fueron aquellos derivados del estudio PREDIMED, que han demostrado que la dieta Mediterránea no sólo reduce la glucosa en ayunas de los individuos con el genotipo de riesgo (TT), de forma que se observa un mayor efecto protector en aquellos que más lo necesitan y no al contrario como en el ejemplo anterior,sino que además la adherencia a la dieta Mediterránea también disminuye su riesgo a sufrir. De esta forma, aquellos individuos con mayor riesgo a sufrir accidentes cerebrovasculares como consecuencia de su genotipo pueden anular esta predisposición adoptando una dieta Mediterránea. De forma similar, el consumo de vegetales y frutas ha sido también relacionado con una disminución del riesgo de infarto de miocardio y enfermedad cardiovascular en los estudios.

Imagen relacionada

INTERHEART y FINRISK, enfocados a estudiar las interacciones entre SNPs en la región y factores medioambientales como la dieta, la actividad física y el tabaquismo en 5 etnias diferentes (Europea, China, Sudasiática, Latinoamericana y Árabe) en el caso del INTERHEART y en una población Finlandesa en el caso del FINRISK obteniendo resultados consistentesapoyando su hipótesis.

La hora de considerar las interacciones entre nuestro genoma y la dieta tenemos que hacerlo de una manera global incluyendo el ambiente en su totalidad, poniendo énfasis en la relación tan estrecha que existe entre nuestro aparato digestivo y el cerebro. No debemos olvidar que “no estamos solos” y que estamos acompañados de genomas presentes en nuestro microbioma y cuya contribución al nuestro sólo estamos empezando a comprender. Otro as-pecto que será de gran interés será el epigenoma que apenas empezamos a entender y por último y como ya he destacado, el factor tiempo, la cronobiología, debe ocupar un papel importante en las investigaciones y las recomendaciones.La medicina del futuro se ha definido como de las cuatro “Ps” (predicción, prevención, personalización, participación). Para que así ocurra la genética debe jugar un papel esencial para conseguir esa elusiva salud y prolongarla el mayor tiempo posible.

Resultado de imagen para microbioma

APLICACIONES EN LA PRODUCCIÓN DE ALIMENTOS

En el año 2003 se hizo pública la secuencia que conforma nuestro genoma, el genoma humano. Somos poco más de veintitrés mil genes interaccionando con el ambiente. Pero lo que somos no depende de nuestro color de piel, ni de nuestro credo político o religioso; está escrito en ese alfabeto molecular y se traduce en función de nuestro ambiente físico o cultural. Es evidente el impacto de la genómica en nuestra vida cotidiana y ello ha dado lugar a la aparición de dos nuevas disciplinas científicas: la nutrigenética y la nutrigenómica. Por nutrigenética entendemos la disciplina científica que estudia el efecto de las variaciones genéticas entre individuos en la interacción entre dieta y enfermedad. Por nutrigenómica, aquella que estudia el efecto de los nutrientes de los alimentos sobre la expresión de nuestros genes. Con su empleo empezamos a entender cómo se va a definir en el futuro una alimentación a la carta en función de lo que podríamos llamar pasaporte genético.

Resultado de imagen para alimentos inteligentes

Puede que a muchos les aterre, pero quizás no lo vean tan grave si piensan en la ventaja que para un recién nacido puede suponer que sus padres sean informados sobre una posible mutación en su genoma que le predisponga a desarrollar una enfermedad cardiovascular si su alimentación no es adecuada. Está claro el enorme potencial que el conocimiento del genoma humano puede tener en las pautas de alimentación, pero no será menor el que tenga la secuenciación de los genomas de otros organismos vivos de interés agroalimentario. Hasta ahora se han secuenciado totalmente más de quinientos genomas distintos y hay más de setecientos proyectos de secuenciación en marcha. Algunos de ellos se refieren a animales, plantas o microorganismos de relevancia alimentaria, como, por ejemplo, el arroz, la levadura panadera, la bacteria Bifidobacterium bifidum —usada en muchos productos probióticos— o patógenos responsables de toxoinfecciones alimentarias,como Escherichia coli.

Imagen relacionada

El conocimiento de los genes que componen el genoma de estos organismos permite conocer sus genes clave para así definir estrategias de mejora por genética clásica —la llamada mejora asistida por marcadores—oporingeniería genética, desarrollar mecanismos de defensa frente a su patogenicidad o descubrir nuevas funciones fisioló- gicas con impacto nutricional. La secuenciación de genomas ha sido hasta ahora una técnica costosa en tiempo y dinero. Hace apenas un año, se describió una nueva técnica de secuenciación basada en el empleo de nanomateriales. Dicha técnica se denomina pirosecuenciación y permite secuenciar genomas de forma masiva en mucho menos tiempo y a un menor costo. Por ejemplo, la tecnología clásica de secuenciación aplicada en un laboratorio convencional tardaba en secuenciar el genoma de una bacteria láctica un tiempo variable de entre uno y tres años. Con la tecnología de pirosecunciación, es posible hacerlo en sólo ocho horas y por un precio en costo de materiales diez veces menor al de la tecnología convencional. Sin duda, la pirosecuenciación va a revolucionar la secuenciación de genomas y también de los llamados metagenomas.

Resultado de imagen para productos probióticos

Con este último sustantivo se hace referencia a la secuenciación de ADN extraído de un ecosistema, de modo que, a partir de los datos de secuencia, es posible inferir los organismos presentes en dicho nicho ecológico. Su aplicación en alimentación y nutrición es más próxima de lo que muchos imaginan. Por ejemplo,recientemente se han llevado a cabo proyectos de secuenciación masiva en voluntarios humanos, determinándose que más de trece mil cepas bacterianas distintas pueblan nuestro tracto digestivo. También mediante el empleo de metagenómica se han detectado diferencias en la composición de la flora microbiana del tracto digestivo de individuos obesos. Son los primeros resultados de una tecnología potente que permitirá conocer aspectos nuevos de nuestra fisiología y su relación con la alimentación. Podemos concluir por todo lo expuesto que el futuro de la genética en la alimentación es importante. La época en que los tecnólogos de alimentos eran expertos en el manejo de las tuberías de las instalaciones industriales ha quedado lejos. La nueva tecnología de alimentos precisa de nuevos profesionales que entiendan la importancia de la biotecnología y la genética y también que puedan discutir sobre conocimientos de otros campos del saber, como la farmacología, la nutrición, el control automático de sistemas o las nanotecnologías.

EL EMPLEO DIRECTO DE LA GENÉTICA EN LA ALIMENTACIÓN: MEJORA GENÉTICA DE LOS ALIMENTOS

La comunidad científica entiende por biotecnología el uso de un organismo vivo con un propósito industrial. Biotecnología de alimentos no es más que el uso de seres vivos en la producción de alimentos, lo que incluye toda la alimentación, porque todo cuanto comemos son, o han sido, seres vivos, ya sean animales, vegetales o alimentos o bebidas fermentadas por un microorganismo. Pero el consumidor, sobre todo el europeo, tiene una percepción distinta de lo que es y entiende que éste término hace referencia a la aplicación de la genética en la alimentación. En otras palabras, los consumidores europeos entienden por biotecnología de alimentos «poner genes en su sopa». Hay que recordar a los consumidores que la genética se ha aplicado en la alimentación desde que comenzó la agricultura y la ganadería. Desde entonces, el hombre ha mejorado empíricamente el genoma de las variedades vegetales comestibles, las razas animales y los fermentos. Esta mejora se ha fundamentado en la aparición de mutantes espontáneos, la variabilidad natural y la aplicación del cruce sexual o hibridación.

Resultado de imagen para transgénicos

De esta forma se han obtenido variedades de trigo con espigas incapaces de dispersar sus semillas en la naturaleza, pero capaces de generar unas harinas panaderas con inmejorable aptitud tecnológica, o patatas comestibles al contener niveles mínimos de alcaloides tóxicos. Desde hace treinta años, los científicos aíslan en el laboratorio fragmentos concretos que portan genes determinados. Esos genes se pueden variar en el tubo de ensayo y se pueden reintroducir en el organismo natural o en uno distinto generando un transgénico. Al global de estas técnicas lo llamamos ingeniería genética, y cuando se aplica en el diseño de un alimento surgen los llamados alimentos transgénicos. Hoy se comercializan muchos alimentos transgénicos en todo el mundo, sobre todo en Estados Unidos, Australia, Canadá y China. Los más conocidos son la soja resistente al herbicida glifosato y el maíz Bt, aunque existen muchos más. Son de gran importancia los que hacen referencia a la mejora nutricional de los alimentos. Desde algunas organizaciones ecologistas se acusa a los alimentos transgénicos de ser un veneno para la salud y el medio ambiente. No es cierto. Desde hace más de quince años, FAO, OCDE y OMS han establecido grupos de trabajo para evaluar la seguridad para el consumidor de los alimentos transgénicos. Se ha llevado a cabo una evaluación de riesgos sanitarios de todos los alimentos transgénicos comercializados atendiendo al contenido nutricional, la posible presencia de alérgenos y el nivel de toxicidad.

Son los alimentos más evaluados de la historia de la alimentación y no disponemos de un dato científico que indique que representen un riesgo para la salud del consumidor superior al que implica la ingestión del alimento convencional correspondiente. Este hecho ha sido puesto de manifiesto por la OMS en su página de Internet. Es interesante destacar que, tras la publicación de esta decisión, dichos grupos han variado su estrategia y apenas hablan de los riesgos sanitarios de los transgénicos pero sí de los riesgos ambientales. Ahí las cosas son menos claras, porque hay una falta de metodologías para analizar este tipo de riesgos que afectan tanto a las plantas transgénicas como a las convencionales. Aun así, debemos afirmar con contundencia que existen tres posibles riesgos: la transferencia de los genes exógenos desde la variedad transgénica a variedades silvestres, la pérdida de biodiversidad y los efectos dañinos que ciertas plantas transgénicas resistentes a insectos pueden tener sobre poblaciones de insectos distintos de aquellos contra los que protegen. Todos estos riesgos ya existen con las variedades convencionales. Por ello, la cuestión clave es conocer si el empleo de transgénicos acelerará la aparición de estos riesgos. Parece que no, siempre que se mantengan y mejoren las normas de evaluación que empleamos actualmente con las plantas transgénicas.

Resultado de imagen para mejoramiento genetico en alimentos

Finalmente, debemos considerarlos riesgos económicos. El 90% de los agricultores que utilizaron semillas transgénicas en el 2006 eran agricultores pobres de países en desarrollo. Una realidad muy lejana del estereotipo que hace de lo transgénico un negocio en manos de pocas compañías multinacionales. Pero conviene debatir acerca de la opinión del consumidor sobre los transgénicos. En general, y destacando la falta de formación e información en biotecnología de nuestra sociedad, así como la constante presencia de los grupos en contra en los medios de comunicación, los perciben como algo peligroso. Por ello resulta importante la divulgación de los datos reales que desde la ciencia tenemos de estos productos.

Alimentos “nutriactivos”

Lo más importante en este aspecto, es que la genómica nutricional permitirá cruzar la información genómica individual con la alimentación y los componentes de los alimentos, de modo que el efecto sea positivo para la salud del individuo. La idea es que los alimentos riesgosos puedan reemplazarse con otros potencialmente menos nocivos.

Resultado de imagen para Alimentos nutricionales

El perfil genómico individual puede ayudar a mejorar la nutrición y la salud, y en este nuevo escenario la genómica y la bioinformática cumplirán un papel crucial en la identificación de variantes genéticas que causen enfermedades, lo cual está siendo realizado mediante investigación de las bases de datos del genoma humano. En este sentido, es fundamental conocer los cambios que se producen dentro de la célula, sus modelos de interacción con el transcriptoma y el metaboloma, para poder personalizar los efectos de una dieta sana en la corrección de un metabolismo alterado. La comparación de un genotipo individual con una base de datos genómica permitirá la recomendación de nutriente individualizado genotipo-dependiente de acuerdo a los requerimientos y necesidades de cada individuo.

Los recientes desarrollos de la proteómica aplicados a la nutrición, están revolucionando los conceptos de alimentos “nutriactivos” como inductores de la expresión de ciertos genes y el consiguiente procesamiento de proteínas cuya acción es fundamental para el funcionamiento normal del metabolismo celular (metaboloma).

Referencias:

https://cefegen.es/blogs/polimorfismos-geneticos-definicion-ejemplos

Resultado de imagen para microbioma

Si te ha gustado esta publicación o a su vez te ha sido de utilidad, no te olvides dejarnos tus comentarios, compartir y seguirnos en redes.

Responder

Por favor, inicia sesión con uno de estos métodos para publicar tu comentario:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s